首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The universal signal for egg activation at fertilization is a rise in cytoplasmic Ca(2+) with defined spatial and temporal kinetics. Mammalian and amphibian eggs acquire the ability to produce such Ca(2+) signals during a maturation period that precedes fertilization and encompasses resumption of meiosis and progression to metaphase II. In Xenopus, immature oocytes produce fast, saltatory Ca(2+) waves that can be oscillatory in nature in response to IP(3). In contrast, mature eggs produce a single continuous, sweeping Ca(2+) wave in response to IP(3) or sperm fusion. The mechanisms mediating the differentiation of Ca(2+) signaling during oocyte maturation are not well understood. Here, I characterized elementary Ca(2+) release events (Ca(2+) puffs) in oocytes and eggs and show that the sensitivity of IP(3)-dependent Ca(2+) release is greatly enhanced during oocyte maturation. Furthermore, Ca(2+) puffs in eggs have a larger spatial fingerprint, yet are short lived compared to oocyte puffs. Most interestingly, Ca(2+) puffs cluster during oocyte maturation resulting in a continuum of Ca(2+) release sites over space in eggs. These changes in the spatial distribution of elementary Ca(2+) release events during oocyte maturation explain the continuous nature and slower speed of the fertilization Ca(2+) wave.  相似文献   

2.
During oocyte maturation, eggs acquire the ability to generate specialized Ca(2+) signals in response to sperm entry. Such Ca(2+) signals are crucial for egg activation and the initiation of embryonic development. We examined the regulation during Xenopus oocyte maturation of store-operated Ca(2+) entry (SOCE), an important Ca(2+) influx pathway in oocytes and other nonexcitable cells. We have previously shown that SOCE inactivates during Xenopus oocyte meiosis. SOCE inactivation may be important in preventing premature egg activation. In this study, we investigated the correlation between SOCE inactivation and the Mos-mitogen-activated protein kinase (MAPK)-maturation-promoting factor (MPF) kinase cascade, which drives Xenopus oocyte maturation. SOCE inactivation at germinal vesicle breakdown coincides with an increase in the levels of MAPK and MPF. By differentially inducing Mos, MAPK, and MPF, we demonstrate that the activation of MPF is necessary for SOCE inactivation during oocyte maturation. In contrast, sustained high levels of Mos kinase and the MAPK cascade have no effect on SOCE activation. We further show that preactivated SOCE is not inactivated by MPF, suggesting that MPF does not block Ca(2+) influx through SOCE channels, but rather inhibits coupling between store depletion and SOCE activation.  相似文献   

3.
A transient increase in intracellular Ca2+ is the universal signal for egg activation at fertilization. Eggs acquire the ability to mount the specialized fertilization-specific Ca2+ signal during oocyte maturation. The first Ca2+ transient following sperm entry in vertebrate eggs has a slow rising phase followed by a sustained plateau. The molecular determinants of the sustained plateau are poorly understood. We have recently shown that a critical determinant of Ca2+ signaling differentiation during oocyte maturation is internalization of the plasma membrane calcium ATPase (PMCA). PMCA internalization is representative of endocytosis of several integral membrane proteins during oocyte maturation, a requisite process for early embryogenesis. Here we investigate the mechanisms regulating PMCA internalization. To track PMCA trafficking in live cells we cloned a full-length cDNA of Xenopus PMCA1, and show that GFP-tagged PMCA traffics in a similar fashion to endogenous PMCA. Functional data show that MPF activation during oocyte maturation is required for full PMCA internalization. Pharmacological and co-localization studies argue that PMCA is internalized through a lipid raft endocytic pathway. Deletion analysis reveal a requirement for the N-terminal cytoplasmic domain for efficient internalization. Together these studies define the mechanistic requirements for PMCA internalization during oocyte maturation.  相似文献   

4.
Ca(2+)(cyt) negatively regulates the initiation of oocyte maturation   总被引:2,自引:0,他引:2  
Ca(2+) is a ubiquitous intracellular messenger that is important for cell cycle progression. Genetic and biochemical evidence support a role for Ca(2+) in mitosis. In contrast, there has been a long-standing debate as to whether Ca(2+) signals are required for oocyte meiosis. Here, we show that cytoplasmic Ca(2+) (Ca(2+)(cyt)) plays a dual role during Xenopus oocyte maturation. Ca(2+) signals are dispensable for meiosis entry (germinal vesicle breakdown and chromosome condensation), but are required for the completion of meiosis I. Interestingly, in the absence of Ca(2+)(cyt) signals oocytes enter meiosis more rapidly due to faster activation of the MAPK-maturation promoting factor (MPF) kinase cascade. This Ca(2+)-dependent negative regulation of the cell cycle machinery (MAPK-MPF cascade) is due to Ca(2+)(cyt) acting downstream of protein kinase A but upstream of Mos (a MAPK kinase kinase). Therefore, high Ca(2+)(cyt) delays meiosis entry by negatively regulating the initiation of the MAPK-MPF cascade. These results show that Ca(2+) modulates both the cell cycle machinery and nuclear maturation during meiosis.  相似文献   

5.
In a previous study, we identified Xenopus egg uroplakin III (xUPIII), a single-transmembrane protein that localized to lipid/membrane rafts and was tyrosine-phosphorylated upon fertilization. An antibody against the xUPIII extracellular domain abolishes fertilization, suggesting that xUPIII acts not only as tyrosine kinase substrate but also as a receptor for sperm. Previously, it has been shown that the protease cathepsin B can promote a transient Ca2+ release and egg activation as seen in fertilized eggs (Mizote, A., Okamoto, S., Iwao, Y., 1999. Activation of Xenopus eggs by proteases: possible involvement of a sperm protease in fertilization. Dev. Biol. 208, 79-92). Here, we show that activation of Xenopus eggs by cathepsin B is accompanied by tyrosine phosphorylation of egg-raft-associated Src, phospholipase Cgamma, and xUPIII. Cathepsin B also promotes a partial digestion of xUPIII both in vitro and in vivo. A synthetic xUPIII-GRR peptide, which contains a potential proteolytic site, inhibits the cathepsin-B-mediated proteolysis and tyrosine phosphorylation of xUPIII and egg activation. Importantly, this peptide also inhibits sperm-induced tyrosine phosphorylation of xUPIII and egg activation. Protease activity that digests xUPIII in an xUPIII-GRR peptide-sensitive manner is present in Xenopus sperm. Several protease inhibitors, which have been identified to be inhibitory toward Xenopus fertilization, are shown to inhibit sperm-induced tyrosine phosphorylation of xUPIII. Uroplakin Ib, a tetraspanin UP member, is found to be associated with xUPIII in egg rafts. Our results highlight novel mechanisms of fertilization signaling by which xUPIII serves as a potential target for sperm protease essential for fertilization.  相似文献   

6.
In mammalian eggs, the fertilizing sperm evokes intracellular Ca2+ ([Ca2+]i) oscillations that are essential for initiation of egg activation and embryonic development. Although the exact mechanism leading to initiation of [Ca2+]i oscillations still remains unclear, accumulating studies suggest that a presently unknown substance, termed sperm factor (SF), is delivered from the fertilizing sperm into the ooplasm and triggers [Ca2+]i oscillations. Based on findings showing that production of inositol 1,4,5-trisphosphate (IP3) underlies the generation of [Ca2+]i oscillations, it has been suggested that SF functions either as a phospholipase C (PLC), an enzyme that catalyzes the generation of IP3, or as an activator of a PLC(s) pre-existing in the egg. This review discusses the role of SF as the molecule responsible for the production of IP3 and the initiator of [Ca2+]i oscillations in mammalian fertilization, with particular emphasis on the possible involvement of egg- and sperm-derived PLCs, including PLCzeta, a novel sperm specific PLC.  相似文献   

7.
We have clarified, for the first time, the spatiotemporal patterns of intracellular Ca(2+) increases at fertilization and the Ca(2+)-mobilizing mechanisms in eggs of hydrozoan jellyfish, which belong to the evolutionarily old diploblastic phylum, Cnidaria. An initial Ca(2+) increase just after fertilization took the form of a Ca(2+) wave starting from one cortical region of the egg and propagating to its antipode in all of four hydrozoan species tested: Cytaeis uchidae, Cladonema pacificum, Clytia sp., and Gonionema vertens. The initiation site of the Ca(2+) wave was restricted to the animal pole, which is known to be the only area of sperm-egg fusion in hydrozoan eggs, and the wave propagating velocity was estimated to be 4.2-5.9 mum/s. After a Ca(2+) peak had been attained by the initial Ca(2+) wave, the elevated Ca(2+) gradually declined and returned nearly to the resting value at 7-10 min following fertilization. Injection of inositol 1,4,5-trisphosphate (IP(3)), an agonist of IP(3) receptors (IP(3)R), was highly effective in inducing a Ca(2+) increase in unfertilized eggs; IP(3) at a final intracellular concentration of 12-60 nM produced a fully propagating Ca(2+) wave equivalent to that observed at fertilization. In contrast, a higher concentration of cyclic ADP-ribose (cADPR), an agonist of ryanodine receptors (RyR), only generated a localized Ca(2+) increase that did not propagate in the egg. In addition, caffeine, another stimulator of RyR, was completely without effect. Sperm-induced Ca(2+) increases in Gonionema eggs were severely affected by preinjection of heparin, an inhibitor of Ca(2+) release from IP(3)R. These results strongly suggest that there is a well-developed IP(3)R-, but not RyR-mediated Ca(2+) release mechanism in hydrozoan eggs and that the former system primarily functions at fertilization. Our present data also demonstrate that the spatial characteristics and mechanisms of Ca(2+) increases at fertilization in hydrozoan eggs resemble those reported in higher triploblastic animals.  相似文献   

8.
The mechanisms of agonist-induced Ca(2+) spikes have been investigated using a caged inositol 1,4,5-trisphosphate (IP(3)) and a low-affinity Ca(2+) indicator, BTC, in pancreatic acinar cells. Rapid photolysis of caged IP(3) was able to reproduce acetylcholine (ACh)-induced three forms of Ca(2+) spikes: local Ca(2+) spikes and submicromolar (<1 microM) and micromolar (1-15 microM) global Ca(2+) spikes (Ca(2+) waves). These observations indicate that subcellular gradients of IP(3) sensitivity underlie all forms of ACh-induced Ca(2+) spikes, and that the amplitude and extent of Ca(2+) spikes are determined by the concentration of IP(3). IP(3)-induced local Ca(2+) spikes exhibited similar time courses to those generated by ACh, supporting a role for Ca(2+)-induced Ca(2+) release in local Ca(2+) spikes. In contrast, IP(3)- induced global Ca(2+) spikes were consistently faster than those evoked with ACh at all concentrations of IP(3) and ACh, suggesting that production of IP(3) via phospholipase C was slow and limited the spread of the Ca(2+) spikes. Indeed, gradual photolysis of caged IP(3) reproduced ACh-induced slow Ca(2+) spikes. Thus, local and global Ca(2+) spikes involve distinct mechanisms, and the kinetics of global Ca(2+) spikes depends on that of IP(3) production particularly in those cells such as acinar cells where heterogeneity in IP(3) sensitivity plays critical role.  相似文献   

9.
Ca(2+) influx across the plasma membrane after stimulation of G protein-coupled receptors is important for many physiological functions. Here we studied the regulation of an inwardly rectifying whole cell current and its putative role in Ca(2+) entry in Xenopus oocytes. Expression of P2Y(1) or M1 receptors in Xenopus oocytes elicited a characteristic inwardly rectifying current without receptor stimulation. This current displayed distinct activation and inactivation kinetics and was highly Ca(2+)-dependent. After stimulation of endogenous G(q)-coupled receptors in water-injected cells similar currents were observed. We therefore speculated that the current could be activated via Ca(2+) store depletion induced by constitutive stimulation of the IP(3) cascade in cells overexpressing G(q)-coupled receptors. Receptor-independent Ca(2+) store depletion also induced the current. In conclusion, this current is activated after store depletion suggesting a role in Ca(2+) entry after stimulation of G(q)-coupled receptors. Finally, our data do not support the proposed ionotropic properties of the P2Y(1) receptor.  相似文献   

10.
Fertilization elicits a dramatic, transient rise in Ca2+ within the egg which is an essential component of egg activation and consequent initiation of development. In the sea urchin egg, three distinct Ca2+ stores have been identified which could, either individually or in combination, initiate Ca2+ release at fertilization. Inositol 1,4,5-trisphosphate (IP3) production by phospholipase C (PLC) has been suggested as the singular signal in initiating the Ca2+ transient. Other studies indicate that Ca2+ stores gated by cyclic adenosine diphosphate ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP) are also necessary. We have examined the temporal relationship between the Ca2+ rise and IP3 production at fertilization in vivo within individual eggs using a green fluorescent protein (GFP) coupled to a pleckstrin homology (PH) domain that can detect changes in IP3. Translocation of the probe occurred after the Ca2+ rise was initiated. Earlier, and possibly smaller, IP3 changes could not be excluded due to limitations in probe sensitivity. High IP3 levels are maintained during the decline in cytoplasmic Ca2+, suggesting that later IP3 metabolism might not be related to regulation of Ca2+, but may function to modulate other PIP2 regulated events such as actin polymerization or reflect other novel phosphoinositide signaling pathways.  相似文献   

11.
The difference of Ca(2+) mobilization induced by muscarinic receptor activation between parotid acinar and duct cells was examined. Oxotremorine, a muscarinic-cholinergic agonist, induced intracellular Ca(2+) release and extracellular Ca(2+) entry through store-operated Ca(2+) entry (SOC) and non-SOC channels in acinar cells, but it activated only Ca(2+) entry from non-SOC channels in duct cells. RT-PCR experiments showed that both types of cells expressed the same muscarinic receptor, M3. Given that ATP activated the intracellular Ca(2+) stores, the machinery for intracellular Ca(2+) release was intact in the duct cells. By immunocytochemical experiments, IP(3)R2 colocalized with M3 receptors in the plasma membrane area of acinar cells; in duct cells, IP(3)R2 resided in the region on the opposite side of the M3 receptors. On the other hand, purinergic P2Y2 receptors were found in the apical area of duct cells where they colocalized with IP(3)R2. These results suggest that the expression of the IP(3)Rs near G-protein-coupled receptors is necessary for the activation of intracellular Ca(2+) stores. Therefore, the microenvironment probably affects intracellular Ca(2+) release and Ca(2+) entry.  相似文献   

12.
InsP(3) is an important link in the intracellular information network. Previous observations show that activation of InsP(3)-receptor channels on the granular membrane can turn secretory granules into Ca(2+) oscillators that deliver periodic trains of Ca(2+) release to the cytosol (T. Nguyen, W. C. Chin, and P. Verdugo, 1998, Nature, 395:908-912; I. Quesada, W. C. Chin, J. Steed, P. Campos-Bedolla, and P. Verdugo, 2001, BIOPHYS: J. 80:2133-2139). Here we show that InsP(3) can also turn mast cell granules into proton oscillators. InsP(3)-induced intralumenal [H(+)] oscillations are ATP-independent, result from H(+)/K(+) exchange in the heparin matrix, and produce perigranular pH oscillations with the same frequency. These perigranular pH oscillations are in-phase with intralumenal [H(+)] but out-of-phase with the corresponding perigranular [Ca(2+)] oscillations. The low pH of the secretory compartment has critical implications in a broad range of intracellular processes. However, the association of proton release with InsP(3)-induced Ca(2+) signals, their similar periodic nature, and the sensitivity of important exocytic proteins to the joint action of Ca(2+) and pH strongly suggests that granules might encode a combined Ca(2+)/H(+) intracellular signal. A H(+)/Ca(2+) signal could significantly increase the specificity of the information sent by the granule by transmitting two frequency encoded messages targeted exclusively to proteins like calmodulin, annexins, or syncollin that are crucial for exocytosis and require specific combinations of [Ca(2+)] "and" pH for their action.  相似文献   

13.
Intracellular Ca2+ oscillations in fertilized mammalian eggs, the key signal that stimulates egg activation and early embryonic development, are regulated by inositol 1,4,5-trisphosphate (IP3) signaling pathway. We investigated temporal changes in intracellular IP3 concentration ([IP3]i) in mouse eggs, using a fluorescent probe based on fluorescence resonance energy transfer between two green fluorescent protein variants, during Ca2+ oscillations induced by fertilization or expression of phospholipase Czeta (PLCzeta), an egg-activating sperm factor candidate. Fluorescence measurements suggested the elevation of [IP3]i in fertilized eggs, and the enhancement of PLCzeta-mediated IP3 production by cytoplasmic Ca2+ was observed during Ca2+ oscillations or in response to CaCl2 microinjection. The results supported the view that PLCzeta is the sperm factor to stimulate IP3 pathway, and suggested that high Ca2+ sensitivity of PLCzeta activity and positive feedback from released Ca2+ are important for triggering and maintaining Ca2+ oscillations.  相似文献   

14.
Quesada I  Chin WC  Verdugo P 《FEBS letters》2006,580(9):2201-2206
Phaeocystis globosa, a leading agent in marine carbon cycling, releases its photosynthesized biopolymers via regulated exocytosis. Release is elicited by blue light and relayed by a characteristic cytosolic Ca(2+) signal. However, the source of Ca(2+) in these cells has not been established. The present studies indicate that Phaeocystis' secretory granules work as an intracellular Ca(2+) oscillator. Optical tomography reveals that photo-stimulation induces InsP(3)-triggered periodic lumenal [Ca(2+)] oscillations in the granule and corresponding out-of-phase cytosolic oscillations of [Ca(2+)] that trigger exocytosis. This Ca(2+) dynamics results from an interplay between the intragranular polyanionic matrix, and two Ca(2+)-sensitive ion channels located on the granule membrane: an InsP(3)-receptor-Ca(2+) channel, and an apamin-sensitive K(+) channel.  相似文献   

15.
We investigated the role of Na(+)-K(+)-Cl(-) cotransporter (NKCC1) in conjunction with Na(+)/Ca(2+) exchanger (NCX) in disruption of endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress development in primary cortical neurons following in vitro ischemia. Oxygen-glucose deprivation (OGD) and reoxygenation (REOX) caused a rise in [Na(+)](cyt) which was accompanied by an elevation in [Ca(2+)](cyt). Inhibition of NKCC1 with its potent inhibitor bumetanide abolished the OGD/REOX-induced rise in [Na(+)](cyt) and [Ca(2+)](cyt). Moreover, OGD significantly increased Ca(2+)(ER) accumulation. Following REOX, a biphasic change in Ca(2+)(ER) occurred with an initial release of Ca(2+)(ER) which was sensitive to inositol 1,4,5-trisphosphate receptor (IP(3)R) inhibition and a subsequent refilling of Ca(2+)(ER) stores. Inhibition of NKCC1 activity with its inhibitor or genetic ablation prevented the release of Ca(2+)(ER). A similar result was obtained with inhibition of reversed mode operation of NCX (NCX(rev)). OGD/REOX also triggered a transient increase of glucose regulated protein 78 (GRP78), phospho-form of the alpha subunit of eukaryotic initiation factor 2 (p-eIF2alpha), and cleaved caspase 12 proteins. Pre-treatment of neurons with NKCC1 inhibitor bumetanide inhibited upregulation of GRP78 and attenuated the level of cleaved caspase 12 and p-eIF2alpha. Inhibition of NKCC1 reduced cytochrome C release and neuronal death. Taken together, these results suggest that NKCC1 and NCX(rev) may be involved in ischemic cell damage in part via disrupting ER Ca(2+) homeostasis and ER function.  相似文献   

16.
We previously reported that the prostaglandin E(2) (PGE(2)) receptor subtype EP(1) is coupled to intracellular Ca(2+) mobilization in CHO cells, which is dependent on extracellular Ca(2+) in a pertussis toxin-insensitive manner [H. Katoh, et al., Biochim. Biophys. Acta 1244 (1995) 41-48]. However, it remains unknown about the signal transduction involved in this response. To investigate the mechanism regulating Ca(2+) mobilization mediated by EP(1) receptors in detail, we performed a series of experiments using the Xenopus laevis oocyte expression system and found that endogenous G(q) and/or G(11), and not G(i1) is involved in the Ca(2+) mobilization induced by PGE(2). We further investigated the receptor-activated Ca(2+) channel (RACC)-related response by introducing mRNA for mouse transient receptor potential 5 (TRP5), a possible candidate for the RACC, and found effective coupling between them. These results suggest that the EP(1) receptors induce Ca(2+) mobilization via G(q) and/or G(11) and Ca(2+) influx via TRP.  相似文献   

17.
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献   

18.
During the reinitiation of the meiotic cycle (maturation) induced by the hormone 1-methyladenine (1-MA), starfish oocytes undergo structural and biochemical changes in preparation for successful fertilization. Previous work has shown that the sensitivity of internal Ca(2+) stores to InsP(3) increases during maturation of the oocytes. Since Astropecten auranciacus oocytes also respond to cADPr, we have studied whether the response to cADPr also changes during maturation. We have found that the photoactivation of injected cADPr in immature oocytes immediately induces multiple patches of Ca(2+) release in the cortical region. The Ca(2+) signal then spreads from these initial points of increase to the entire cell. In mature oocytes, the uncaging of cADPr induces instead a single (or at most a dual) initial point of Ca(2+) release, which is immediately followed by the formation of a cortical Ca(2+) flash and then by the globalization of the wave and by the elevation of the fertilization envelope. External Ca(2+) plays a role in the Ca(2+) responses. Inhibition of L-type Ca(2+) channels does not affect the initial Ca(2+) release, but abolishes the cortical flash and impairs the elevation of the fertilization envelope. External Ca(2+) has other effects, as shown by the irregular appearance of the surface of oocytes incubated in Ca(2+)-free sea water. The sequence of Ca(2+) responses induced by cADPr in mature oocytes mimics those seen at fertilization, i.e., a first localized Ca(2+) increase followed by a cortical flash and by the globalization of the Ca(2+) signal. As in the case of maturation, L-type Ca(2+) channel blockers abolish the sperm induced cortical flash.  相似文献   

19.
McGeown JG 《Cell calcium》2004,35(6):613-619
This short review proposes a system of simplified functional models describing possible interactions between Ca(2+)-release channels associated with IP(3)Rs and RyRs in smooth muscle, and considers each of these models in the light of the available experimental evidence. Complete separation of IP(3)R- and RyR-gated stores seems to be unusual. Where both receptors release Ca(2+) from a common pool, simple interactions can occur since changes in the activation of one receptor type affects the availability of Ca(2+) for release through the other. Alterations in [Ca(2+)] within the sarcoplasmic reticulum can also affect the open probability of the release channels, and not just the Ca(2+)-flux through the channels when open, e.g., Ca(2+)-release through tonically active IP(3)Rs appears to limit SR Ca(2+)-content in some myocytes, and this modulates RyR activity, as indicated by changes in Ca(2+)-spark frequency. There is also evidence that intracellular release channels may co-operate, leading to positive feedback during activation. In particular, agonist-dependent activation of IP(3)Rs can promote activation of RyRs, amplifying and shaping the resulting Ca(2+)-signal. While there is little direct evidence as to the mechanism responsible for this interaction, some form of Ca(2+)-induced Ca(2+)-release in response to local increases in [Ca(2+)](c) seems likely.  相似文献   

20.
In most species, cortical granule exocytosis is characteristic of egg activation by sperm. It is a Ca(2+)-mediated event which results in elevation of the vitelline coat to block permanently the polyspermy at fertilization. We examined the effect of mastoparan, an activator of G-proteins, on the sea urchin egg activation. Mastoparan was able to induce, in a concentration-dependent manner, the egg cortical granule exocytosis; mastoparan-17, an inactive analogue of mastoparan, had no effect. Mastoparan, but not sperm, induced cortical granule exocytosis in eggs preloaded with BAPTA, a Ca(2+) chelator. In isolated egg cortical lawns, which are vitelline layers and membrane fragments with endogenously docked cortical granules, mastoparan induced cortical granule fusion in a Ca(2+)-independent manner. By contrast, mastoparan-17 did not trigger fusion. We conclude that in sea urchin eggs mastoparan stimulates exocytosis at a Ca(2+)-independent late site of the signaling pathway that culminates in cortical granule discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号