首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Z-line is a specialized structure connecting adjacent sarcomeres in muscle cells. alpha-Actinin cross-links actin filaments in the Z-line. Several PDZ-LIM domain proteins localize to the Z-line and interact with alpha-actinin. Actinin-associated LIM protein (ALP), C-terminal LIM domain protein (CLP36), and Z band alternatively spliced PDZ-containing protein (ZASP) have a conserved region named the ZASP-like motif (ZM) between PDZ and LIM domains. To study the interactions and function of ALP we used purified recombinant proteins in surface plasmon resonance measurements. We show that ALP and alpha-actinin 2 have two interaction sites. The ZM motif was required for the interaction of ALP internal region with the alpha-actinin rod and for targeting of ALP to the Z-line. The PDZ domain of ALP bound to the C terminus of alpha-actinin. This is the first indication that the ZM motif would have a direct role in a protein-protein interaction. These results suggest that the two interaction sites of ALP would stabilize certain conformations of alpha-actinin 2 that would strengthen the Z-line integrity.  相似文献   

2.
Myofibrillogenesis in developing cardiac cells of the Syrian hamster from early embryonic stages through newborn was studied by electron microscopy, immunofluorescence microscopy and immunoelectron microscopy. alpha-Actinin and actin were localized at light and electron microscopic levels in embryonic heart cells which had been fixed in a periodate-lysine-paraformaldehyde or a glutaraldehyde-formaldehyde mixture, and embedded in Lowicryl K4M. Indirect staining methods were used for immunofluorescence staining of thick sections and immunoferritin staining of thin sections. The earliest evidence of myofibrillogenesis in embryonic myocardial cells was the presence of many randomly arranged thin (6 nm) filaments and a few scattered thick filaments (15 nm) near the plasma membrane. alpha-Actinin was detected in a semi-continuous, diffuse layer in some portions of the cell just beneath the plasma membrane in association with the filamentous collections. Later in development, alpha-actinin coalesced into Z-plaques at the membrane as the filaments arranged into parallel arrays. Actin was localized in the thin filaments as expected. In later stages of development, alpha-actinin was observed at the Z-lines and intercalated discs of the mature myofibrils while actin was localized at both the I-band and Z-line. Our results suggest that myofibrillogenesis is initiated at the plasma membrane and that Z-plaques are precursors of myofibrillar Z-bands and may serve as organizing centers for myofibrillogenesis in developing cardiomyocytes.  相似文献   

3.
Role of desmin filaments in chicken cardiac myofibrillogenesis   总被引:3,自引:0,他引:3  
Desmin filaments are muscle-specific intermediate filaments located at the periphery of the Z-discs, and they have been postulated to play a critical role in the lateral registration of myofibrils. Previous studies suggest that intermediate filaments may be involved in titin assembly during the early stages of myofibrillogenesis. In order to investigate the putative function of desmin filaments in myofibrillogenesis, rabbit anti-desmin antibodies were introduced into cultured cardiomyocytes by electroporation to perturb the normal function of desmin filaments. Changes in the assembly of several sarcomeric proteins were examined by immunofluorescence. In cardiomyocytes incorporated with normal rabbit serum, staining for alpha-actinin and muscle actin displayed the typical Z-line and I-band patterns, respectively, while staining for titin with monoclonal anti-titin A12 antibody, which labels a titin epitope at the A-I junction, showed the periodic doublet staining pattern. Staining for C-protein gave an amorphous pattern in early cultures and identified A-band doublets in older cultures. In contrast, in cardiomyocytes incorporated with anti-desmin antibodies, alpha-actinin was found in disoriented Z-discs and the myofibrils became fragmented, forming mini-sarcomeres. In addition, titin was not organized into the typical A-band doublet, but appeared to be aggregated. Muscle actin staining was especially weak and appeared in tiny clusters. Moreover, in all ages of cardiomyocytes tested, C-protein remained in the disassembled form. The present data suggest the essential role of desmin in myofibril assembly.  相似文献   

4.
Obscurin is a newly identified giant muscle protein whose functions remain to be elucidated. In this study we used high-resolution confocal microscopy to examine the dynamics of obscurin localization in cultures of rat cardiac myocytes during the assembly and disassembly of myofibrils. Double immunolabeling of neonatal and adult rat cells for obscurin and sarcomeric alpha-actinin, the major protein of Z-lines, demonstrated that, during myofibrillogenesis, obscurin is intensely incorporated into M-band areas of A-bands and, to a lesser extent, in Z-lines of newly formed sarcomeres. Presarcomeric structural precursors of myofibrils were intensely immunopositive for alpha-actinin and, unlike mature myofibrils, weakly immunopositive or immunonegative for obscurin. This indicates that most of the obscurin assembles in developing myofibrils after abundant incorporation of alpha-actinin and that massive integration of obscurin occurs at more advanced stages of sarcomere assembly. Immunoreactivity for obscurin in the middle of A-bands and in Z-lines of sarcomeres bridged the gaps between individual bundles of newly formed myofibrils, suggesting that this protein appears to be directly involved in their primary lateral connection and registered alignment into larger clusters. Close sarcomeric localization of obscurin and titin suggests that they may interact during myofibril assembly. Interestingly, the laterally aligned striated pattern of obscurin formed at a stage when desmin, traditionally considered as a molecular linker responsible for the lateral binding and stabilization of myofibrils at the Z-bands, was still diffusely localized. During the disassembly of the contractile system in adult myocytes, disappearance of the cross-striated pattern of obscurin preceded the disorganization of registered alignment and intense breakdown of myofibrils. The cross-striated pattern of desmin typical of terminally differentiated myocytes disappeared before or simultaneously with obscurin. During redifferentiation, as in neonatal myocytes, sarcomeric incorporation of obscurin closely followed that of alpha-actinin and occurred earlier than the striated arrangement of desmin intermediate filaments. The presence of obscurin in the Z-lines and its later assembly into the A/M-bands indicate that it may serve to stabilize and align sarcomeric structure when myosin filaments are incorporated. Our data suggest that obscurin, interacting with other muscle proteins and possibly with the sarcoplasmic reticulum, may have a role as a flexible structural integrator of myofibrils during assembly and adaptive remodeling of the contractile apparatus.  相似文献   

5.
Sarcomere assembly in striated muscles has long been described as a series of steps leading to assembly of individual proteins into thick filaments, thin filaments and Z-lines. Decades of previous work focused on the order in which various structural proteins adopted the striated organization typical of mature myofibrils. These studies led to the view that actin and α-actinin assemble into premyofibril structures separately from myosin filaments, and that these structures are then assembled into myofibrils with centered myosin filaments and actin filaments anchored at the Z-lines. More recent studies have shown that particular scaffolding proteins and chaperone proteins are required for individual steps in assembly. Here, we review the evidence that N-RAP, a LIM domain and nebulin repeat protein, scaffolds assembly of actin and α-actinin into I-Z-I structures in the first steps of assembly; that the heat shock chaperone proteins Hsp90 & Hsc70 cooperate with UNC-45 to direct the folding of muscle myosin and its assembly into thick filaments; and that the kelch repeat protein Krp1 promotes lateral fusion of premyofibril structures to form mature striated myofibrils. The evidence shows that myofibril assembly is a complex process that requires the action of particular catalysts and scaffolds at individual steps. The scaffolds and chaperones required for assembly are potential regulators of myofibrillogenesis, and abnormal function of these proteins caused by mutation or pathological processes could in principle contribute to diseases of cardiac and skeletal muscles.  相似文献   

6.
Synemin is a large intermediate filament (IF) protein that has been identified in all types of muscle cells in association with desmin- and/or vimentin-containing IFs. Our previous studies (Bellin, R. M., Sernett, S. W., Becker, B., Ip, W., Huiatt, T. W., and Robson, R. M. (1999) J. Biol. Chem. 274, 29493-29499) demonstrated that synemin forms heteropolymeric IFs with major IF proteins and contains a binding site for the myofibrillar Z-line protein alpha-actinin. By utilizing blot overlay assays, we show herein that synemin also interacts with the costameric protein vinculin. Furthermore, extensive assays utilizing the Gal4 yeast two-hybrid system demonstrate interactions of synemin with desmin and vimentin and additionally define more precisely the protein subdomains involved in the synemin/alpha-actinin and synemin/vinculin interactions. The C-terminal approximately 300-amino acid region of synemin binds to the N-terminal head and central rod domains of alpha-actinin and the approximately 150-amino acid C-terminal tail of vinculin. Overall, these interactions indicate that synemin may anchor IFs to myofibrillar Z-lines via interactions with alpha-actinin and to costameres at the sarcolemma via interactions with vinculin and/or alpha-actinin. These linkages would enable the IFs to directly link all cellular myofibrils and to anchor the peripheral layer of myofibrils to the costameres.  相似文献   

7.
To study how contractile proteins become organized into sarcomeric units in striated muscle, we have exposed glycerinated myofibrils to fluorescently labeled actin, alpha-actinin, and tropomyosin. In this in vitro system, alpha-actinin bound to the Z-bands and the binding could not be saturated by prior addition of excess unlabeled alpha-actinin. Conditions known to prevent self-association of alpha-actinin, however, blocked the binding of fluorescently labeled alpha-actinin to Z-bands. When tropomyosin was removed from the myofibrils, alpha-actinin then added to the thin filaments as well as the Z-bands. Actin bound in a doublet pattern to the regions of the myosin filaments where there were free cross-bridges i.e., in that part of the A-band free of interdigitating native thin filaments but not in the center of the A- band which lacks cross-bridges. In the presence of 0.1-0.2 mM ATP, no actin binding occurred. When unlabeled alpha-actinin was added first to myofibrils and then labeled actin was added fluorescence occurred not in a doublet pattern but along the entire length of the myofibril. Tropomyosin did not bind to myofibrils unless the existing tropomyosin was first removed, in which case it added to the thin filaments in the l-band. Tropomyosin did bind, however, to the exogenously added tropomyosin-free actin that localizes as a doublet in the A-band. These results indicate that the alpha-actinin present in Z-bands of myofibrils is fully complexed with actin, but can bind exogenous alpha- actinin and, if actin is added subsequently, the exogenous alpha- actinin in the Z-band will bind the newly formed fluorescent actin filaments. Myofibrillar actin filaments did not increase in length when G-actin was present under polymerizing conditions, nor did they bind any added tropomyosin. These observations are discussed in terms of the structure and in vivo assembly of myofibrils.  相似文献   

8.
Eu-actinin, a new structural protein of the Z-line of striated muscles   总被引:2,自引:0,他引:2  
A new protein component of the Z-line of striated muscles was isolated from chicken breast muscle. This protein has been designated as eu-actinin because of its close similarity in polypeptide molecular weight to actin. Eu-actinin was extracted from myosin-removed myofibrils at low ionic strength at pH 6.5 and purified by column chromatography on Sepharose 4B and DEAE-cellulose. Although the polypeptide molecular weight of eu-actinin measured by SDS-polyacrylamide gel electrophoresis is similar to that of actin, other physico-chemical properties of eu-actinin definitely differ from those of actin. The isoelectric point of eu-actinin was more acidic than that of actin. The amino acid composition of eu-actinin was found to be different from that of actin or those of other muscle structural proteins. The results of analytical gel filtration on Sepharose 4B indicated that eu-actinin forms dimers through non-covalent bonding under aqueous conditions. Eu-actinin has a low axial asymmetry under low-salt conditions, as judged from its intrinsic viscosity ([eta] = 6.4 ml/g for the dimer state) and exhibits a tendency to undergo self-association with increasing ionic strength. Interactions of eu-actinin with other muscle proteins were examined by the affinity column technique. It was shown that eu-actinin binds to actin and alpha-actinin. Eu-actinin exhibited strong seeding ability for the polymerization of actin. Antibody to eu-actinin was raised in a goat and purified by affinity chromatography. The specific antibody against eu-actinin did not form precipitine lines with actin or alpha-actinin. Immunofluorescence studies revealed that eu-actinin is localized at the Z-line of myofibrils. The FITC-conjugated antibody to eu-actinin also stained the Z-lines of rabbit skeletal muscle and chicken cardiac muscle. Therefore, it was concluded that eu-actinin is a new, ubiquitous constituent of Z-lines of striated muscles.  相似文献   

9.
The actin filaments of myofibrils are highly organized; they are of a uniform length and polarity and are situated in the sarcomere in an aligned array. We hypothesized that the barbed-end actin-binding protein, CapZ, directs the process of actin filament assembly during myofibrillogenesis. We tested this hypothesis by inhibiting the actin- binding activity of CapZ in developing myotubes in culture using two different methods. First, injection of a monoclonal antibody that prevents the interaction of CapZ and actin disrupts the non-striated bundles of actin filaments formed during the early stages of myofibril formation in skeletal myotubes in culture. The antibody, when injected at concentrations lower than that required for disrupting the actin filaments, binds at nascent Z-disks. Since the interaction of CapZ and the monoclonal antibody are mutually exclusive, this result indicates that CapZ binds nascent Z-disks independent of an interaction with actin filaments. In a second approach, expression in myotubes of a mutant form of CapZ that does not bind actin results in a delay in the appearance of actin in a striated pattern in myofibrils. The organization of alpha-actinin at Z-disks also is delayed, but the organization of titin and myosin in sarcomeres is not significantly altered. We conclude that the interaction of CapZ and actin is important for the organization of actin filaments of the sarcomere.  相似文献   

10.
The type VI intermediate filament (IF) protein synemin is a unique member of the IF protein superfamily. Synemin associates with the major type III IF protein desmin forming heteropolymeric intermediate filaments (IFs) within developed mammalian striated muscle cells. These IFs encircle and link all adjacent myofibrils together at their Z-lines, as well as link the Z-lines of the peripheral layer of cellular myofibrils to the costameres located periodically along and subjacent to the sarcolemma. Costameres are multi-protein assemblies enriched in the cytoskeletal proteins vinculin, alpha-actinin, and talin. We report herein a direct interaction of human alpha-synemin with the cytoskeletal protein talin by protein-protein interaction assays. The 312 amino acid insert (SNTIII) present only within alpha-synemin binds to the rod domain of talin in vitro and co-localizes with talin at focal adhesion sites within mammalian muscle cells. Confocal microscopy studies showed that synemin co-localizes with talin within the costameres of human skeletal muscle cells. Analysis of the primary sequences of human alpha- and beta-synemins revealed that SNTIII is composed of seven tandem repeats, each containing a specific Ser/Thr-X-Arg-His/Gln (S/T-X-R-H/Q) motif. Our results suggest human alpha-synemin plays an essential role in linking the heteropolymeric IFs to adherens-type junctions, such as the costameres within mammalian striated muscle cells, via its interaction with talin, thereby helping provide mechanical integration for the muscle cell cytoskeleton.  相似文献   

11.
By indirect immunofluorescence with monoclonal anti-alpha-actinin antibodies the localization of this contractile protein was studied in ventricular cardiac myocytes from newborn 2-4-day old rats in the course of their cultivation. In freshly isolated heart muscle cells a predominant longitudinal orientation of myofibrils was observed; in some cells on the periphery of cytoplasm the contours of Z-lines are indistinct. During cell spreading, in the areas of intercalated discs, growing processes were observed mostly containing no contractile structures at earlier stages of cultivation. On days 3 to 14, the cytoplasmic processes and ruffles are filled with developing myofibrils. The cultures are heterogeneous in the morphology of contractile apparatus of individual cells. In most cardiomyocytes mature myofibrils are well-developed in the central part of the cytoplasm, whereas in its peripheral areas non-myofibrillar stress-fiber-like structures and bundles with continuous distribution of alpha-actinin frequently connected to myofibrils are more typical. In the areas of active myofibrillogenesis, located mainly on the cell periphery, numerous alpha-actinin dots are observed; most of them are arranged linearly and periodically at a distance of 0.3-1.5 microns and seem to be structural precursors of Z-lines. The data obtained show that the cultures of mammalian cardiac cells may be a convenient object for studying myofibrillogenesis in the course of cardiomyogenic differentiation.  相似文献   

12.
The ultrastructure of sarcomeres of glycerinated rabbit psoas muscle was studied using freeze-fracture-etching, freeze-drying and optical diffraction techniques in comparison with the investigation of this muscle by plastic sections and negative staining methods. In frozen and dried myofibrils isolated from the above muscle the stripes of minor proteins location in A- and I-disks were clearly seen. The pivot structure in thick filaments was revealed in longitudinal fractures of the muscle. The ordered arrangement of myosin heads (crossbridges) associated with actin filaments was preserved in frozen longitudinal fractures as evidenced by optical diffraction. Freeze etching technique allowed to revealed some details of Z-line structure: alpha-actinin bridges connecting the ends of actin filaments of neighbouring sarcomeres and to preserve the lateral struts between actin filaments in I-disks.  相似文献   

13.
A model of the structure of vertebrate Z-lines and Z-line analogs is introduced and supported by evidence from electron microscope studies of wide Z-lines (rat and feline soleus, and feline and canine cardiac muscles), narrow Z-lines (guppy, newt and frog skeletal muscles), and Z-rods (from a patient with nemaline myopathy and from cardiac muscles of aged dog). The model is based on a pair of Z-filaments (termed a Z-unit), which are linked near their centers at a 90 degrees angle and form bridges between neighboring antipolar thin (actin) filaments. A square lattice of four Z-filament pairs (the basic structure of the Z-line, termed a Z-line unit) defines the geometrical position of the I-square unit. In this native state of the Z-line, small square and large square net forms appear in cross-section. Other cross-sectional patterns of Z-lines, including basket-weave and diagonal-square net patterns, can be explained by detachment of the Z-filament from the Z-filament binding region within each Z-filament pair due to chemical or physical stress. Dissection of Z-lines and Z-line analogs with calcium-activated neutral protease provides evidence that the width of all wide Z-line structures is determined by the amount of overlap of antipolar thin filaments from adjacent sarcomeres. Longitudinal patterns of narrow and wide Z-lines are shown and described in relation to the model. To test the proposed model, the dynamics of the Z-line unit structure were computer-simulated. An attempt was made to correlate longitudinal (z direction) and cross-sectional (x and y directions) patterns and to determine the amount of movement of thin or Z-filaments that is required to explain the diversity observed in cross-sectional patterns of Z-lines. The computer simulations demonstrated that the structural transitions among the small square, and therefore large square net, as well as basket-weave and diagonal-square net forms seen in cross-sections could be caused by movements of thin filaments less than 10 nm in any direction (x, y or z).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
To evaluate nebulette's role in cardiac myofibrils, cardiomyocytes expressing green fluorescent protein (GFP)-nebulette constructs were monitored for their ability to contract and myofilament protein distribution was analyzed. Cells expressing full-length GFP-nebulette appear unaffected and exhibit normal beating frequencies. Expression of the GFP linker and SH3 results in loss of the endogenous nebulette and tropomyosin; however, Z-line and thick filaments are undisturbed. Cells expressing either of these domains have dramatically reduced beating frequencies, consistent with the loss of thin filament proteins. This loss was inhibited by the addition of protease inhibitors during culturing. The GFP repeat domain disrupts both myofibrillogenesis and contraction in spreading cardiomyocytes, whereas introduction of this protein into well-spread cardiomyocytes results in localization at the Z-line and a 50% reduction in beating frequency. Ultimately, these cells form bundles containing the GFP repeat and many myofilament proteins. Interestingly, butanedione monoxime inhibition of contraction inhibited the formation of these bundles. These results show that the GFP-nebulette domains have a dominant-negative effect on the distribution and function of the sarcomeric proteins. Taken together with the observation that nebulette colocalizes with alpha-actinin in the pre-, nascent, and mature myofibrils, our data demonstrate the importance of this cardiac-specific nebulin isoform in myofibril organization and function.  相似文献   

15.
We address the controversy of whether mature myofibrils can form in the presence of taxol, a microtubule-stabilizing compound. Previous electron microscopic studies reported the absence of actin filaments and Z-bands in taxol-treated myocytes [Antin et al., 1981: J Cell Biol 90:300-308; Toyoma et al., 1982: Proc Natl Acad Sci USA 79:6556-6560]. Quail skeletal myoblasts were isolated from 10-day-old embryos and grown in the presence or absence of taxol. Taxol inhibited the formation of multinucleated elongated myotubes. Myocytes cultured in the continual presence of taxol progressed from rounded to stellate shapes. Groups of myocytes that were clustered together after the isolation procedure fused in the presence of taxol but did not form elongated myotubes. Actin filaments and actin-binding proteins were detected with several different fluorescent probes in all myofibrils that formed in the presence of taxol. The Z-bands contained both alpha-actinin and titin, and the typical arrays of A-Bands were always associated with actin filaments in the myofibrils. Myofibril formation was followed by fixing cells each day in culture and staining with probes for actin, muscle-specific alpha-actinin, myosin II, nebulin, troponin, tropomyosin, and non-muscle myosin II. Small linear aggregates of alpha-actinin or Z-bodies, premyofibrils, were detected at the edges of the myocytes and in the arms of the taxol-treated cells and were always associated with actin filaments. Non-muscle myosin II was detected at the edges of the taxol-treated cells. Removal of the taxol drug led to the cells assuming a normal compact elongated shape. During the recovery process, additional myofibrils formed at the spreading edges of these elongated and thicker myotubes. Staining of these taxol-recovering cells with specific fluorescent reagents reveals three different classes of actin fibers. These results are consistent with a model of myofibrillogenesis that involves the transition of premyofibrils to mature myofibrils.  相似文献   

16.
Canine and feline cardiac Z-lines and Z-rods were examined by electron microscopy before and after digestion of muscle fibers with Ca2+-activated protease (CAF). Removal by CAF of electron-dense material which covers Z-lines and Z-rods exposed interdigitating longitudinal filaments (6-7 nm in diameter) apparently continuous with thin filaments of the respective I-bands. The newly exposed longitudinal filaments of CAF-treated Z-lines and of CAF-treated Z-rods bound heavy meromyosin and therefore are actin. The width of Z-lines and length of Z-rods are determined by the amount of overlap of actin filaments of opposite polarity. The oblique filaments in Z-lines and Z-rods are responsible for the perpendicular periodicity of Z-lines and Z-rods, and are attributed to alpha-actinin.  相似文献   

17.
Both mu- and m-calpain (the micro- and millimolar Ca(2+)-requiring Ca(2+)-dependent proteinases) can completely remove Z-disks from skeletal muscle myofibrils and leave a space devoid of filaments in the Z-disk area. alpha-Actinin, a principal protein component of Z-disks, is removed from myofibrils by the calpains, and a 100-kDa polypeptide that comigrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the alpha-actinin subunit is released into the supernatant. Purified calpain does not degrade purified actin or purified alpha-actinin as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by N- and C-terminal amino acid analysis of calpain-treated and untreated alpha-actinin and actin. The 100-kDa polypeptide released from myofibrils by calpain elutes identically with native alpha-actinin off DEAE-cellulose and hydroxyapatite columns and, after purification, binds to pure F-actin in the same manner that untreated, native alpha-actinin binds. Calpain-released alpha-actinin also accelerates the rate of superprecipitation of reconstituted actomyosin, a sensitive property characteristic of native alpha-actinin. Consequently, the calpains release alpha-actinin from the Z-disk of myofibrils without degrading it or without altering its ability to bind to actin. These results indicate that alpha-actinin does not simply cross-link thin filaments across the Z-disk but that at least one additional protein (or perhaps an altered actin or alpha-actinin) is involved in the alpha-actinin/actin interaction in Z-disks.  相似文献   

18.
Z-Line of skeletal muscle is a complex protein network that likely plays an important role in signaling and muscle homeostasis. We used the yeast two-hybrid system to search for potential novel ligands of the Z-line portion of nebulin. We found that the C-terminal region of nebulin (residues 6457-6528) interacted with the C-terminus of archvillin (residues 1419-1687). Archvillin is a membrane skeletal protein that localizes to costameres, specialized adhesion sites in muscle. The binding sites between nebulin and archvillin were characterized using the yeast two-hybrid system, in vitro pull-down assays, and colocalization experiments in COS-7 cells. Our data suggest a model in which archvillin attaches directly to the Z-line through an interaction with the nebulin C-terminus. The interaction between nebulin and archvillin may provide a direct link between the sarcolemma and myofibrillar Z-lines.  相似文献   

19.
Although cytoskeletal mutations are known causes of genetically based forms of dilated cardiomyopathy, the pathways that link these defects with cardiomyopathy are unclear. Here we report that the alpha-actinin-associated LIM protein (ALP; Alp in mice) has an essential role in the embryonic development of the right ventricular (RV) chamber during its exposure to high biomechanical workloads in utero. Disruption of the gene encoding Alp (Alp) is associated with RV chamber dilation and dysfunction, directly implicating alpha-actinin-associated proteins in the onset of cardiomyopathy. In vitro assays showed that Alp directly enhances the capacity of alpha-actinin to cross-link actin filaments, indicating that the loss of Alp function contributes to destabilization of actin anchorage sites in cardiac muscle. Alp also colocalizes at the intercalated disc with alpha-actinin and gamma-catenin, the latter being a known disease gene for human RV dysplasia. Taken together, these studies point to a novel developmental pathway for RV dilated cardiomyopathy via instability of alpha-actinin complexes.  相似文献   

20.
Costameres, the vinculin-rich, sub-membranous transverse ribs found in many skeletal and cardiac muscle cells (Pardo, J. V., J. D. Siciliano, and S. W. Craig. 1983. Proc. Natl. Acad. Sci. USA. 80:363-367.) are thought to anchor the Z-lines of the myofibrils to the sarcolemma. In addition, it has been postulated that costameres provide mechanical linkage between the cells' internal contractile machinery and the extracellular matrix, but direct evidence for this supposition has been lacking. By combining the flexible silicone rubber substratum technique (Harris, A. K., P. Wild, and D. Stopak. 1980. Science (Wash. DC). 208:177-179.) with the microinjection of fluorescently labeled vinculin and alpha-actinin, we have been able to correlate the distribution of costameres in adult rat cardiac myocytes with the pattern of forces these cells exert on the flexible substratum. In addition, we used interference reflection microscopy to identify areas of the cells which are in close contact to the underlying substratum. Our results indicate that, in older cell cultures, costameres can transmit forces to the extracellular environment. We base this conclusion on the following observations: (a) adult rat heart cells, cultured on the silicone rubber substratum for 8 or more days, produce pleat-like wrinkles during contraction, which diminish or disappear during relaxation; (b) the pleat-like wrinkles form between adjacent alpha-actinin-positive Z-lines; (c) the presence of pleat-like wrinkles is always associated with a periodic, "costameric" distribution of vinculin in the areas where the pleats form; and (d) a banded or periodic pattern of dark gray or close contacts (as determined by interference reflection microscopy) has been observed in many cells which have been in culture for eight or more days, and these close contacts contain vinculin. A surprising finding is that vinculin can be found in a costameric pattern in cells which are contracting, but not producing pleat-like wrinkles in the substratum. This suggests that additional proteins or posttranslational modifications of known costamere proteins are necessary to form a continuous linkage between the myofibrils and the extracellular matrix. These results confirm the hypothesis that costameres mechanically link the myofibrils to the extracellular matrix. We put forth the hypothesis that costameres are composite structures, made up of many protein components; some of these components function primarily to anchor myofibrils to the sarcolemma, while others form transmembrane linkages to the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号