首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Mixed Lineage Leukemia (MLL) gene is essential for embryonic hematopoietic stem cell (HSC) development, but its role during adult hematopoiesis is unknown. Using an inducible knockout model, we demonstrate that Mll is essential for the maintenance of adult HSCs and progenitors, with fatal bone marrow failure occurring within 3 weeks of Mll deletion. Mll-deficient cells are selectively lost from mixed bone marrow chimeras, demonstrating their failure to self-renew even in an intact bone marrow environment. Surprisingly, HSCs lacking Mll exhibit ectopic cell-cycle entry, resulting in the depletion of quiescent HSCs. In contrast, Mll deletion in myelo-erythroid progenitors results in reduced proliferation and reduced response to cytokine-induced cell-cycle entry. Committed lymphoid and myeloid cells no longer require Mll, defining the early multipotent stages of hematopoiesis as Mll dependent. These studies demonstrate that Mll plays selective and independent roles within the hematopoietic system, maintaining quiescence in HSCs and promoting proliferation in progenitors.  相似文献   

2.
Homozygosity for a null mutation in the scl gene causes mid-gestational embryonic lethality in the mouse due to failure of development of primitive hematopoiesis. Whilst this observation established the role of the scl gene product in primitive hematopoiesis, the death of the scl null embryos precluded analysis of the role of scl in later hematopoietic development. To address this question, we created embryonic stem cell lines with a homozygous null mutation of the scl gene (scl-/-) and used these lines to derive chimeric mice. Analysis of the chimeric mice demonstrates that the scl-/- embryonic stem cells make a substantial contribution to all non-hematopoietic tissues but do not contribute to any hematopoietic lineage. These observations reveal a crucial role for the scl gene product in definitive hematopoiesis. In addition, in vitro differentiation assays with scl-/- embryonic stem cells showed that the scl gene product was also required for formation of hematopoietic cells in this system.  相似文献   

3.
The Mixed Lineage Leukemia (Mll) gene is a homolog of Drosophila Trithorax commonly rearranged in infant leukemia. Comprehensive analysis of the role of Mll in hematopoiesis in fetal and adult knockout mice has been prevented by the lethality of Mll(-/-) mice. We have established a conditional deletion model that allows us to study adult hematopoiesis in the absence of Mll. In this study, Mll(-/-) embryos survive to E16.5 and have reduced numbers of HSCs. The quiescent fraction of these HSCs is greatly reduced, and they are unable to compete with wild-type cells in transplantation assays. Mice with Mll expression conditionally deleted in the hematopoietic system have grossly normal hematopoiesis in bone marrow, thymus, and spleen. However, transplanted Mll-deficient bone marrow cells are highly compromised in their ability to competitively reconstitute irradiated recipients. These results suggest a critical role for Mll in regulating stem cell self-renewal.  相似文献   

4.
Chromosomal translocations disrupting the Mixed lineage leukemia (Mll) gene result in leukemia, with aberrant expression of some native Mll target genes (reviewed in). The Mll gene encodes a Trithorax-group chromatin regulator that is essential for the development of hematopoietic stem cells (HSCs) during embryogenesis. Like Trithorax, MLL positively regulates clustered homeodomain or Hox genes, yet the role of Hox genes collectively in the development of the mammalian hematopoietic system has been difficult to ascertain because of redundancy among Hox paralogs. Here, we show that in the absence of MLL, early hematopoietic progenitors develop despite reduced expression of HoxA, HoxB, and HoxC genes. However, these progenitors exhibit a marked reduction in their ability to generate hematopoietic colonies, a subsequent process requiring cell division and differentiation. Reactivation of a subset of Hox genes or, remarkably, reexpression of a single Hox gene in Mll-deficient progenitors rescued hematopoietic-colony frequency and growth. In contrast, expression of other MLL target genes such as Pitx2 or expression of anti-apoptotic BCL-2 failed to rescue hematopoietic-colony frequency. Furthermore, our results highlight a shared function of Hox proteins at this point in the development of the hematopoietic system.  相似文献   

5.
Human embryonic stem cells (hESCs) and induced pluripotent stem cells are excellent models for the study of embryonic hematopoiesis in vitro, aiding the design of new differentiation models that may be applicable to cell-replacement therapies. Adult and fetal hematopoietic stem cells are currently being used in biomedical applications; however, the latest advances in regenerative medicine and stem cell biology suggest that hESC-derived hematopoietic stem cells are an outstanding tool for enhancing immunotherapy and treatments for blood disorders and cancer, for example. In this review, we compare various methods used for inducing in vitro hematopoietic differentiation from hESCs, based on co-culture with stromal cells or formation of embryoid bodies, and analyse their ability to give rise to hematopoietic precursors, with emphasis on their engraftment potential as a measure of their functionality in vivo.  相似文献   

6.
Multiple organs are induced in the primitive embryonic ectoderm excised from blastula stage Xenopus laevis embryos, under the strict control of mesoderm inducing factors. This in vitro system is useful for exploring the mechanisms of development. In this study, the function of thrombopoietin (TPO)/c-Mpl signaling in the development of hematopoietic cells was investigated. An optimal hematopoietic cell induction system was established to evaluate the influence of growth factors on hematopoiesis. It was found that exogenous TPO enhanced hematopoiesis in explants induced by activin and bone morphogenetic protein (BMP)-4 and increased the number of both erythrocytes and leukocytes in a dose-dependent manner. Addition of anti-c-Mpl antibody completely inhibited the expansion of hematopoietic cells stimulated by TPO, and the antibody specifically recognized blood-like cells. These results demonstrate that TPO acts on hematopoietic progenitors induced in explants and the c-Mpl-like molecule in Xenopus mediates the cellular function of TPO. We also found that forced expression of TPO in embryos promoted hematopoiesis in the ventral blood island and the dorsal-- lateral plate mesoderm. These results suggest that hematopoietic stem and progenitor cells are regulated by TPO/c-Mpl signaling from when they appear in their ontogeny. They also suggest that TPO/c-Mpl signaling play a crucial role in the formation of hematopoietic cells in Xenopus.  相似文献   

7.
Evi-1 has been recognized as one of the dominant oncogenes associated with murine and human myeloid leukemia. Here, we show that hematopoietic stem cells (HSCs) in Evi-1-deficient embryos are severely reduced in number with defective proliferative and repopulating capacity. Selective ablation of Evi-1 in Tie2(+) cells mimics Evi-1 deficiency, suggesting that Evi-1 function is required in Tie2(+) hematopoietic stem/progenitors. Conditional deletion of Evi-1 in the adult hematopoietic system revealed that Evi-1-deficient bone marrow HSCs cannot maintain hematopoiesis and lose their repopulating ability. In contrast, Evi-1 is dispensable for blood cell lineage commitment. Evi-1(+/-) mice exhibit the intermediate phenotype for HSC activity, suggesting a gene dosage requirement for Evi-1. We further demonstrate that disruption of Evi-1 in transformed leukemic cells leads to significant loss of their proliferative activity both in vitro and in vivo. Thus, Evi-1 is a common and critical regulator essential for proliferation of embryonic/adult HSCs and transformed leukemic cells.  相似文献   

8.
A role for hematopoietic stem cells in promoting angiogenesis   总被引:56,自引:0,他引:56  
Takakura N  Watanabe T  Suenobu S  Yamada Y  Noda T  Ito Y  Satake M  Suda T 《Cell》2000,102(2):199-209
Angiogenesis is an important event for embryonic organogenesis as well as for tissue repair in the adult. Here, we show that hematopoietic stem cells (HSCs) play important roles for angiogenesis during embryogenesis. To investigate the role of HSCs in endothelial cell (EC) development, we analyzed AML1-deficient embryos, which lack definitive hematopoiesis. These embryos showed defective angiogenesis in the head and pericardium. Para-aortic splanchnopleural (P-Sp) explant cultures on stromal cells (P-Sp culture) did not generate definitive hematopoietic cells and showed defective angiogenesis in the AML1 null embryo. Disrupted angiogenesis in P-Sp cultures from AML1 null embryos was rescued by addition of HSCs or angiopoietin-1 (Ang1). HSCs, which express Ang1, directly promoted migration of ECs in vivo and in vitro. These results indicate that HSCs are critical for angiogenesis.  相似文献   

9.
10.
In gastrulating embryos, various types of cells are generated before differentiation into specific lineages. The mesoderm of the gastrulating mouse embryo represents a group of such intermediate cells. PDGF receptor alpha (PDGFRα), c-Kit and fetal liver kinase 1 (Flk1) are expressed in distinctive mesodermal derivatives of post-gastrulation embryos. Their expressions during gastrulation were examined by whole mount immunostaining with monoclonal antibodies against these three receptors. The antibodies stained different mesodermal subsets in gastrulating embryos. Flow cytometry of head fold stage embryos revealed that Flk1+ mesodermal cells could be further classified by the level of c-Kit expression. To examine the possibility that hematopoietic cell differentiation is initiated from the Flk1+ mesoderm, embryonic stem (ES) cells were cultured on the OP9 or PA6 stromal cell layer; the former but not the latter supported in vitro hematopoiesis from ES cells. Flk1+ cells were detected only on the OP9 cell layer from day 3 of differentiation before the appearance of hematopoietic cells. Thus, Flk1+ cells will be required for in vitro ES cell differentiation into hematopoietic cells. The results suggest that these three receptor tyrosine kinases will be useful for defining and sorting subsets of mesodermal cells from embryos or in vitro cultured ES cells.  相似文献   

11.
12.
The ex vivo maintenance and expansion of hematopoietic stem cells and early progenitors is necessary for the successful treatment of hematopoietic and immune diseases. Multiple attempts to improve the expansion of hematopoietic stem cells (HSCs) by their cultivation in the presence of growth factor cocktails have so far failed. Novel approaches aimed at conserving the earliest precursors in their undifferentiated state are needed. These approaches should take into account local regulatory factors that are present in the HSC microenvironment and the three-dimensional architecture of their niche. In the present study, we compared the effects of two Notch ligands, i.e., Jagged1 and DLL1, on murine and human hematopoiesis in vitro. Our observations indicate that the stromal expression of Notch ligands increases the production of both the total and phenotypically early murine and human hematopoietic cells in the co-culture. On one hand, this study demonstrates the similarity of effects of stromal expression of Notch ligands on murine and human hematopoiesis in vitro. On the other hand, our study revealed a number of cell type and ligand-specific variations that are systematically described below. It seems that the effects of SCF cytokine addition on murine hematopoiesis in vitro depend on the stromal context and are oppositely directed for Jagged1 and DLL1.  相似文献   

13.
The concept of stem-cell plasticity received strong support from a recent observation that extensively passaged, clonally derived neural stem cells could contribute to hematopoiesis. We investigated whether hematopoietic potential was a consistent or unusual feature of neural stem cells, and whether it depended on the extent of in vitro passaging before transplantation. Here we transplanted over 128 x 10(6) neurosphere cells into 128 host animals; however, we never observed contribution to hematopoiesis, irrespective of the number of passages and despite the use of an assay that could detect the contribution of a single blood stem cell to hematopoietic repopulation. Although extensively cultured neurosphere cells continued to generate neural progeny, marked changes in their growth properties occurred, including changes in growth-factor dependence, cell-cycle kinetics, cell adhesion and gene expression. Our results exclude hematopoietic competence as a consistent property of intravenously infused neural stem cells. However, the consistent changes that occurred during extended passaging are compatible with genetic or epigenetic alterations and suggest that rare transformation events may account for the neural-to-blood fate switch originally reported.  相似文献   

14.
Chimeric organisms are commonly generated by injecting stem cells into blastocysts. Embryonic stem cells injected into the blastocoel cavity participate in the further development of the embryo. Adult stem cells have also been used in injection experiments to study their potential plasticity. In this study we focused on the early fate of injected human adult hematopoietic stem cells (HSCs). HSCs were followed immunohistochemically 1-19 h after injection into murine blastocysts. We found that they only rarely attached and integrated into the blastocysts. The high rate of loss of injected cells after prolonged in vitro culture of the chimeras can be explained by apoptosis. Our findings are consistent with previous studies reporting a low rate of integration of adult cells injected to produce chimeric embryos, but this is the first demonstration that the low efficiency of adult stem cell injections into blastocysts is influenced by apoptosis.  相似文献   

15.
Cytokine signaling pathways are important in promoting hematopoietic stem cell (HSC) self-renewal, proliferation and differentiation. Mpl receptor and its ligand, TPO, have been shown to play an essential role in the early steps of adult hematopoiesis. We previously demonstrated that the cytoplasmic domain of Mpl promotes hematopoietic commitment of embryonic stem cells in vitro, and postulated that Mpl could be important in the establishment of definitive hematopoiesis. To answer this question, we investigated the temporal expression of Mpl during mouse development by in situ hybridization. We found Mpl expression in the HSCs clusters emerging in the AGM region, and in the fetal liver (FL) as early as E10.5. Using Mpl(-/-) mice, the functional relevance of Mpl expression was tested by comparing the hematopoietic progenitor (HP) content, long-term hematopoietic reconstitution (LTR) abilities and HSC content of control and Mpl(-/-) embryos at different times of development. In the AGM, we observed delayed production of HSCs endowed with normal LTR but presenting a self-renewal defect. During FL development, we detected a decrease in HP and HSC potential associated with a defect in amplification and self-renewal/survival of the lin(-) AA4.1(+) Sca1(+) population of HSCs. These results underline the dual role of Mpl in the generation and expansion of HSCs during establishment of definitive hematopoiesis.  相似文献   

16.
Eicosanoids have been implicated in the physiological regulation of hematopoiesis with pleiotropic effects on hematopoietic stem cells and various classes of lineage restricted progenitor cells. Herein we review the effects of eicosanoids on hematopoiesis, focusing on new findings implicating prostaglandin E(2) in enhancing hematopoietic stem cell engraftment by enhancing stem cell homing, survival and self-renewal. We also describe a role for cannabinoids in hematopoiesis. Lastly, we discuss the yin and yang of various eicosanoids in modulating hematopoietic stem and progenitor cell functions and summarize potential strategies to take advantage of these effects for therapeutic benefit for hematopoietic stem cell transplantation.  相似文献   

17.
Embryonic stem (ES) cells differentiate into multiple hematopoietic lineages during embryoid body formation in vitro, but to date, an ES-derived hematopoietic stem cell has not been identified and subjected to clonal analysis in a manner comparable with hematopoietic stem cells from adult bone marrow. As the chronic myeloid leukemia-associated BCR/ABL oncogene endows the adult hematopoietic stem cell with clonal dominance without inhibiting pluripotent lymphoid and myeloid differentiation, we have used BCR/ABL as a tool to enable engraftment and clonal analysis. We show that embryoid body-derived hematopoietic progenitors expressing BCR/ABL maintain a primitive hematopoietic blast stage of differentiation and generate only primitive erythroid cell types in vitro. These cells can be cloned, and when injected into irradiated adult mice, they differentiate into multiple myeloid cell types as well as T and B lymphocytes. While the injected cells express embryonic (beta-H1) globin, donor-derived erythroid cells in the recipient express only adult (beta-major) globin, suggesting that these cells undergo globin gene switching and developmental maturation in vivo. These data demonstrate that an embryonic hematopoietic stem cell arises in vitro during ES cell differentiation that constitutes a common progenitor for embryonic erythroid and definitive lymphoid-myeloid hematopoiesis.  相似文献   

18.
The t(8;13) translocation, found in a rare and aggressive type of stem cell myeloproliferative disorder, leads to the generation of a fusion protein between the N-terminal gene product of fused in myeloproliferative disorders (FIM)/ZNF198 and the fibroblast growth factor receptor 1 (FGFR1) kinase domain. The chimeric protein was reported to have constitutively activated tyrosine kinase activity. However, little is known about a role of FIM in hematopoietic cell regulation. Here we show that FIM protein is ubiquitously expressed in mouse embryonic tissues but much less in hematopoietic cells. We also show that forced expression of FIM inhibits the emergence of hematopoietic cells in the cultured mouse aorta-gonad-mesonephros (AGM) region on embryonic day (E) 11.5, where definitive hematopoiesis is first found during embryogenesis. These results suggest that the expression level of FIM determines the development of hematopoiesis during mouse ontogeny.  相似文献   

19.
20.
Shp-2 is a cytoplasmic tyrosine phosphatase that contains two Src homology 2 (SH2) domains at the N terminus. Biochemical data suggests that Shp-2 acts downstream of a variety of receptor and cytoplasmic tyrosine kinases. A targeted deletion mutation in the N-terminal SH2 (SH2-N) domain results in embryonic lethality of homozygous mutant mice at midgestation. In vitro embryonic stem (ES) cell differentiation assays suggest that Shp-2 might play an important role in hematopoiesis. By aggregating homozygous mutant (Shp-2−/−) ES cells and wild-type (WT) embryos, we created Shp-2−/−-WT chimeric animals. We report here an essential role of Shp-2 in the control of blood cell development. Despite the widespread contribution of mutant cells to various tissues, no Shp-2−/− progenitors for erythroid or myeloid cells were detected in the fetal liver and bone marrow of chimeric animals by using the in vitro CFU assay. Furthermore, hematopoiesis was defective in Shp-2−/− yolk sacs. In addition, the Shp-2 mutation caused multiple developmental defects in chimeric mice, characterized by short hind legs, aberrant limb features, split lumbar vertebrae, abnormal rib patterning, and pathological changes in the lungs, intestines, and skin. These results demonstrate a functional involvement of Shp-2 in the differentiation of multiple tissue-specific cells and in body organization. More importantly, the requirement for Shp-2 is more stringent in hematopoiesis than in other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号