首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Extraction of glycerinated chicken skeletal muscle with 0.6 M potassium iodide leaves a framework of insoluble components within each muscle fiber. This framework is composed primarily of planes of in-register Z discs that have been thickened by the accumulation of material on both sides of each disc during extraction. Membrane vesicles, presumably remnants of the T system, remain surrounding the Z discs. When the framework is sheared in a blender, it is preferentially cleaved between Z planes, resulting in the formation of large sheets of interconnected, closely packed Z discs in a honeycomb-like array. Cleavage occurs in regions formerly occupied by the A bands, which have been weakened by the removal of myosin. The existence and stability of these planar Z disc arrays demonstrate the presence and strength of connections between adjacent myofibrils.SDS-polyacrylamide gel electrophoresis reveals that this framework consists primarily of actin and desmin, with lesser amounts of a few proteins including α-actinin, myosin and tropomyosin. Z disc sheets and KI-extracted myofibrils provide a distinct face-on view and side view, respectively, of the Z disc. In indirect immunofluorescence, these two views have revealed that desmin is present at the periphery of each Z disc, forming a network of proteinaceous collars within the Z plane. α-Actinin is localized within each disc, giving a face-on fluorescence pattern that is complementary to that of desmin. Actin is present throughout the thickened Z plane, while myosin and tropomyosin exist only in the insoluble residue that coalesces on both faces of each disc.We conclude that desmin, perhaps in conjunction with actin, is responsible for interlinking Z discs of adjacent myofibrils, and may thus serve as a mechanical and structural integrator of muscle fibers. Its hydrophobic nature and coincident distribution with the T system suggest that it may also be responsible for mediating filament-membrane interactions and anchoring the triad to the Z disc. Its collar-like distribution suggests that it may aid in maintaining the structural integrity of the Z disc and the actin filaments inserted into it.  相似文献   

2.
Chicken skeletal muscle taken from embryos in ovo was examined by thin-section electron microscopy. Measurements of filament diameters reveal three nonoverlapping groups of filaments: thin (actin myofibrillar) filaments with mean diameters of 5.3 +/- 0.6 nm (S.D.), thick (myosin myofibrillar) filaments with mean diameters of 15 +/- 1.4 nm, and intermediate filaments with mean diameters of 9.3 +/- 0.9 nm. During muscle development these diameters do not change. By counting the number of filaments observed in the sarcoplasm at different stages, we find that the spatial density of intermediate filaments decreases during avian myogenesis in ovo, from 91 intermediate filaments/micron 2 at 6 days to 43 intermediate filaments/micron 2 at 17 days in ovo. Initially randomly arranged, some intermediate filaments become associated with Z discs, sarcoplasmic reticulum, nuclear membrane, and the sarcolemma between 6 and 10 days in ovo. These associated intermediate filaments course both parallel and transverse to myofibrils, forming lateral connections between myofibrillar Z discs and longitudinal connections from Z disc to Z disc within myofibrils. Intermediate filaments also appear to connect Z discs with the nuclear membrane. The intermediate filament associations persist through day 17 of development, after which the presence of cytoskeletal filaments is obscured by the densely packed myofibrils and membranes. Intermediate filament distribution becomes anisotropic during development. A greater proportion of intermediate filaments in the immediate perimyofibrillar area are oriented parallel to myofibrils than in other areas, so that the majority of the intermediate filaments nearest the myofibrils course parallel to them. The longitudinal intramyofibrillar intermediate filaments persist throughout development, as shown by their existence in KI-extracted adult myofibrils.  相似文献   

3.
Crayfish muscle, like muscles from some other invertebrates, can supercontract. This muscle shortening is characterized by an overlap of thin filaments with crossing of thick filaments through the Z discs. In intact muscle cells, supercontraction does not seem to induce irreversible structural modifications in the tissue. Isolated crayfish myofibrils in the relaxed state cannot be distinguished from vertebrate myofibrils under light microscope, either by phase contrast or by immunofluorescence, with antiactin antibodies, actin being localized in the I bands. However, when isolated crayfish myofibrils are supercontracted, irreversible dammage occurs, most thin filaments being lost. Actin becomes then hardly detectable, being visible, by immunofluorescence, either in the Z discs or evenly distributed in the whole myofibril. During myofibril supercontraction, high amounts of denatured actin, become soluble as shown by SDS-PAGE, by double immunodiffusion, and by DNAse inhibition.  相似文献   

4.
Postmortem changes in the actin-myosin interaction were studied by determining the amount of thick and thin filaments dissociated by ATP. The amount of separated filaments was very small in myofibrils prepared from muscles in rigor, while it increased markedly during post-rigor storage of muscles. Electron microscopically, separated thick and thin filaments prepared from stored muscles were similar to freshly prepared ones and no signs of proteolytic degradation of either type of filament could be observed. A protein which was released from myofibrils (probably from Z discs) on Ca2+-treatment seemed to be most closely related to the post-rigor dissociation of thick filaments from thin filaments.  相似文献   

5.
This study reports the first development of a fluorescently labeled filamin. Smooth muscle filamin was labeled with fluorescent dyes in order to study its interaction with stress fibers and myofibrils, both in living cells and in permeabilized cells. The labeled filamin bound to the Z bands of isolated cross-striated myofibrils and to the Z bands and intercalated discs in both permeabilized embryonic cardiac myocytes and in frozen sections of adult rat ventricle. In permeabilized embryonic chick myotubes, filamin bound to early myotubes but was absent at later stages. In living embryonic chick myotubes, the fluorescently labeled filamin was incorporated into the Z bands of myofibrils during early and late stages of development but was absent during an intermediate stage. In living cardiac myocytes, filamin-IAR was incorporated into nascent as well as fully formed sarcomeres throughout development. In permeabilized nonmuscle cells, labeled filamin bound to attachment plaques and foci of polygonal networks and to the dense bodies in stress fibers. The periodic bands of filamin in stress fibers had a longer spacing in fibroblasts than in epithelial cells. When injected into living cells, filamin was readily incorporated into stress fibers in a striated pattern. The fluorescent filamin bands were broader in injected cells, however, than they were in permeabilized cells. We have interpreted these results from living and permeabilized cells to mean that native filamin is distributed along the full length of the actin filaments in the stress fibers, with a higher concentration present in the dense bodies. A sarcomeric model is presented indicating the position of filamin with respect to other proteins in the stress fiber.  相似文献   

6.
The adventitia of the crayfish heart is composed of cells that are separated from each other by an intercellular space about 280 Å wide. Desmosomes are present on apposing surfaces of adjacent cells. A basal lamina underlies the adventitia and consists of a dense, amorphous substance that contains numerous fine filaments. The myocardial cells are striated and an external lamina 0.1 μ thick is present on the surface of the plasma membrane. The nuclei and most of the cytoplasm, glycogen and mitochondria are located at the cell periphery. The myofibrils are composed of thick and thin filaments and confined to the core of the cell. A T system and a well-developed SR are present. Elements of these organelles form dyads at levels that correspond to the H bands, and triads at levels that correspond to the Z bands of the peripheral myofibrils. The relationship of the T tubules to the myofibrils is discussed. Locus cells exhibit a unique pattern of intracellular myofibrillar branching. They branch from a region which has a structure similar to the Z band material. The myofibrils radiate outwardly in various directions and form numerous cellular branches which form intercalated discs with adjacent myocardial cells. These discs are more complex than those observed in poikilothermic vertebrates but are simpler than those in mammals. An endocardium is lacking in the crayfish heart but interstitial cells are present in close association with the myocardial cells and neural elements. Terminal nerve processes deeply embedded in the myocardial cells are described.  相似文献   

7.
When fluorescently labeled contractile proteins are injected into embryonic muscle cells, they become incorporated into the cells' myofibrils. In order to determine if this exchange of proteins is unique to the embryonic stage of development, we isolated adult cardiac myocytes and microinjected them with fluorescently labeled actin, myosin light chains, alpha-actinin, and vinculin. Each of these proteins was incorporated into the adult cardiomyocytes and was colocalized with the cells' native proteins, despite the fact that the labeled proteins were prepared from noncardiac tissues. Within 10 min of injection, alpha-actinin was incorporated into Z-bands surrounding the site of injection. Similarly, 30 sec after injection, actin was incorporated into the entire I-bands at the site of injection. Following a 3-h incubation, increased actin fluorescence was noted at the intercalated disc. Vinculin exchange was seen in the intercalated discs, as well as in the Z-bands throughout the cells. Myosin light chains required 4-6 h after injection to become incorporated into the A-bands of the adult muscle. Nonspecific proteins, such as fluorescent BSA, showed no association with the myofibrils or the former intercalated discs. When adult cells were maintained in culture for 10 days, they retain the ability to incorporate these contractile proteins into their myofibrils. T-tubules and the sarcoplasmic reticulum could be detected in periodic arrays in the freshly isolated cells using the membrane dye WW781 and DiOC6[3], respectively. In conclusion, the myofibrils in adult, as in embryonic, muscle cells are dynamic structures, permitting isoform transitions without dismantling of the myofibrils.  相似文献   

8.
A new protein having a subunit weight of 40,000 has been purified from myosin-extracted bovine cardiac myofibrils. Its amino acid composition and isoelectric point are distinct from actin, eu-actinin, and a variety of sarcoplasmic proteins of similar size. Affinity-purified antibodies made to this protein only react with a single 40-kDa protein band from cardiac myofibrils on immunoblots. The anti-40-kDa protein also shows cross-reactivities with cardiac myofibrils from rabbits, rats, and chickens. Immunofluorescence studies demonstrate that the 40-kDa protein is localized at the Z-bands of cardiac myofibrils and at the intercalated discs. The antibody did not react with skeletal muscle myofibrils by immunofluorescence or immunoblotting. It appears that the 40-kDa protein may play a role in the strong attachments between adjacent myofibrils in cardiac muscle.  相似文献   

9.
Desmin and vimentin coexist at the periphery of the myofibril Z disc.   总被引:61,自引:0,他引:61  
B L Granger  E Lazarides 《Cell》1979,18(4):1053-1063
Two-dimensional gel electrophoresis has revealed that vimentin, the predominant subunit of intermediate filaments in cells of mesenchymal origin, is a component of isolated skeletal myofibrils. It thus coexists in mature muscle fibers with desmin, the major subunit of muscle intermediate filaments. Antisera to desmin and vimentin, shown to be specific for their respective antigens by two-dimensional immunoautoradiography, have been used in immunofluorescence to demonstrate that vimentin has the same distribution as desmin in skeletal muscle. Both desmin and vimentin surround each myofibril Z disc and form honeycomb-like networks within each Z plane of the muscle fiber. This distribution is complementary to that of alpha-actinin within a given Z plane. Desmin and vimentin may thus be involved in maintaining the lateral registration of sarcomeres by transversely linking adjacent myofibrils at their Z discs. This linkage would support and integrate the fiber as a whole, and provide a molecular basis for the cross-striated appearance of skeletal muscle.  相似文献   

10.
Compositional studies of myofibrils from rabbit striated muscle   总被引:31,自引:16,他引:15       下载免费PDF全文
The localization of high-molecular-weight (80,000-200,000-daltons) proteins in the sarcomere of striated muscle has been studied by coordinated electron-microscopic and sodium dodecyl sulfate (SDS) gel electrophoretic analysis of native myofilaments and extracted and digested myofibrils. Methods were developed for the isolation of thick and thin filaments and of uncontracted myofibrils which are devoid of endoproteases and membrane fragments. Treatment of crude myofibrils with 0.5% Triton X-100 results in the release of a 110,000-dalton component without affecting the myofibrillar structure. Extraction of uncontracted myofibrils with a relaxing solution of high ionic strength results in the complete disappearance of the A band and M line. In this extract, five other protein bands in addition to myosin are resolved on SDS gels: bands M 1 (190,000 daltons) and M 2 (170,000 daltons), which are suggested to be components of the M line; M 3 (150,000 daltons), a degradation product; and a doublet M 4, M 5 (140,000 daltons), thick-filament protein having the same mobility as C protein. Extraction of myofibrils with 0.15% deoxycholate, previously shown to remove Z-line density, releases a doublet Z 1, Z 2 (90,000 daltons) with the same mobility as alpha-actinin, as well as proteins of 60,000 daltons and less, and small amounts of M 1, M 2, M 4, and M 5; these proteins were not extracted with 0.5% Triton X-100. The C, M-line, and Z-line proteins and/or their binding to myofibrils are very sensitive to tryptic digestion, whereas the M 3 (150,000 daltons) component and an additional band at 110,000 daltons are products of proteolysis. Gentle treatment of myofibrils with an ATP relaxing solution results in the release of thick and thin myofilaments which can be pelleted by 100,000-g centrifugation. These myofilaments lack M-and Z-line structure when examined with the electron microscope, and their electrophoretograms are devoid of the M 1, M 2, Z 1, and Z 2 bands. The M 4, M 5 (C-protein doublet), and M 3 bands, however, remain associated with the filaments.  相似文献   

11.
The membrane systems of the cardiac muscle cell of the isopod Cirolana borealis Lilljeborg are described. The sarcolemma invaginates at the level of the Z band, forming transverse tubules. Narrow tubules branch off in a longitudinal direction from these transverse and radially arranged Tz-tubules forming a transverse collar at each A-I level, where dyadic and triadic junctions are formed with the sarcoplasmic reticulum. Two different orientations of the coupling discs have been detected in the supercontracted sarcomere, and this observation has been discussed. Adjacent myofibrils are separated by a double layer of sarcoplasmic reticulum.  相似文献   

12.
We studied the effect of myofibrils on proliferation and differentiation of myoblasts cocultured with macrophages as well as the effect of incubation of macrophages with myofibrils on the expression by macrophages of the compounds that are cytokines for muscle cells. In the cocultures, macrophages stimulated the proliferation of myoblasts. Myofibrils greatly enhanced the stimulating effect of macrophages, whereas lipopolysaccharide (LPS) completely abolished it. The culture medium conditioned by macrophages activated the proliferation of myoblasts that were incubated with myofibrils but inhibited it when myoblasts were incubated with LPS. Possibly, myofibrils and their constituent proteins activate macrophages in an alternative pathway, enriching the population with M2-type macrophages.Z  相似文献   

13.
The distribution of the intermediate filament proteins vimentin and desmin in developing and mature myotubes in vivo was studied by single and double immunoelectron microscopic labeling of ultrathin frozen sections of iliotibialis muscle in 7-21-d-old chick embryos, and neonatal and 1-d-old postnatal chicks. This work is an extension of our previous immunofluorescence studies of the same system (Tokuyasu, K. T., P. A. Maher and S. J. Singer, 1984, J. Cell Biol., 98:1961-1972). In immature myotubes of 7-11-d embryos, significant labeling for desmin and vimentin was found only in intermediate filaments, and these proteins coexisted in the same individual filaments. Each of the two proteins was present in irregular clusters along the entire length of a filament. No exclusively vimentin- or desmin-containing filaments were observed at this stage. In the early myotubes, the intermediate filaments were essentially all longitudinally oriented, even when they contained three times as much desmin as vimentin. No special relationship was recognized between the dispositions of the filaments and the organization of the myofibrils. Occasionally, several myofibrils were already aligned in lateral registry at this early stage, but labeling for desmin and vimentin was largely absent at the level of the Z bands. Instead, the Z bands appeared to be covered by elements of the sarcoplasmic reticulum. The confinement of intermediate filaments to the level of the Z bands occurred in the myotubes of later embryos after the extensive lateral registry of the Z bands. Thus, intermediate filaments are unlikely to play a primary role in producing the lateral registration of myofibrils during myogenesis, but may be important in determining the polarization of the early myotube and the alignment of its organelles. Throughout the development of myotubes, desmin and vimentin remained in the form of intermediate filaments, although the number of filaments per unit volume of myotube appeared to be reduced as myofibrils increased in number in maturing myotubes. This observation indicated that the transverse orientation of intermediate filaments in mature myotubes does not result from the de novo polymerization of subunits from Z band to Z band, but a continuous shifting of the positions and directions of intact filaments.  相似文献   

14.
Summary Crayfish muscle, like muscles from some other invertebrates, can supercontract. This muscle shortening is characterized by an overlap of thin filaments with crossing of thick filaments through the Z discs. In intact muscle cells, supercontraction does not seem to induce irreversible structural modifications in the tissue.Isolated crayfish myofibrils in the relaxed state cannot be distinguished from vertebrate myofibrils under light microscope, either by phase contrast or by immunofluorescence, with antiactin antibodies, actin being localized in the I bands. However, when isolated crayfish myofibrils are supercontracted, irreversible dammage occurs, most thin filaments being lost. Actin becomes then hardly detectable, being visible, by immunofluorescence, either in the Z discs or evenly distributed in the whole myofibril.During myofibril supercontraction, high amounts of denatured actin, become soluble as shown by SDS-PAGE, by double immunodiffusion, and by DNAse inhibition.Abbreviations used in the text EGTA ethyleneglycol-bis (-aminoethyl ether)-N, N-tetraacetic acid - SDS sodium dodecylsulfate - PAGE polyacrylamide gel electrophoresis - TEMED N, N, N, N-tetramethylenediamine - TRIS Tris (hydroxymethyl) aminomethane A preliminary report on this work was presented at the meeting of the Union of Swiss Societies for Experimental Biology, Davos, 1978 (Benzonana et al., 1978)  相似文献   

15.
The Z-line is a multifunctional macromolecular complex that anchors sarcomeric actin filaments, mediates interactions with intermediate filaments and costameres, and recruits signaling molecules. Antiparallel alpha-actinin homodimers, present at Z-lines, cross-link overlapping actin filaments and also bind other cytoskeletal and signaling elements. Two LIM domain containing proteins, alpha-actinin associated LIM protein (ALP) and muscle LIM protein (MLP), interact with alpha-actinin, distribute in vivo to Z-lines or costameres, respectively, and, when absent, are associated with heart disease. Here we describe the behavior of ALP and MLP during myofibrillogenesis in cultured embryonic chick cardiomyocytes. As myofibrils develop, ALP and MLP are observed in distinct distribution patterns in the cell. ALP is coincident with alpha-actinin from the first stage of myofibrillogenesis and co-distributes with alpha-actinin to Z-lines and intercalated discs in mature myofibrils. Interestingly, we also demonstrate using ALP-GFP transfection experiments and an in vitro binding assay that the ALP-alpha-actinin binding interaction is not required to target ALP to the Z-line. In contrast, MLP localization is not co-incident with that of alpha-actinin until late stages of myofibrillogenesis; however, it is present in premyofibrils and nascent myofibrils prior to the incorporation of other costameric components such as vinculin, vimentin, or desmin. Our observations support the view that ALP function is required specifically at actin anchorage sites. The subcellular distribution pattern of MLP during myofibrillogenesis suggests that it functions during differentiation prior to the establishment of costameres.  相似文献   

16.
Observations on the Fine Structure of the Turtle Atrium   总被引:36,自引:28,他引:8       下载免费PDF全文
The general fine structure of the atrial musculature of the turtle heart is described, including; the nature of the sarcolemma; the cross-banded structure of the myofibrils; the character of the sarcoplasm, and the form and disposition of its organelles. An abundant granular component of the sarcoplasm in this species is tentatively identified as a particulate form of glycogen. The myocardium is composed of individual cells joined end to end at primitive intercalated discs, and side to side at sites of cohesion that resemble the desmosomes of epithelia. Transitional forms are found between desmosomes and intercalated discs. Both consist of a thickened area of the cell membrane with an accumulation of dense material in the subjacent cytoplasm. This dense amorphous component is often continuous with the Z substance of the myofibrils and may be of the same composition. The observations reported reemphasize the basic similarity between desmosomes and terminal bars of epithelia and intercalated discs of cardiac muscle. Numerous unmyelinated nerves are found beneath the endocardium. Some of these occupy recesses in the surface of Schwann cells; others are naked axons. No specialized nerve endings are found. Axons passing near the sarcolemma contain synaptic vesicles, and it is believed that this degree of proximity is sufficient to constitute a functioning myoneural junction.  相似文献   

17.
Filamin c is the predominantly expressed filamin isoform in striated muscles. It is localized in myofibrillar Z-discs, where it binds FATZ and myotilin, and in myotendinous junctions and intercalated discs. Here, we identify Xin, the protein encoded by the human gene 'cardiomyopathy associated 1' (CMYA1) as filamin c binding partner at these specialized structures where the ends of myofibrils are attached to the sarcolemma. Xin directly binds the EVH1 domain proteins Mena and VASP. In the adult heart, Xin and Mena/VASP colocalize with filamin c in intercalated discs. In cultured cardiomyocytes, the proteins also localize in the nonstriated part of myofibrils, where sarcomeres are assembled and an extensive reorganization of the actin cytoskeleton occurs. Unusual intraexonic splicing events result in the existence of three Xin isoforms that associate differentially with its ligands. The identification of the complex filamin c-Xin-Mena/VASP provides a first glance on the role of Xin in the molecular mechanisms involved in developmental and adaptive remodeling of the actin cytoskeleton during cardiac morphogenesis and sarcomere assembly.  相似文献   

18.
Primary cultures of cardiac myocytes from newborn normal and genetically cardiomyopathic (strain UM-X7.1) hamsters were analyzed by electron microscopy and immunofluorescent staining for myosin, actin, tropomyosin, and alpha-actinin. Antibody staining of these contractile proteins demonstrates that both normal and cardiomyopathic (CM) myocytes contain prominent myofibrils after 3 days in culture, although the CM myofibrils are disarrayed and not aligned as those in normal cells. The disarray becomes even more pronounced in CM cells after 5 days in culture. The immunofluorescent staining patterns of individual myofibrils in normal and CM cells were similar for myosin, actin, and tropomyosin. However, alpha-actinin staining reveals that the CM myofibrils have abnormally wide and irregularly shaped Z bands. Electron microscopy confirms the irregular Z-band appearance as well as the myofibril disarray. Thus, CM cardiomyocytes clearly show an aberrant pattern of myofibril structure and organization in culture.  相似文献   

19.
The high molecular weight actin-binding protein filamin is located at the periphery of the Z disk in the fast adult chicken pectoral muscle (Gomer, R. H., and E. Lazarides, 1981, Cell, 23: 524-532). In contrast, we have found that in the slow anterior latissimus dorsi (ALD) muscle, filamin was additionally located throughout the l band as judged by immunofluorescence with affinity-purified antibodies on myofibrils and cryosections. The Z line proteins desmin and alpha-actinin, however, had the same distribution in ALD as they do in pectoral muscle. Quantitation of filamin and actin from the two muscle types showed that there was approximately 10 times as much filamin per actin in ALD myofibrils as in pectoral myofibrils. Filamin immunoprecipitated from ALD had an electrophoretic mobility in SDS polyacrylamide gels identical to that of pectoral myofibril filamin and slightly greater than that of chicken gizzard filamin. Two-dimensional peptide maps of filamin immunoprecipitated and labeled with 125I showed that ALD myofibril filamin was virtually identical to pectoral myofibril filamin and was distinct from chicken gizzard filamin.  相似文献   

20.
《The Journal of cell biology》1984,98(6):1961-1972
Antibodies against chicken erythrocyte vimentin and gizzard desmin were affinity purified and then cross-absorbed with the heterologous antigen. They were used to study the in vivo distributions of these proteins in developing and mature myotubes by immunofluorescence microscopy of 0.5-2-micron frozen sections of iliotibialis muscle in 7- 21-day chick embryos, neonatal and 1-d postnatal chicks, and adult chickens. The distributions of vimentin and desmin were coincidental throughout the development of myotubes, but the concentration of vimentin was gradually reduced as the myotubes matured and became largely undetectable at the time of hatching. The process of confining these proteins to the level of Z line from the initial uniform distribution occurred subsequent to the process of bringing myofibrils into lateral registry: in-register lateral association of several myofibrils was occasionally seen as early as in 7-11-d embryos, whereas the cross-striated immunofluorescence pattern of desmin and vimentin was only vaguely discerned in myotubes of 17-d embryos, just 4 d before hatching. In some myotubes of 21-d embryos, myofibrils were in lateral registry as precisely as in adult myofibers but desmin was still widely distributed around Z line in an irregular manner. Nevertheless, in many other myotubes of prenatal or neonatal chicks, desmin became confined to the level of Z line in a manner similar to that seen in adult myofibers, thus essentially completing its redistribution to the confined state of adult myofibers in coincidence with the time of hatching. In extracts from iliotibialis and posterior latissimus dorsi muscles of adult chickens, we detected a hitherto unidentified protein that was very similar to vimentin in molecular weight but did not react with our antivimentin antibody. We discuss the possibility that this protein was confused with vimentin in the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号