首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The embryonically preformed primary root is the first root type of maize that emerges after germination. In this study the abundant soluble proteins of 2.5-day-old primary roots of wild-type and lateral root mutant rum1 seedlings were compared before the initiation of lateral roots. In CBB-stained 2-D gels, among 350 detected proteins 14 were identified as differentially accumulated (>twofold change; t-test: 95% significance) in wild-type versus rum1 primary roots. These proteins which were identified via ESI MS/MS are encoded by 12 different genes. Functionally, these proteins are involved in lignin biosynthesis, defense, and the citrate cycle. Nine of these genes were further analyzed at the RNA expression level. This study represents the first comparative proteomic analysis of maize primary roots prior to lateral root initiation and will contribute to a better understanding of the molecular basis of root development in cereals.  相似文献   

3.
Rootless concerning crown and seminal roots (Rtcs) encodes a LATERAL ORGAN BOUNDARIES domain (LBD) protein that regulates shoot-borne root initiation in maize (Zea mays L.). GREEN FLUORESCENT PROTEIN (GFP)-fusions revealed RTCS localization in the nucleus while its paralogue RTCS-LIKE (RTCL) was detected in the nucleus and cytoplasm probably owing to an amino acid exchange in a nuclear localization signal. Moreover, enzyme-linked immunosorbent assay (ELISA) experiments demonstrated that RTCS primarily binds to LBD DNA motifs. RTCS binding to an LBD motif in the promoter of the auxin response factor (ARF) ZmArf34 and reciprocally, reciprocal ZmARF34 binding to an auxin responsive element motif in the promoter of Rtcs was shown by electrophoretic mobility shift assay experiments. In addition, comparative qRT-PCR of wild-type versus rtcs coleoptilar nodes suggested RTCS-dependent activation of ZmArf34 expression. Consistently, luciferase reporter assays illustrated the capacity of RTCS, RTCL and ZmARF34 to activate downstream gene expression. Finally, RTCL homo- and RTCS/RTCL hetero-interaction were demonstrated in yeast-two-hybrid and bimolecular fluorescence complementation experiments, suggesting a role of these complexes in downstream gene regulation. In summary, the data provide novel insights into the molecular interactions resulting in crown root initiation in maize.  相似文献   

4.
The isolation and detailed characterisation of the maize mutant lrt1 , which is completely deficient in the initiation of lateral roots at the primary and seminal lateral roots and of the crown roots at the coleoptilar node is described. The monogenic and recessive mutant was isolated from a segregating EMS mutagenised population, maps to the short arm of chromosome 2, and acts independently of the nodal root deficient rtcs locus. Histological analysis revealed that the mutation acts at a very early stage of root initiation, as indicated by the absence of primordia formation in the affected roots. At later stages of plant development lateral and crown root initiations recover leading to fertile plants. If grown in the dark, the mutant does not form an elongated mesocotyl, although the photomorphogenic response appears to be normal in the mutant. Furthermore, the wild-type cannot be rescued from mutants by the application of auxin to germinating kernels. The gene impaired in lrt1 seems to be of great importance for the general mechanism of early post-embryonic root initiation, both from root and nodal tissues, since lateral and crown root initiation are both affected to the same extent and in the same transient time pattern.  相似文献   

5.
Seminal roots are initiated at the scutellar node during maize (Zea mays L.) embryo development. The maize mutant rtcs (rootless concerning crown and seminal roots) does not initiate seminal roots while its wild-type siblings form on average 2.9 seminal roots per seedling. In this study, proteome profiles of 25-day-old immature maize embryos were compared between wild-type and rtcs plants via two-dimensional electrophoresis (2-DE). Electrospray ionization tandem mass spectrometry (ESI-MS/MS) identified 23 proteins encoded by 21 different genes that were differentially accumulated between wild-type and rtcs embryos (Fc≥2; FDR<10%). Among the differentially accumulated proteins, two isoforms of a phosphoglycerate kinase and a malate dehydrogenase were preferentially accumulated in wild-type embryos. Both enzymes are related to the generation of energy-rich ATP or NADPH molecules and are crucial checkpoints of cellular energetics in plants. Comparison of embryonic proteins differentially accumulated between wild-type and rtcs embryos revealed little overlap with proteins differentially accumulated between wild-type and rum1 embryos which also do not initiate seminal roots. This might be due to distinct influences of RTCS and RUM1 on the composition of the embryo proteome, but could also be explained by different stages of embryo development that were analyzed in these studies.  相似文献   

6.
7.
The crown roots in the coleoptilar node of maize emerge asymmetrically: emergence at the dorsal flank of the node (opposite to the caryopsis) precedes emergence at the ventral flank (facing the caryopsis). This asymmetry can be altered by phototropic stimulation: emergence of crown roots is delayed in the lighted flank and promoted in the shaded flank causing an inversion of the endogenous asymmetry. The curvature induced by the phototropic stimulation is transient, the effect on crown root emergence, in contrast, persists. This stable effect is not a consequence of curvature per se and becomes irreversibly fixed between one and two hours after stimulation. The emergence of crown roots depends on directional signalling from the coleoptile to the node. The data are discussed in terms of a stable blue light induced transverse polarity of the coleoptile that can imprint a stable asymmetry upon the coleoptilar node guiding the emergence of crown roots.  相似文献   

8.
We observed the release of the benzoxazinoids defense molecules on the surface of the primary root and the coleoptilar node in Zea mays during the emergence of lateral- and crown-roots, respectively. At later stages of crown root and lateral root development, benzoxazinoids around the emerged roots were no longer observed. Specific mutants revealed that the developmental status of the emerged roots was not important for the release of benzoxazinoids, but the breakage of the epidermis by emerging roots was. This is the first report of benzoxazinoid-release during normal development controlled by endogenous developmental programs. Release of benzoxazinoids around the emerging roots supports the idea that defense molecules accumulate at the site of root emergence in order to reduce pathogenic infections. We discuss possible explanations for the evolution of two different developmental mechanisms of root emergence.  相似文献   

9.
Heterosis describes the superior performance of heterozygous F(1)-hybrids compared to their homozygous parental inbred lines. Heterosis is already manifested during early maize (Zea mays L.) primary root development. In this study, the most abundant soluble proteins have been investigated before the phenotypic manifestation of heterosis in 3.5-day-old primary roots in the flint inbred line UH002, the dent inbred line UH301 and the corresponding hybrid UH301 x UH002. In CBB-stained 2-DE gels, 150 of 304 detected proteins (49%) were accumulated in a nonadditive fashion in the hybrid compared to the average of their parental inbred lines (Student's t-test: p < 0.05). Remarkably, expression of 51% (76/150) of the nonadditively accumulated proteins exceeded the high parent or was below the low parent. ESI-MS/MS identified 75 of the 76 proteins that belonged to these expression classes. The most abundant functional classes among the 75 proteins that were encoded by 60 different genes were metabolism (58%) and disease and defense (19%). Nonadditive protein accumulation in primary roots of maize hybrids might be associated with heterosis manifestation. Identification of these proteins could therefore contribute to the better understanding of the molecular basis of heterosis.  相似文献   

10.
11.
A reference database of the major soluble proteins of the primary root of the maize inbred line B73 was generated 5 days after germination (DAG) using a combination of 2-DE and MALDI-TOF MS. A total of 302 protein spots were detected with CBB in a pH 4-7 range and 81 proteins representing 74 distinct Genbank accessions were identified. Only 28% of the major proteins identified in 5 DAG primary roots were identified in similarly analyzed 9 DAG primary roots documenting remarkable changes in the accumulation of abundant soluble proteins early in primary root development.  相似文献   

12.
BACKGROUND: Maize (Zea mays) forms a complex root system comprising embryonic and post-embryonic roots. The embryonically formed root system is made up of the primary root and a variable number of seminal roots. Later in development the post-embryonic shoot-borne root system becomes dominant and is responsible together with its lateral roots for the major portion of water and nutrient uptake. Although the anatomical structure of the different root-types is very similar they are initiated from different tissues during embryonic and post-embryonic development. Recently, a number of mutants specifically affected in maize root development have been identified. These mutants indicate that various root-type specific developmental programmes are involved in the establishment of the maize root stock. SCOPE: This review summarizes these genetic data in the context of the maize root morphology and anatomy and gives an outlook on possible perspectives of the molecular analysis of maize root formation.  相似文献   

13.
Agrobacterium rhizogenes (wild-type strains 8196 and 15834) transformation of pumpkin (Cucurbita pepo L.) intact seedlings grown in vivo, and 6–8-day-old excised cotyledons cultured in axenic conditions was investigated. Transformed (hairy) roots were successfully induced only on the excised cotyledons with the strain 8196, while intact seedlings failed to form hairy roots with either of the two different bacterial strains. Axenic hairy-root cultures established on MS medium without hormones grew vigorously. Mannopine was detected in all transgenic root clones examined. The peroxidase activity in transformed roots was higher compared with normal roots. Electrophoretic analyses of soluble proteins and isoperoxidases showed substantial differences between transformed and normal pumpkin roots.  相似文献   

14.
15.
16.
Lateral roots are initiated from the pericycle cells of other types of roots and remain in contact with these roots throughout their life span. Although this physical contact has the potential to permit the exchange of signals, little is known about the flow of information from the lateral roots to the primary root. To begin to study these interactions the proteome of the primary root system of the maize (Zea mays L.) lrt1 mutant, which does not initiate lateral roots, was compared with the corresponding proteome of wild-type seedlings 9 days after germination. Approximately 150 soluble root proteins were resolved by two-dimensional electrophoresis and analyzed by MALDI-ToF mass spectrometry and database searching. The 96 most abundant proteins from a pH 4–7 gradient were analyzed; 67 proteins representing 47 different Genbank accessions were identified. Interestingly, 10 (15/150) of the detected proteins were preferentially expressed in lrt1 roots that lack lateral roots. Eight of these lrt1-specific proteins were identified and four are involved in lignin metabolism. This study demonstrates for the first time the influence of lateral roots on the proteome of the primary root system. To our knowledge this is the first study to demonstrate an interaction between two plant organs (viz., lateral and primary roots) at the level of the proteome.  相似文献   

17.
MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down‐regulate target genes through mRNA cleavage or translational inhibition. miRNA is known to play an important role in the root development and environmental responses in both the Arabidopsis and rice. However, little information is available to form a complete view of miRNAs in the development of the maize root system and Al stress responses in maize. Four sRNA libraries were generated and sequenced from the early developmental stage of primary roots (PRY), the later developmental stage of maize primary roots (PRO), seminal roots (SR) and crown roots (CR). Through integrative analysis, we identified 278 miRNAs (246 conserved and 32 novel ones) and found that the expression patterns of miRNAs differed dramatically in different maize roots. The potential targets of the identified conserved and novel miRNAs were also predicted. In addition, our data showed that CR is more resistant to Al stress compared with PR and SR, and the differentially expressed miRNAs are likely to play significant roles in different roots in response to environmental stress such as Al stress. Here, we demonstrate that the expression patterns of miRNAs are highly diversified in different maize roots. The differentially expressed miRNAs are correlated with both the development and environmental responses in the maize root. This study not only improves our knowledge about the roles of miRNAs in maize root development but also reveals the potential role of miRNAs in the environmental responses of different maize roots.  相似文献   

18.
Department of Botany and Bacteriology, University of Arkansas, Fayetteville, Arkansas 72701 Zea mays L. root development from the coleoptilar node was observed by light and electron microscopy. Roots developed opposite collateral vascular bundles in the coleoptilar nodal region. Three distinct histogens (stelar, cortical-protoderm, and root cap) became evident in early development. In median sections of the young roots, root cap and cortical regions formed a “hat” configuration over the stelar region. As the root matured, this “hat” developed centripetally to encapsulate the stelar region. Central core cells of the root cap were characterized by having numerous dictyosomes, amyloplasts, vacuoles, and thin cell walls. As these cells matured into outer or peripheral cap cells, the Golgi vesicles became hypertrophied. These hypertrophied vesicles contained a granular PAS-positive material which accumulated between the plasma membrane and the cell wall and formed a thick layer. As the PAS-positive material passed through the cell wall, it changed to a fibrillar texture. A PAS-positive material similar to that in the outer root cap cells was found adjacent to the outer walls of the protodermal cells. In median sections, PAS-positive material was not present in the promeristem region. Root cap cells as well as parent cortical cells were crushed as the young root forced its way through the parent tissue.  相似文献   

19.
Paszkowski U  Boller T 《Planta》2002,214(4):584-590
The growth of three maize (Zea mays L.) mutants, each impaired in the formation of one individual element of its root system, was compared under "natural" limiting phosphate conditions (0.1 mM). Mutant plants exhibiting a reduction in root hairs (rth3-1) or a depletion of crown and brace roots (rtcs) grew as well as the corresponding wild-type plants. However, mutant plants lacking lateral roots (lrt1) showed a strong reduction in plant growth. The growth defect of lrt1 was overcome when it was grown in association with an arbuscular mycorrhizal fungus, Glomus mosseae. Establishment of symbiosis was associated with the occurrence of a new type of lateral root. These new lateral roots were stunted and highly branched, giving rise to a bush-like structure. Supply of high phosphate (1 microM) ameliorated the growth of lrt1 plants too, but less efficiently than the symbiosis did. Hence, arbuscular mycorrhizal fungi as well as phosphate functionally complemented the lrt1 mutation.  相似文献   

20.
Modification of the Medicago truncatula root proteome during the early stage of arbuscular mycorrhizal symbiosis was investigated by comparing, using two-dimensional electrophoresis, the protein patterns obtained from non-inoculated roots and roots synchronized for Glomus intraradices appressorium formation. This approach was conducted in wild-type (J5), mycorrhiza-defective (TRV25, dmi3), and autoregulation-defective (TR122, sunn) M. truncatula genotypes. The groups of proteins that responded to appressorium formation were further compared between wild-type and mutant genotypes; few overlaps and major differences were recorded, demonstrating that mutations in DMI3 and SUNN modified the appressorium-responsive root proteome. Except for a chalcone reductase, none of the differentially displayed proteins that could be identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry previously was known as appressorium responsive. A DMI3-dependent increased accumulation of signal transduction-related proteins (dehydroascorbate reductase, cyclophilin, and actin depolymerization factor) was found to precede mycorrhiza establishment. Differences in the accumulation of proteins related to plant defense reactions, cytoskeleton rearrangements, and auxin signaling upon symbiont contact were recorded between wild-type and hypermycorrhizal genotypes, pointing to some putative pathways by which SUNN may regulate very early arbuscule formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号