首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
In the present study, we test the hypothesis that AMP-activated protein kinase (AMPK) initiates metabolic rate suppression in isolated goldfish hepatocytes. To accomplish this, we attempted to pharmacologically activate AMPK in goldfish hepatocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and the thienopyridone, A769662, to examine the effects of AMPK activation on eukaryotic elongation factor-2 (eEF2), protein synthesis, and cellular oxygen consumption rate ( [(M)\dot]\textO 2 \dot{M}_{{{\text{O}}_{ 2} }} ). Goldfish hepatocytes treated with 1 mM AICAR under normoxic conditions (>200 μM O2) showed a modest but significant 1.1-fold increase in AMPK phosphorylation, a 7.5-fold increase in AMPK activity, a 1.4-fold increase in eEF2 phosphorylation, and a 24% decrease in [(M)\dot]\textO 2 \dot{M}_{{{\text{O}}_{ 2} }} . At physiologically relevant [O2] (<40 μM O2), the addition of 1 mM AICAR resulted in only a 13% decrease in cellular [(M)\dot]\textO 2 \dot{M}_{{{\text{O}}_{ 2} }} with no change in sensitivity to [O2] as assessed by estimates of cellular P50 and P90 values. The addition of compound C, a general protein kinase inhibitor, after AICAR incubation did not reverse the effects of AICAR on [(M)\dot]\textO 2 \dot{M}_{{{\text{O}}_{ 2} }} in normoxia. Treatment of hepatocytes with ≤200 μM A769662 did not affect AMPK activity, AMPK phosphorylation, eEF2 phosphorylation, or cellular [(M)\dot]\textO 2 \dot{M}_{{{\text{O}}_{ 2} }} . These data suggest that A769662 is not an activator of AMPK in goldfish hepatocytes. Although our study provides support for the hypothesis that AMPK plays a role in initiating metabolic rate suppression in goldfish hepatocytes, this support must be viewed cautiously because of the known off-target effects of the pharmacological agents used.  相似文献   

2.
Summary High yields of human hepatocytes (up to 23×106 viable cells/g) were obtained from small surgical liver biopsies (1 to 3 g) by a two-step collagenase microperfusion method. Cell viability was about 95%, attachment efficiency of hepatocytes seeded on fibronectin-coated plates was 80% within 1 h after plating, and cells survived for about 2 wk in serum-free Ham’s F12 containing 0.2% bovine serum albumin, 10−8 M insulin, and 10−8 M dexamethasone. To evaluate the metabolism of human hepatocytes in serum-free conditions, we measured their most characteristic biochemical functions and compared them to those reported for human liver. After 24 h in culture, glycogen content was 1250±177 nmol glucose/mg cell protein and remained stable for several days. Gluconeogenesis from lactate in hormone-free media was (3.50±0.17 nmol glucose·mg−1·min−1) similar to that reported for human liver. Insulin at 10−8 M activated glycolysis (×1.40) and glycogenesis (×1.34), and glucagon at 10−9 M stimulated gluconeogenesis (×1.35) and glycogenolysis (×2.18). Human hepatocytes synthesized albumin, transferrin, fibrinogen, α1-antitrypsin, α1-antichymotrypsin, α1-acid glycoprotein, haptoglobin, α2-macroglobulin, and plasma fibronectin and excreted them to the culture medium. Maximum protein synthesis was stimulated by 10−9 M dexamethasone. Basal urea synthesis oscillated between 2.5 and 3.5 nmol·mg−1 cell protein·min−1, about 5 times the value estimated for human liver. Cytochrome P-450 decreased in culture but it was still 20% of freshly isolated hepatocytes by Day 5 in culture. In addition, ethoxycumarin-O-deethylase and aryl hydrocarbon hydroxylase could be induced in vitro by treatment with methyl cholanthrene. Glutathione levels were similar to those reported for human liver (35 nmol·mg−1). The results of our work show that adult human hepatocytes obtained from small surgical biopsies and cultured in chemically defined conditions express their most important metabolic functions to an extent that is similar to that reported for adult human liver.  相似文献   

3.
Summary Methyl jasmonate (MeJA) interacted significantly with both indole-3-acetic acid (IAA) and 6-benzylaminopurine (BA) to influence cell growth of cultured Onosma paniculatum cells. Cell growth decreased with increasing concentrations of MeJA from 0.004–4.45 μM with or without IAA and BA. The same concentrations of MeJA (0–4.45 μM) increased the cell growth with IAA and BA, when administered to the cultured cells in M9 medium. This was found to enhance the production of shikonin. The optimum time for MeJA addition for enhanced shikonin formation was 4 d after cell inoculation in M9 medium. Furthermore, shikonin formation was affected significantly by both MeJA/IAA and MeJA/BA combinations. Shikonin content was enhanced by increasing MeJA concentrations with IAA concentrations in the range of 0–28 μM and with BA concentrations in the range of 0–44.38 μM in MeJA/BA experiments, respectively. The optimal combination of MeJA and IAA was 4.45 μM and 0.28 μM, while MeJA and BA concentrations of 4.45 μM and 2.22 μM were optimal for shikonin formation. The result also showed that MeJA increased phenylalanine ammonia-lyase (PAL) and p-hydroxybenzoic acid-geranyltransferase (PHB-geranyltransferase) activites during the course of shikonin formation, but decreased the activity of PHB-O-glucosyltransferase within 9 d after inoculation. These results suggest that enhanced shikonin formation in cultured Onosma paniculatum cells induced by MeJA involves regulation of the key enzyme activities.  相似文献   

4.
Through use of a recently developed technique that can measure CO2 exchange by individual attached roots, the influences of soil O2 and CO2 concentrations on root respiration were determined for two species of shallow-rooted cacti that typically occur in porous, well-drained soils. Although soil O2 concentrations in the rooting zone in the field were indistinguishable from that in the ambient air (21% by volume), the CO2 concentrations 10 cm below the soil surface averaged 540 μLL−1 for the barrel cactusFerocactus acanthodes under dry conditions and 2400 μLL−1 under wet conditions in a loamy sand. For the widely cultivated platyopuntiaOpuntia ficus-indica in a sandy clay loam, the CO2 concentration at 10 cm averaged 1080 μLL−1 under dry conditions and 4170 μLL−1 under wet conditions. For both species, the respiration rate in the laboratory was zero at 0% O2 and increased to its maximum value at 5% O2 for rain roots (roots induced by watering) and 16% O2 for established roots. Established roots ofO. ficus-indica were slightly more tolerant of elevated CO2 than were those ofF. acanthodes, 5000 μLL−1 inhibiting respiration by 35% and 46%, respectively. For both species, root respiration was reduced to zero at 20,000 μLL−1 (2%) CO2. In contrast to the reversible effects of 0% O2, inhibition by 2% CO2 was irreversible and led to the death of cortical cells in established roots in 6 h. Although the restriction of various cacti and other CAM plants to porous soils has generally been attributed to their requirement for high O2 concentrations, the present results indicate that susceptibility of root respiration to elevated soil CO2 concentrations may be more important.  相似文献   

5.
Previous studies have demonstrated that oxygen environment is an important determinate factor of cell phenotypes and differentiation, although factors which affect pericellular oxygen concentration (POC) in murine chondrogenic cell culture remain unidentified. Oxygen concentrations in vivo were measured in rabbit musculoskeletal tissues, which were by far hypoxic compared to 20% O2 (ranging from 2.29 ± 1.16 to 4.36 ± 0.51%). Oxygen concentrations in murine chondrogenic cell (C3H10T1/2) culture medium were monitored in different oxygen concentrations (20% or 5%) in the incubator and in different medium volumes (3,700 or 7,400 μl) within 25-cm2 flasks. Chondrogenic differentiation was assessed by glycosaminoglycan production with quantitative evaluation of Alcian blue staining in 12-well culture dishes. Expression of chondrogenic genes, aggrecan, and type II collagen α1, was examined by quantitative real-time polymerase chain reaction. Oxygen concentrations in medium decreased accordingly with the depth from medium surface, and POC at Day 6 was 18.99 ± 0.81% in 3,700-μl medium (1,480-μm depth) and 13.26 ± 0.23% in 7,400-μl medium (2,960-μm depth) at 20% O2 in the incubator, which was 4.96 ± 0.08% (1,480-μm depth) and 2.83 ± 0.42% (2,960-μm depth) at 5% O2, respectively. The differences of POC compared by medium volume were statistically significant (p = 0.0003 at 20% and p = 0.001 at 5%). Glycosaminoglycan production and aggrecan gene expression were most promoted when cultured in moderately low POC, 1,000 μl (2,960-μm depth) at 20% O2 and 500 μl (1,480-μm depth) at 5% O2 in 12-well culture dishes. We demonstrate that medium volume and oxygen concentration in the incubator affect not only POC but also chondrogenic differentiation.  相似文献   

6.
Previous studies have shown that the in ovo injection of equol can markedly improve the water-holding capacity of muscles of broilers chickens at 7 wk of age through promotion of the antioxidant status. We aimed to investigate directly the antioxidant effects of equol on muscle cells in broilers. Muscle cells were separated from leg muscle of embryos on the 11th day of incubation and treated with equol and H2O2, either alone or together. Cells were pretreated with medium containing 1, 10, or 100 μM equol for 1 h prior to the addition of 1 mM H2O2 for a further 1 h. Photomicrographs of cells were obtained. Cell viability, malondialdehyde (MDA) content, and L-lactate dehydrogenase (LDH) activity in the cell supernatant, as well as intracellular total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities were determined. Treatment with 1 mM H2O2 caused serious damage to cells, indicated by comets with no clear head region but a very apparent tail of DNA fragments. Pretreatment with low (1 μM) but not high concentrations of equol (10 μM) inhibited cell damage, while 100 μM equol caused more serious damage than H2O2 alone. Pretreatment with 1 μM equol had no effect on cell viability, while pretreatment with 10 and 100 μM equol significantly decreased cell viability in a dose-dependent manner. Compared with H2O2 alone, pretreatment with low-dosage equol markedly decreased LDH activity and MDA production in the supernatant, significantly increased intracellular T-SOD activity (P < 0.05) and tended to increase intracellular GSH-Px activity (0.05 < P < 0.1). Pretreatment with high-dosage equol (10 and 100 μM) significantly enhanced LDH activity, but had no effect on MDA content, T-SOD or GSH-Px activity induced by H2O2, except for an obvious increase in GSH-Px activity caused by 10 μM equol. These results indicate that equol at low dosage can prevent skeletal muscle cell damage induced by H2O2, while pretreatment with high-dosage equol shows a synergistic effect with H2O2 in inducing cell damage.  相似文献   

7.
In vitro and in vivo studies have proven strontium to be an osteoinductive trace element. The effect of strontium ranelate (SR) on H2O2-induced apoptosis of CRL-11372 cells and optimization of its anti-apoptotic dose were the aims of this study. After 1 h of pretreatment with SR 1 μM, 50 μM, 100 μM, 500 μM, and 1,000 μM concentrations, CRL-11372 osteoblasts were exposed to 100 μM H2O2 for periods of 6–12 h. The same experiments were repeated without H2O2. The apoptotic index and viability of cells were assessed quantitatively with a fluorescent dye and qualitatively with agarose gel electrophoresis. Concentrations of 1–100 μM of SR with a 6-h treatment and only 1 μM concentration with a 12-h treatment inhibited the apoptotic effect of H2O2 on cultured osteoblasts significantly (P < 0.05). SR was shown to inhibit H2O2-induced apoptosis of CRL-11372 cells in a dose-dependent manner.  相似文献   

8.
Summary In vitro methods were applied to the only remaining plant of the Meelup Mallee (Eucalyptus phylacis), a critically endangered species from the southwest of Western Australia. Shoot explants were initiated into culture using a 1/2 MS [Murashige and Skoog basal medium (BM) for all experiments] liquid medium supplemented with 1% (w/v) activated charcoal, which was replenished twice daily, followed by transfer of explants to agar medium supplemented with 0.5 μM zeatin. Explants were cultured under low intensity lighting (PPFD of 5–10 μmol m−2s−1) to minimize blackening of tissues, and some explants were induced to produce nodular green calluses in response to BM supplemented with 5 μM thidiazuron. Nodular green calluses were induced to form adventitious shoots following transfer to medium supplemented with 0.5 μM zeatin and 1 μM gibberellic acid, A4 isomer (GA4). Development of shoots was completed on 1 μM zeatin + 0.1 μM 6-benzylaminopurine (BA) in vented culture tubes. Regenerated shoots were sequentially cultured on medium containing 0.5 μM zeatin + 0.2 μM indoleacetic acid (IAA) followed by either 0.5 μM zeatin + 1μM GA4 for shoot elongation or 1 μM zeatin + 0.5 μM IAA to optimize shoot growth. Rooted microshoots were produced after 4 weeks on 5 μM indolebutyric acid (IBA) and survived acclimatization and transfer to potting mixture.  相似文献   

9.
Inactivation of PerR by oxidative stress and a corresponding increase in expression of the perR regulon genes is part of the oxidative stress defense in a variety of anaerobic bacteria. Diluted anaerobic, nearly sulfide-free cultures of mutant and wild-type Desulfovibrio vulgaris (105–106 colony-forming units/ml) were treated with 0 to 2,500 μM H2O2 for only 5 min to prevent readjustment of gene expression. Survivors were then scored by plating. The wild type and perR mutant had 50% survival at 58 and 269 μM H2O2, respectively, indicating the latter to be 4.6-fold more resistant to killing by H2O2 under these conditions. Significantly increased resistance of the wild type (38-fold; 50% killing at 2188 μM H2O2) was observed if cells were pretreated with full air for 30 min, conditions that did not affect cell viability. The resistance of the perR mutant increased less (4.6-fold; 50% killing at 1230 μM H2O2), when similarly pretreated. Interestingly, no increased resistance of either was achieved by exposure with 10.6 μM H2O2 for 30 min, the highest concentration that could be used without killing the cells. Hence, in environments with low D. vulgaris biomass only the presence of external O2 effectively activates the perR regulon. As a result, mutant strains lacking one of the perR regulon genes ahpC, dvu0772, rbr1 or rbr2 displayed decreased resistance to H2O2 stress only following pretreatment with air.  相似文献   

10.
Apoptosis of thyroid follicular cells is induced by high doses of iodide, epidermal growth factor (EGF), transforming growth factor-β (TGF-β), as well as H2O2 and might be attenuated by antioxidants. Therefore, we examined the apoptotic index induced by these substances in selenium-treated vs untreated human thyroid follicular cells. Reconstituted human thyroid follicles were incubated with sodium selenite (10 or 100 nM) for 72 h; controls received none. The follicles were then distributed to 24-well plates and incubated with potassium iodide (5, 10, or 20 nM), EGF (5 ng/mL), TGF-β (5 ng/mL), or H2O2 (100 μM). Apoptosis was determined by a mitochondrial potential assay and the number of apoptotic cells counted by two independent, experienced technicians and the glutathione peroxidase (GPx) activity was determined. A significant increase of apoptic cells was obtained in control thyroid follicles treated with iodine (5, 10, or 20 μM), thyroid-stimulating hormone (TSH) 1, or 10 mU/mL in combination with 5 and 10 μM iodine, EGF (5 ng/mL) and TGF-β (5 ng/mL), or H2O2 (100 μM) (p<0.001). In contrast, in thyroid follicles preincubated with 10 or 100 nM sodium selenite, the apoptototic index was identical to the basal rate. In H2O2-treated follicles, the apoptotic index was still significantly elevated but 50% lower compared to control cells. The GPx activity increased from 1.4±0.2 to 2.25±0.4 mU/μg DNA with 10 nM selenite and 2.6+0.4 mU/μg DNA with 100 nM selenite. Sodium selenite might increase the antioxidative potential in human thyroid follicles in vitro and therefore diminish the apoptosis induced by TGF-β, EGF, iodide, and even H2O2  相似文献   

11.
Transition of n-hexadecane utilizing cultures of Candida maltosa to oxygen-limited growth caused an up to 6-fold increase of the cellular cytochrome P-450 content. Enhanced cytochrome P-450 formation required protein de novo synthesis and was not due to a change of the apo/holo-enzyme ratio as demonstrated by cycloheximide inhibition and immunological quantitation. The effect of low oxygen concentration (pO2=3–5%) was simulated by selective inhibition of alkane hydroxylation with carbon monoxide (at a pO2 of 70–75%). Enhanced cytochrome P-450 formation occurred even when a constant growth rate was maintained through utilization of a second non-repressive growth substrate. However, the presence of n-alkanes was an essential precondition. It was concluded, that the cytochrome P-450 formation was mainly regulated by the intracellular inducer concentration which depends on the relative rates of alkane transport into the cell and the actual alkane hydroxylating activity of the enzyme system.Abbreviation cyt cytochrome  相似文献   

12.
Summary Neurons from brains of chick embryos and pond snails (Lymnaea stagnalis) were cultured for 3 to 4 d in the presence of no toxins, inorganic lead (PbCl2), or organic lead (trielthyl lead chloride). In chick neurons, inorganic lead reduced the percentage of cells that grew neurites (IC50=270μM total lead, approximately 70 nM free Pb2+) but did not reduce the number of neurites per cell or the mean neurite length. Triethyl lead reduced the percentage of cells that grew neuites (IC50=0.24 μM) and the mean neurite length (extrapolated IC50=3.6 μM) but did not reduce the number of neurites per cell. InLymnaea neurons, inorganic lead reduced the percentage of cells that grew neurites (IC50=13 μM total lead; approximately 10 nM free Pb2+). Triethyl lead reduced the percentage of cells that grew neurites (IC50=0.4 μM) and exerted significant toxicity at 0.2 μM. The two forms of lead affected neurite growth in qualitatively different ways, which suggests that their mechansms of action are different. These experiments were supported by grants from the Environmental Protection Agency, Washington, DC, and the National Institutes of Environmental Health Science, Research Triangle Park, NC.  相似文献   

13.
Summary This study was undertaken to examine the influence of time and volume of collagen overlay, type of media, and media additives on taurocholate (TC) accumulation and biliary excretion in hepatocytes cultured in a collagen-sandwich configuration. Hepatocytes were isolated from male Wistar rats by in situ perfusion with collagenase, seeded onto collagencoated 60-mm dishes, overlaid with gelled collagen, and cultured for 4 d. Experiments to examine the influence of time and volume of collagen overlay were conducted in Dulbecco's modified Eagle's medium (DMEM)+1.0μM dexamethasone (DEX)+5% fetal bovine serum (FBS). Hepatocytes were overlaid at 0 h with 0.1 or 0.2 ml collagen, or at 24 h with 0.1 or 0.2 ml collagen. The influence of media type and additives was examined in hepatocytes overlaid at 0 h with 0.2 ml collagen and incubated in DMEM+0.1μM DEX, DMEM+0.1μM DEX+5% FBS, Williams' medium E+0.1μM DEX+1% ITSΘ+, DMEM +1.0μM DEX, DMEM+1.0 μM DEX+5% FBS, or modified Chee's medium (MCM)+0.1 μM DEX+1% ITSГ+. [3H] TC accumulation by hepatocytes in Hank's balanced salt solution (HBSS) and Ca2+-free HBSS was measured, and the biliary-excretion index (BEI: percentage of accumulated TC localized in the canalicular compartment) was calculated. Light microscopy and carboxydichlorofluorescein fluorescence were employed to examine the cellular and canalicular morphologies. The volume of collagen used for both the substratum and the overlay did not affect TC accumulation or biliary excretion. The BEI tended to be higher in cells overlaid at 24 h (BEI=0.649 [0.1 ml collagen]; BEI=0.659 [0.2 ml collagen]) compared with those overlaid at 0 h after seeding (BEI=0.538 [0.1 ml collagen]; BEI=0.517 [0.2 ml collagen]), although the differences were not statistically significant. Hepatocytes cultured in MCM produced consistently the lowest BEI of TC (BEI=0.396). Differing DEX concentration (0.1 μM versus 1.0 μM) with or without 5% FBS did not appear to have a significant effect on the BEI of TC.  相似文献   

14.
Effect of sodium butyrate on primary cultures of adult rat hepatocytes   总被引:2,自引:0,他引:2  
Summary Sodium butyrate, at millimolar concentrations, seems to mediate or initiate multiple effects on many mammalian cells in culture. Although many transformed cell lines respond to butyrate treatment with acquisition of normal cellular characteristics, the effect of butyrate on a normal cell type, the parenchymal hepatocyte, has not been studied. Serum-free primary cultures of adult rat hepatocytes maintain many adult characteristics, yet after several days in culture a loss of adult characteristics occurs while fetal characteristics are often reexpressed. Therefore, we investigated whether butyrate treatment would improve the morphologic and biochemical characteristics of cultured hepatocytes. Exposure to 5 mM butyrate for 3 d did not affect hepatocyte viability or morphology but retarded the progressive decline in cytochrome P-450 levels and 5′-nucleotidase activity. The spontaneous increase in alkaline phosphatase activity was reduced and the induction of tyrosine aminotransferase was inhibited after 3 d in culture. The fetal liver characteristic, gamma glutamyltranspeptidase, was not affected by butyrate treatment. Results of this study suggest that butyrate represents a nontoxic compound capable of improving the maintenance of cell culture characteristics of adult rat hepatocytes.  相似文献   

15.
Summary A mutant strain of Anabaena variabilis, strain SA-1 that supported growth of wheat plants in a hydroponic co-culture in nitrogen (N) free medium also produced enough oxygen (O2) to support root respiration. The steady-state concentration of net O2 in the co-culture was dependent on incident light intensity. At an incident photosynthetic photoflux (PPF) of 1000 mol photons·m–2·s–1, net O2 evolution by the co-culture in the root zone reached a maximum value of about 220 mol O2 evolved·h–1·mg chlorophyll (Chl)–1. The O2 concentration in the rhizosphere of the co-culture stayed above the ambient air level. O2 uptake in the dark by strain SA-1-supplemented wheat roots washed free of cyanobacterium was higher than the root respiration of nitrate-grown plants. Nitrate-grown plants required aeration for maximum growth while the wheat-cyanobacterial co-culture can be cultured without aeration. These results show that O2 produced by strain SA-1 can be used to supply the O2 needs for root respiration of wheat. Respiration reduced net O2 evolution by the mutant SA-1, decreasing the partial pressure of O2 at the sites of cyanobacterial attachment to the roots. This led to an increase in the specific activity of nitrogenase of the co-culture at the high light intensities used to support wheat growth. This activity of about 30 mol ethylene produced·mg Chl–1·h–1 was three-fold higher than the activities obtained with the free-living strain SA-1 assayed at the same light intensity. In the co-culture, ammonia produced by the mutant strain SA-1 was not detectable. The NH inf4 sup+ produced by strain SA-1 was used by the wheat plants and, under these conditions, the total N content of the plants reached as high as 85% of the total N content of nitrate-grown plants. In the co-culture system the metabolism of wheat and the cyanobacterium complemented each other, leading to higher plant growth in N-free medium. Offprint requests to: M. Gunasekaran  相似文献   

16.
Summary Lung cell culture may be useful as anin vitro alternative to study the susceptibility of the lung to various toxic agents. Lungs from female Wistar rats were enzymatically digested by recirculating perfusion through the pulmonary artery with a sequence of solutions containing deoxyribonuclease, chymopapain, pronase, collagenase, and elastase. Lung tissue was microdissected and resuspended and the cells obtained were washed by centrifugation. By this isolation method, 2×108 cells per rat lung were obtained with an average viability of 97%. Lung cells cultured in medium containing antibiotics and serum maintained a viability of >70% for 5 d. Rat primary lung cells were exposed to various toxic agents and their viability was assessed by formazan production capacity after 18 h of incubation. Compared to rat and mouse hepatocyte cultures (EC50=5.8 mM), rat primary lung cells were much more susceptible to hydrogen peroxide (EC50=0.6 mM). All cell types were equally sensitive to the more potent toxicanttert-butylhydroperoxide (EC50=0.1 mM). Paraquat was more toxic to lung cells (EC50=0.03 mM) than to rat (EC50=2.8 mM) and mouse (EC50=0.2 mM) hepatocytes. In contrast, rat lung cells were less sensitive to sodium nitroprusside (EC50=2.6 mM) compared to rat (EC50=0.2 mM) and mouse (EC50=0.03 mM) hepatocytes. Nitrofurantoin and menadione (at EC50=0.04 mM and 0.006 mM, respectively) were more toxic to rat lung and liver cells than to murine hepatocytes (EC50=0.2 mM and 0.04 mM, respectively). Our findings demonstrate the applicability of this rat primary lung cell culture for studying the effects of lung toxicants. Parts of the study had been presented orally at the meeting of the German Society of Toxicology and Pharmacology in Mainz (FRG), March 15–17, 1994.  相似文献   

17.
Summary We have developed efficient methods for plant regeneration, via both embryogenesis and organogenesis, of Smooth Cayenne pineapple, Ananas comosus (L.) Merr. Leaf bases and core (stem) sections of in vitro shoots, produced from culture of crown tip meristem, were used as explants for plant regeneration as follows: (1) Leaf base and core section explants cultured on Murashige and Skoog (MS) medium containing 41 μM 4-amino-3,5,6-trichloropicolinic acid (picloram, P) or thidiazuron (T)/P combinations produced embryogenic tissues. Different types of embryogenic tissues (friable emryogenic tissue, embryogenic cell cluster, and chunky embryogenic tissue) have been developed with varying properties in terms of growth rate and state of development. The embryogenic tissues regenerated shoots upon culture on MS medium containing 13 μM 6-benzylaminopurine (BA) and 1μM α-naphthaleneacetic acid (NAA) followed by culture on MS medium containing 4 μM BA. (2) Crown tip meristems cultured on MS medium containing 13 μM BA followed by leaf explants cultured on MS medium with 27 μM NAA and 1 μM BA produced shoots via direct organogenesis. (3) Explants cultured on MS medium containing 5 μM T and 0.5 μM indole-3-butyric acid (IBA) produced nodular globular structures, which produced shoots upon culture on MS medium containing 1 μM BA and 1 μM gibberellic acid. Shoots obtained from all of the above methods were rooted in half-strength MS medium containing 3 μM NAA and 2.5 μM IBA. Plants were transferred to the greenhouse or shipped to Costa Rica for field trials. Somatic embryo-derived plants exhibited 21 % spininess, and organogenic-derived plants exhibited 5% spininess in the field trials.  相似文献   

18.
Summary The effect of low concentrations of hydrogen peroxide (H2O2) (5 × 10−7−9.5 × 10−7 M) on cell growth and antibody production was investigated with murine hybridoma cells (Mark 3 and anti-hPL) in culture. Cell growth, measured by flow cytometry with morphological parameters, was significantly stimulated by H2O2 (8 × 10−7 M) but H2O2 concentration of 7 × 10−6 M and above increased cell death. H2O2 stimulation of antibody production was nonsignificant. The metabolism of cells treated with 8 × 10−7 or 1 × 10−5 M H2O2 was similar to that of the control in terms of glucose and glutamine consumption, lactate and ammonia production, and amino acid concentrations in the medium. The concentrations of lactate dehydrogenase, a marker of cell death, in test and control cells were similar. However, concentrations of intracellular free radicals measured by flow cytometry with dihydrorhodamine 123 (DHR 123) and dichlorofluorescein diacetate (DCFH-DA) as fluorochromes were different. The reactive oxygen species content of cells in 8 × 10−7 M H2O2 was similar to that of the controls, but there was a sudden, marked production of superoxide anions (detected with DHR 123) and H2O2 or peroxides (detected with DCFH-DA) by cells incubated with 1 × 10−5 M H2O2 which increased with increasing H2O2 until cell death.  相似文献   

19.
Summary Creeping bluestem (Schizachyrium scoparium (Michx.) Nash var. stoloniferum (Nash) J. Wipff) embryogenic callus growing on solid medium was used to establish a cell suspension culture in Murashige and Skoog (MS) basal medium supplemented with 1.5 mg l−1 (6.8 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), 0.2 mg l−1 (0.88 μM) 6-benzylaminopurine (BA), 0.5 mg l−1 (1.4 μM) zeatin, 0.2 mg l−1 (0.58 μM) gibberellic acid (GA3), and 10% (v/v) of coconut water (CW). Pro-embryos from suspension culture matured on semi-solid MS medium in about 18 wk, and were then cultured on semi-solid MS medium without growth regulators for 2–3 wk. Shoots were regenerated on MS basal medium supplemented with 3.0 mg L−1 (13.6 μM) 2,4-D, 1.0 mg l−1 (4.4 μM) BA, 1.0 mg l−1 (2.9 μM) GA3, 0.5 mg l−1 (2.7 μM) 1-naphthaleneacetic acid (NAA), 500 mg l−1 easein hydrolysate, and 10% (v/v) CW. Rooted plantlets were successfully accelimatized to greenhouse and outdoor conditions. Using this protocol, it would be possible to produce at least 1300 fully acclimatized plantlets annually.  相似文献   

20.
This study examines the effect on mitochondrial respiration and permeability of in vivo and in vitro aluminium (Al) exposure. Rats were treated intraperitoneally with AlCl3 to achieve serum and liver Al concentrations comparable to those seen in Al-related disorders. Mitochondria isolated from Al-treated rats had higher (p<0.01) Al concentration, lower (p<0.05) state 3 respiration, respiratory control (RCR), and ADP/O ratio (succinate substrate), and greater passive swelling in 100 mM KCl or 200 mM NH4NO3 than controls. The in vitro addition of Al (0–180 μM) to mitochondria from normal rats also decreased (p<0.01) state 3 respiration, RCR, and ADP/O and stimulated passive swelling in KCl and NH4NO3 at 42–180 μM Al. These studies show that Al depresses mitochondrial energy metabolism and increases membrane permeability. The toxicity associated with Al may be related to its effect on mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号