首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Positively charged peptides have been shown to allow efficient transfection in vitro, especially when mixed with lipids. We have compared the ability of three positively charged peptides both to compact DNA and to increase the transfection efficiency of the cationic lipid DOTAP. The peptides are: a polymer of 17 lysines (pK17), YKAWK8WK (peptide K8) and SPKRSPKRSPKR (peptide P2). Peptides pK17 and K8 compact DNA efficiently in a gel retardation assay and protect DNA efficiently against DNase I degradation. Peptide P2, on the other hand, interacts weakly with DNA and provides poor protection. In order to compare their transfection efficiency, the three peptides were mixed with DNA (plasmid pEGFP-N1) at different charge ratios (+/-) and DOTAP (at a charge ratio of 2). The transfection efficiency was measured by FACS analysis at different times post-transfection. With NIH-3T3 cells, peptide P2 provides the highest transfection efficiency (about 40%), when compared with peptides pK17 (29%) and K8 (31%) and DOTAP alone (21%) under optimal conditions. Finally, we showed that centrifugation of the complexes onto the cells increased the transfection efficiency by a factor 1.5 to 2 with the various cell lines tested (ECV, primary human keratinocyte, CFT-2, NT-1).  相似文献   

3.
Enhancement of gene transfer using YIGSR analog of Tat-derived peptide   总被引:1,自引:0,他引:1  
Cell penetrating peptide based gene carriers are notably known for low level of gene transfer. To remedy this, as laminin receptor (LR) has been previously linked to tumor metastasis, the LR-binding domain (YIGSR) as well as a scrambled sequence (SGIYR) were added to Tat-derived peptide sequence (YIGSR-Tat and SGIYR-Tat respectively). Peptides cellular uptake was assessed with high-LR (HT1080) and low-LR (HT29) cell lines by flow cytometry. Their ability to form complexes with DNA was examined using YOPRO-1 fluorescence assay and their transfection efficiencies evaluated using a luciferase reporter gene assay. DNA complexes were formed at (+/-) charge ratios as low as 2:1. While no conclusion could be drawn on the effect of YIGSR sequence on peptides uptake in both cell lines, a significant improvement in gene transfection in HT1080 cells was achieved using YIGSR-Tat compared to Tat and SGIYR-Tat. Additionally this increased efficiency was inhibited by excess free YIGSR. No significant difference in transfection efficiency was observed between Tat, SGIYR-Tat and YIGSR-Tat based complexes in HT29 cells. These studies demonstrate that attachment of receptor-binding ligand (YIGSR) to Tat-derived peptide can improve the efficiency of gene transfer in LR-positive cells (HT1080).  相似文献   

4.
Transgene expression in lymphoid cells may be useful for modulating immune responses in, and gene therapy of, cancer and AIDS. Although cationic liposome-DNA complexes (lipoplexes) present advantages over viral vectors, they have low transfection efficiency, unfavorable features for intravenous administration, and lack of target cell specificity. The use of a targeting ligand (transferrin), or an endosome-disrupting peptide, in ternary complexes with liposomes and a luciferase plasmid, significantly promoted transgene expression in several T- and B-lymphocytic cell lines. The highest levels of luciferase activity were obtained at a lipid/DNA (±) charge ratio of 1/1, where the ternary complexes were net negatively charged. The use of such negatively charged ternary complexes may alleviate some of the drawbacks of highly positively charged plain lipoplexes for gene delivery.  相似文献   

5.
Poly(DMAEMA-NVP)-b-PEG-galactose as gene delivery vector for hepatocytes   总被引:4,自引:0,他引:4  
A block copolymer composed of cationic polymer and poly(ethylene glycol) (PEG) was used as a DNA carrier. Poly(2-(dimethylamino)ethyl methacrylate (DMAEMA)-co-N-vinyl-2-pyrrolidone (NVP)) having a terminal carboxylic group was synthesized by free radical polymerization using an initiator, 4,4'-azobis(4-cyanovaleric acid). The terminal carboxylic acid was activated by N-hydroxysuccinimide (NHS) with dicyclohexylcarbodiimide (DCC) and then conjugated with PEG-bis(amine). For specific gene targeting to asialoglycoprotein receptor of hepatocytes, a galactose moiety was incorporated into the PEG terminal end of poly(DMAEMA-NVP)-b-PEG by reductive coupling using lactose and sodium cyanoborohydride. RSV luciferase plasmid was used as a reporter gene, and in vitro gene transfection efficiency was measured in HepG2 human hepatocarcinoma cells. Poly(DMAEMA-NVP)-b-PEG-galactose/DNA complexes formed at 0.5-2 polymer/plasmid weight ratio had compacted structures around 200 nm particle size and exhibited slightly negative surface charge. These complexes were coated with a cationic, pH sensitive, endosomolytic peptide, KALA, to generate positively charged poly(DMAEMA-NVP)-b-PEG-galactose/DNA/KALA complex particles. In the presence of serum proteins, both the PEG block and the galactose moiety of poly(DMAEMA-NVP)-b-PEG-galactose greatly enhanced the gene transfection efficiency, which was very close to that of Lipofectamine plus. Irrespective of the presence of serum proteins, as the KALA/DNA weight ratio increased, the transfection efficiency of poly(DMAEMA-NVP)-b-PEG-galactose was enhanced due to the pH dependent endosomal disruptive property of KALA. This study demonstrates that sufficient transfection efficiency as high as that of commercial agent could be attained by judicious formulation of molecular engineered poly(DMAEMA-NVP)-b-PEG-galactose in combination with an endosomolytic peptide, KALA.  相似文献   

6.
To understand the influence of charge groups on transfection mediated by polymer complexes, we have synthesized a series of biodegradable and cationic polyphosphoramidates (PPAs) with an identical backbone but different side chains. Our previous study showed that PPA with a spermidine side chain (PPA-SP) showed high transfection efficiency in culture, whereas PPAs with secondary, tertiary, and quaternary amino groups were significantly less efficient. To investigate whether the coexistence of 1 degrees amino charge groups with 3 degrees and 2 degrees amino charge groups in the DNA/polymer complexes would enhance their transfection efficiency, we evaluated a ternary complex system containing DNA and PPAs with 1 degrees amino groups (PPA-SP) and 3 degrees amino groups (PPA-DMA) and a quaternary complex system containing DNA and PPAs with 1 degrees and 2 degrees and 3 degrees amino groups (PPA-EA/PPA-MEA/PPA-DMA), respectively. Ternary complexes mediated 20 and 160 times higher transfection efficiency in COS-7 cells than complexes of DNA with PPA-SP or PPA-DMA alone, respectively. Similarly, quaternary complexes exhibited 8-fold higher transfection efficiency than PPA-EA/DNA complexes. The mechanism of enhancement in transfection efficiency by the mixture carriers appears to be unrelated to the particle size, zeta potential, or DNA uptake. The titration characterization and the transfection experiments using a proton pump inhibitor suggest that the enhancement effect is unlikely due to the slightly improved buffering capacity of the mixture over PPA-SP. This approach represents a simple strategy of developing polymeric gene carriers and understanding the mechanisms of polymer-mediated gene transfer.  相似文献   

7.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes (`lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin Nterminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/ DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

8.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes ('lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin N-terminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

9.
Use of cationic polymers as nonviral gene vectors has several limitations such as low transfection efficiency, high toxicity, and inactivation by serum. In this study, varying amounts of low molecular weight branched polyethylenimine 1.8 kDa (bPEI 1.8) were introduced on to a neutral polymer, poly(vinyl alcohol) (PVA), to bring in cationic charge on the resulting PVA-PEI (PP) nanocomposites. We rationalized that by introducing bPEI 1.8, buffering and condensation properties of the proposed nanocomposites would result in improved gene transfer capability. A series of PVA-PEI (PP) nanocomposites was synthesized using well-established epoxide chemistry and characterized by IR and NMR. Particle size of the PP/DNA complexes ranged between 120 to 135 nm, as determined by dynamic light scattering (DLS), and DNA retardation assay revealed efficient binding capability of PP nanocomposites to negatively charged nucleic acids. In vitro transfection of PP/DNA complexes in HEK293, HeLa, and CHO cells revealed that the best working formulation in the synthesized series, PP-3/DNA complex, displayed ~2-50-fold higher transfection efficiency than bPEIs (1.8 and 25 kDa) and commercial transfection reagents. More importantly, the PP/DNA complexes were stable over a period of time, along with their superior transfection efficiency in the presence of serum compared to serum-free conditions, retaining the nontoxic property of low molecular weight bPEI. The in vivo administration of PP-3/DNA complex in Balb/c mice showed maximum gene expression in their spleen. The study demonstrates the potential of PP nanocomposites as promising nonviral gene vectors for in vivo applications.  相似文献   

10.
We present a theoretical study of the physical properties of cationic lipid-DNA (CL-DNA) complexes--a promising synthetically based nonviral carrier of DNA for gene therapy. The study is based on a coarse-grained molecular model, which is used in Monte Carlo simulations of mesoscopically large systems over timescales long enough to address experimental reality. In the present work, we focus on the statistical-mechanical behavior of lamellar complexes, which in Monte Carlo simulations self-assemble spontaneously from a disordered random initial state. We measure the DNA-interaxial spacing, d(DNA), and the local cationic area charge density, sigma(M), for a wide range of values of the parameter (c) representing the fraction of cationic lipids. For weakly charged complexes (low values of (c)), we find that d(DNA) has a linear dependence on (c)(-1), which is in excellent agreement with x-ray diffraction experimental data. We also observe, in qualitative agreement with previous Poisson-Boltzmann calculations of the system, large fluctuations in the local area charge density with a pronounced minimum of sigma(M) halfway between adjacent DNA molecules. For highly-charged complexes (large (c)), we find moderate charge density fluctuations and observe deviations from linear dependence of d(DNA) on (c)(-1). This last result, together with other findings such as the decrease in the effective stretching modulus of the complex and the increased rate at which pores are formed in the complex membranes, are indicative of the gradual loss of mechanical stability of the complex, which occurs when (c) becomes large. We suggest that this may be the origin of the recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities, because the completion of the transfection process requires the disassembly of the complex and the release of the DNA into the cytoplasm. Some of the structural properties of the system are also predicted by a continuum free energy minimization. The analysis, which semiquantitatively agrees with the computational results, shows that that mesoscale physical behavior of CL-DNA complexes is governed by interplay among electrostatic, elastic, and mixing free energies.  相似文献   

11.
In order to develop improved synthetic gene transfer vectors, we have synthesized bifunctional peptides composed of a DNA binding peptide (P2) and ligand peptides selected by the phage display technique on tracheal epithelial cells. We have evaluated the capacity of these peptides to enhance the gene transfer efficiency of the cationic lipid DOTAP to the mouse lung. To optimize the in vivo transfection efficiency, we first compared the efficiency of DOTAP to transfect the lung by either intravenous injection or aerosolization. We then tested DNA/Peptide/DOTAP complexes formed at different Peptide/DNA and DOTAP/DNA charge ratios. Under optimal conditions, precompaction of DNA by peptide P2 gave a higher expression in the mouse lung using the luciferase reporter gene than DOTAP/DNA complexes. A further increase of transfection efficiency was obtained with the bifunctional peptide P2-9. Experiments performed with the GFP reporter gene showed expression in the alveolar parenchyme.  相似文献   

12.
13.
Cationic liposomes have been actively used as gene delivery vehicle because of their minimal toxicity, but their relatively low efficiency of gene delivery is the major disadvantage of these vectors. Recently, cysteine residue incorporation to HIV-1 Tat peptide increased liposomemediated transfection compared with unmodified Tat peptide. Therefore, we designed a novel modified Tat peptide having a homodimeric (Tat-CTHD, Tat-NTHD) and closed structure (cyclic Tat) simply by using the disulfide bond between cysteines to develop a more efficient and safe nonviral gene delivery system. The mixing of Tat-CTHD and Tat-NTHD with DNA before mixing with lipofectamine increased the transfection efficiency compared with unmodified Tat peptide and lipofectamine only in MCF-7 breast cancer cells and rat vascular smooth muscle cells. However, cyclic Tat did not show any improvement in the transfection efficiency. In the gel retardation assay, Tat-CTHD and Tat-NTHD showed more strong binding with DNA than unmodified Tat and cyclic Tat peptide. This enhancement was only shown when Tat-CTHD and Tat-NTHD were mixed with DNA before mixing with lipofectamine. The effects of Tat- CTHD and Tat-NTHD were also valid in the experiment using DOTAP and DMRIE instead of lipofectamine. We could not find any significant cytotoxicity in the working concentration and more usage of these peptides. In conclusion, we have designed a novel transfection-enhancing peptide by easy homodimerization of Tat peptide, and the simple mix of these novel peptides with DNA increased the gene transfer of cationic lipids more efficiently with no additional cytotoxicity.  相似文献   

14.
A combination of modified HIV-1 Tat (mTat) peptide and cationic lipids, FuGENE HD (FH), dramatically enhanced transfection efficiency across a range of cell lines when compared to mTat or FH alone (Biomaterials 35:1705–1715 2014). The efficiency of this Tat peptide combination was significantly higher than many commercial non-viral vectors. In this present study, we tested the feasibility of this non-viral vector, mTat/FH, in vivo using plasmid DNA encoding a luciferase gene. The results of the in vivo studies showed that animals administered mTat/FH/DNA intramuscularly had significantly higher and longer luciferase expression (≈7 months) than those with mTat/DNA, FH/DNA, or DNA alone. Histological evaluation showed little immune response in the muscles, livers, and kidneys of mice administered with the mTat/FH. The combination of mTat with FH could significantly improve transfection efficiency, expanding the potential use of non-viral gene vectors in vivo.  相似文献   

15.
Y Xu  S W Hui  P Frederik    F C Szoka  Jr 《Biophysical journal》1999,77(1):341-353
Cationic lipid-nucleic acid complexes (lipoplexes) consisting of dioleoyltrimethylammoniumpropane (DOTAP) liposomes and plasmid DNA were prepared at various charge ratios (cationic group to nucleotide phosphate), and the excess component was separated from the lipoplex. We measured the stoichiometry of the lipoplex, noted its colloidal properties, and observed its morphology and structure by electron microscopy. The colloidal properties of the lipoplexes were principally determined by the cationic lipid/DNA charge ratio and were independent of the lipid composition. In lipoplexes, the lipid membranes as observed in freeze-fracture electron microscopy were deformed into high-radius-of-curvature features whose characteristics depended on the lipid composition. Lipoplexes prepared at a threefold or greater excess of either DOTAP or DNA could be resolved into complexes with a defined stoichiometry and the excess component by sedimentation to equilibrium on sucrose gradients. The separated, positively charged complex retained high transfection activity and had reduced toxicity. The negatively charged lipoplex showed increased transfection activity compared to the starting mixture. In cryoelectron micrographs the positively charged complex was spherical and contained a condensed but indistinct interior structure. In contrast, the separated negatively charged lipoplexes had a prominent internal 5.9 +/- 0.1-nm periodic feature with material projecting as spikes from the spherical structure into the solution. It is likely that these two lipoplexes represent structures with different lipid and DNA packing.  相似文献   

16.
We evaluated the transfection efficiency of five different cationic liposome/plasmid DNA complexes, during the in vitro gene transfer into human epithelial tracheal cell lines. A dramatic correlation between the transfection efficiency and the charge ratio (positive charge of liposome to negative charge of DNA) has been found. DC-Chol-DOPE was found to be the most effective liposome formulation. Therefore, a morphological and structural analysis of DC-Chol-DOPE liposomes and DC-Chol-DOPE/DNA complexes, has been performed by transmission electron microscopy (TEM) and by confocal laser scanning microscopy (CLSM), respectively. The process of interaction between DC-Chol-DOPE/DNA complexes and human epithelial tracheal cells has been studied by CLSM. These results raise some issues for in vivo gene therapy.  相似文献   

17.
Cationic lipid-DNA (CL-DNA) complexes comprise a promising new class of synthetic nonviral gene delivery systems. When positively charged, they attach to the anionic cell surface and transfer DNA into the cell cytoplasm. We report a comprehensive x-ray diffraction study of the lamellar CL-DNA self-assemblies as a function of lipid composition and lipid/DNA ratio, aimed at elucidating the interactions determining their structure, charge, and thermodynamic stability. The driving force for the formation of charge-neutral complexes is the release of DNA and lipid counterions. Negatively charged complexes have a higher DNA packing density than isoelectric complexes, whereas positively charged ones have a lower packing density. This indicates that the overcharging of the complex away from its isoelectric point is caused by changes of the bulk structure with absorption of excess DNA or cationic lipid. The degree of overcharging is dependent on the membrane charge density, which is controlled by the ratio of neutral to cationic lipid in the bilayers. Importantly, overcharged complexes are observed to move toward their isoelectric charge-neutral point at higher concentration of salt co-ions, with positively overcharged complexes expelling cationic lipid and negatively overcharged complexes expelling DNA. Our observations should apply universally to the formation and structure of self-assemblies between oppositely charged macromolecules.  相似文献   

18.
19.
Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this study, we report an enhancement of the transfection efficiency of plasmid DNA, via the use of positively charged colloidal gold nanoparticles (PGN). Plasmid DNA encoding for murine interleukin-2 (pVAXmIL-2) was complexed with PGN at a variety of ratios. The delivery of pVAXmIL-2 into C2C12 cells was dependent on the complexation ratios between PGN and the plasmid DNA, presented the highest delivery at a ratio of 2400:1. After complexation with DNA, PGN showed significantly higher cellular delivery and transfection efficiency than did the polyethylenimines (PEI) of different molecular weights, such as PEI25K (m.w. 25 kd) and PEI2K (m.w. 2 kd). PGN resulted in a cellular delivery of pVAXmIL-2 6.3-fold higher than was seen with PEI25K. The PGN/DNA complex resulted in 3.2- and 2.1-fold higher murine IL-2 protein expression than was seen in association with the PEI25K/DNA and PEI2K/DNA complexes, respectively. Following intramuscular administration, PGN/DNA complexes showed more than 4 orders of magnitude higher expression levels as compared to naked DNA. Moreover, the PGN/DNA complexes showed higher cell viability than other cationic nonviral vectors. Collectively, the results of this study suggest that the PGN/DNA complexes may harbor the potential for development into efficient and safe gene delivery vehicles.  相似文献   

20.
Cell lines and primary cells exhibit varying degrees of resistance to DNA transfection strategies. In this study, we employed the synthetic peptide Tat-RGD (TR), composed of the HIV-1 derived translocation peptide Tat fused to the integrin binding RGD motif, as a tool for improving DNA transfer into pulmonary cells. Binding experiments between DNA and TR and cytotoxicity measurements of TR treated cells were undertaken to optimize DNA and TR concentrations for transfection. Addition of a complex of TR and DNA (TRD) to A549 cells yielded significant transgene expression. When TRD was combined with Lipofectamine (TRDL), the expression was increased by 5-fold over Lipofectamine (DL) and by approximately 30-fold over TRD-mediated transfections. Also, in primary smooth muscle cells (SMC) and fibroblasts (FB) derived from pulmonary arteries, an increase in TRDL-mediated transfection efficiency was observed by a factor of approximately 2 and approximately 3 over that of DL. Laser scanning confocal microscopy for visualizing TR-dependent DNA uptake demonstrated that the internalization of TRDL complexes is linked to caveoli in the plasma membrane. Interfering with caveoli formation by methyl-b-cyclo-dextrin drastically decreased the transfection efficiency by TR. In conclusion, the Tat-RGD peptide mediates efficient gene delivery in human pulmonary cells, in particular when combined with a standard cationic lipid based transfection reagent. The enhancement of DNA uptake by Tat-RGD is suggested to be mediated by caveoli-dependent endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号