首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Liu Y  Su LY  Yang SF 《Plant physiology》1985,77(4):891-895
When whole unripe green tomato fruits (Lycopersicon esculentum Mill, cv T3) were treated with ethylene (10 microliters per liter) for 18 hours, the fruit's ability to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to N-malonyl-ACC (MACC) increased markedly and such an effect was also observed in fruits of mutant nor, which cannot ripen normally. The promotion of the capability to malonylate ACC by ethylene increased with the increasing ethylene concentration from 0.1 to 100 microliters per liter and with increasing duration of ethylene treatment up to 8 hours; a longer duration of ethylene treatment did not further increase the malonylation capability. When ethylene was withdrawn, the promotion disappeared within 72 hours. Norbornadiene, a competitive inhibitor of ethylene action, effectively eliminated the promotive effect of ethylene. Ethylene treatment also promoted the fruits' capability to conjugate d-amino acids and α-amino-isobutyric acid. Since the increase in the tissue's capability to malonylate ACC was accompanied by an increase in the extractable activity of ACC and d-amino acid malonyltransferase, ethylene is thought to promote the development of ACC/d-amino acid malonyltransferase in unripe tomato fruits.  相似文献   

2.
Guo L  Arteca RN  Phillips AT  Liu Y 《Plant physiology》1992,100(4):2041-2045
1-Aminocyclopropane-1-carboxylate (ACC) N-malonyltransferase converts ACC, an immediate precursor of ethylene, to the presumably inactive product malonyl-ACC (MACC). This enzyme plays a role in ethylene production by reducing the level of free ACC in plant tissue. In this study, ACC N-malonyltransferase was purified 3660-fold from etiolated mung bean (Vigna radiata) hypocotyls, with a 6% overall recovery. The final specific activity was about 83,000 nmol of MACC formed mg−1 protein h−1. The five-step purification protocol consisted of polyethylene glycol fractionation, Cibacron blue 3GA-agarose chromatography using salt gradient elution, Sephadex G-100 gel filtration, MonoQ anion-exchange chromatography, and Cibacron blue 3GA-agarose chromatography using malonyl-CoA plus ACC for elution. The molecular mass of the native enzyme determined by Sephadex G-100 chromatography was 50 ± 3 kD. Protein from the final purification step showed one major band at 55 kD after sodium dodecyl sulfate polyacrylamide gel electrophoresis, indicating that ACC N-malonyltransferase is a monomer. The mung bean ACC N-malonyltransferase has a pH optimum of 8.0, an apparent Km of 0.5 mm for ACC and 0.2 mm for malonyl-coenzyme A, and an Arrhenius activation energy of 70.29 kJ mol−1 degree−1.  相似文献   

3.
d-Galactose has been shown to have toxic and growth inhibitory effects in plants. When applied at levels of 50 millimolar to tobacco (Nicotiana tabacum L. cv Xanthi) leaf discs galactose caused a rapid increase in ethylene production during the first 2 days of incubation, followed by a rapid return to the basal level on the third day. This pattern of galactose-stimulated ethylene production was accompanied by increased formation of 1-aminocyclopropane-1-carboxylic acid (ACC), which accumulated without being metabolized to ethylene or to the ACC-conjugate. The inhibitory effect of galactose (50 millimolar) on the conversion of ACC of ethylene was relieved partially by d-glucose or sucrose (50 millimolar), and completely by CO2 (10%), which were shown to enhance this conversion by themselves. Consequently, application of galactose plus any one of these compounds increased ethylene production and decreased free ACC levels. The data suggest that galactose toxicity may result in both an increased ethylene production as well as in accumulation of free ACC in aged discs. The increased ethylene production rates and ACC levels may, in turn, play a role in the development of symptoms associated with galactose toxicity.  相似文献   

4.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

5.
The in vivo formation of 1-malonylaminocyclopropane-1-carboxylic acid (malonyl-ACC) and its relationship to ethylene production in the axial tissue of cocklebur (Xanthium pennsylvanicum) seeds were investigated using the stereoisomers of the 2-ethyl derivative of ACC (AEC), as tracers of ACC. Of the four AEC isomers, the (1R, 2S)-isomer was converted most effectively to a malonyl conjugate as well as to 1-butene. Malonyl-AEC, once formed, was not decomposed, supporting the view that malonyl-ACC does not liberate free ACC for ethylene production in this tissue. d-Phenylalanine inhibited the formation of malonyl-AEC and, at the same time, promoted the evolution of 1-butene, whereas l-phenylalanine did not. Possibly, the d-amino-acid-stimulated ethylene production in cocklebur seed tissues is due to an increase in the amount of ACC available for ethylene production which results from the decrease of ACC malonylation in the tissues treated with d-amino acid. 2-Aminoisobutyric acid, a competitive inhibitor of ACC-ethylene conversion, did not affect the malonylation of AEC.  相似文献   

6.
Yu YB  Adams DO  Yang SF 《Plant physiology》1979,63(3):589-590
Ethylene production in mung bean hypocotyls was greatly increased by treatment with 1-aminocyclopropane-1-carboxylic acid (ACC), which was utilized as the ethylene precursor. Unlike auxin-stimulated ethylene production, ACC-dependent ethylene production was not inhibited by aminoethoxyvinylglycine, which is known to inhibit the conversion of S-adenosylmethionine to ACC. While the conversion of methionine to ethylene requires induction by auxin, the conversion of methionine to S-adenosylmethionine and the conversion of ACC to ethylene do not. It is proposed that the conversion of S-adenosylmethionine to ACC is the rate-limiting step in the biosynthesis of ethylene, and that auxin stimulates ethylene production by inducing the synthesis of the enzyme involved in this reaction.  相似文献   

7.
Biological Properties of d-Amino Acid Conjugates of 2,4-D   总被引:1,自引:1,他引:0  
Some d-amino acid (glutamic acid, valine, or leucine) conjugates of 2,4-dichlorophenoxyacetic acid (2,4-D) at 10−5 molar, stimulated elongation of Avena sativa L. var Mariner coleoptile sections and growth of soybean (Glycine max. L. var Amsoy) tissue as much as did the l-amino acid conjugates at 10−6 molar. The d-methionine conjugate did not stimulate growth of soybean root callus tissue but did stimulate Avena elongation. The d-aspartic acid conjugate did not stimulate elongation of Avena coleoptiles but did stimulate growth of root callus tissue.  相似文献   

8.
Kim WT  Yang SF 《Plant physiology》1992,100(3):1126-1131
Ethylene production in plant tissues declines rapidly following induction, and this decline is due to a rapid decrease in the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme in ethylene biosynthesis. To study the nature of the rapid turnover of ACC synthase in vivo, proteins in wounded ripening tomato (Lycopersicon esculentum) fruit discs were radiolabeled with [35S]methionine, followed by a chase with nonradioactive methionine. Periodically, the radioactive ACC synthase was isolated with an immunoaffinity gel and analyzed. ACC synthase protein decayed rapidly in vivo with an apparent half-life of about 58 min. This value for protein turnover in vivo is similar to that previously reported for activity half-life in vivo and substrate-dependent enzyme inactivation in vitro. Carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol, potent uncouplers of oxidative phosphorylation, strongly inhibited the rapid decay of ACC synthase protein in the tissue. Degradation of this enzyme protein was moderately inhibited by the administration of aminooxyacetic acid, a competitive inhibitor of ACC synthase with respect to its substrate S-adenosyl-l-methionine, α,α′-dipyridyl, and phenylmethanesulfonyl fluoride or leupeptin, serine protease inhibitors. These results support the notion that the substrate S-adenosyl-l-methionine participates in the rapid inactivation of the enzyme in vivo and suggest that some ATP-dependent processes, such as the ubiquitin-requiring pathway, are involved in the degradation of ACC synthase proteins.  相似文献   

9.
Tanada T 《Plant physiology》1973,51(1):154-157
The phytochrome-mediated attachment of mung bean (Phaseolus vulgaris L., var. Oklahoma 612) root tips on glass is quickly affected by indoleactic acid and abscisic acid at concentrations of 10 nm or less. Indoleacetic acid induces detachment, whereas abscisic acid induces attachment. Both plant regulators rapidly antagonize the action of the other. None of several cytokinins, gibberellins, and ethylene tested over a wide range in concentration had any effect on either attachment or detachment of root tips. It is postulated that phytochrome could control the endogenous levels of indoleacetic acid and abscisic acid and perhaps other hormones under certain circumstances, that this action is the first process initiated by phytochrome, and that indoleacetic acid and abscisic acid act on the plasmalemma to bring about opposing changes in the surface electric charges of plant cells.  相似文献   

10.
Yip WK  Dong JG  Yang SF 《Plant physiology》1991,95(1):251-257
1-Aminocyclopropane-1-carboxylate (ACC) synthase, a key enzyme in ethylene biosynthesis, was isolated and partially purified from apple (Malus sylvestris Mill.) fruits. Unlike ACC synthase isolated from other sources, apple ACC synthase is associated with the pellet fraction and can be solubilized in active form with Triton X-100. Following five purification steps, the solubilized enzyme was purified over 5000-fold to a specific activity of 100 micromoles per milligram protein per hour, and its purity was estimated to be 20 to 30%. Using this preparation, specific monoclonal antibodies were raised. Monoclonal antibodies against ACC synthase immunoglobulin were coupled to protein-A agarose to make an immunoaffinity column, which effectively purified the enzyme from a relatively crude enzyme preparation (100 units per milligram protein). As with the tomato enzyme, apple ACC synthase was inactivated and radiolabeled by its substrate S-adenosyl-l-methionine. Apple ACC synthase was identified to be a 48-kilodalton protein based on the observation that it was specifically bound to immunoaffinity column and it was specifically radiolabeled by its substrate S-adenosyl-l-methionine.  相似文献   

11.
Satoh S  Yang SF 《Plant physiology》1989,91(3):1036-1039
The pyridoxal phosphate-dependent 1-aminocyclopropane-1-carboxylate (ACC) synthase catalyzes the conversion of S-adenosyl-l-methionine (AdoMet) to ACC, and is inactivated by AdoMet during the reaction. l-Vinylglycine was found to be a competitive inhibitor of the enzyme, and to cause a time-dependent inactivation of the enzyme. The inactivation required the presence of pyridoxal phosphate and followed pseudo-first-order kinetics at various concentrations of l-vinylglycine. The Michaelis constant for l-vinylglycine in the inactivation reaction (Kinact) was 3.3 millimolar and the maximum rate constant (kmax) was 0.1 per minute. These findings, coupled with the previous observations that the suicidal action of AdoMet involved a covalent linkage of the aminobutyrate portion of AdoMet to the enzyme, support the view that the mechanism-based inactivation of ACC synthase by the substrate AdoMet proceeds through the formation of a vinylglycine-ACC synthase complex as an intermediate.  相似文献   

12.
Serine hydroxymethyltransferase from mammalian and bacterial sources is a pyridoxal-5′-phosphate-containing enzyme, but the requirement of pyridoxal-5′-phosphate for the activity of the enzyme from plant sources is not clear. The specific activity of serine hydroxymethyltransferase isolated from mung bean (Vigna radiata) seedlings in the presence and absence of pyridoxal-5′-phosphate was comparable at every step of the purification procedure. The mung bean enzyme did not show the characteristic visible absorbance spectrum of a pyridoxal-5′-phosphate protein. Unlike the enzymes from sheep, monkey, and human liver, which were converted to the apoenzyme upon treatment with l-cysteine and dialysis, the mung bean enzyme similarly treated was fully active. Additional evidence in support of the suggestion that pyridoxal-5′-phosphate may not be required for the mung bean enzyme was the observation that pencillamine, a well-known inhibitor of pyridoxal-5′-phosphate enzymes, did not perturb the enzyme spectrum or inhibit the activity of mung bean serine hydroxymethyltransferase. The sheep liver enzyme upon interaction with O-amino-d-serine gave a fluorescence spectrum with an emission maximum at 455 nm when excited at 360 nm. A 100-fold higher concentration of mung bean enzyme-O-amino-d-serine complex did not yield a fluorescence spectrum. The following observations suggest that pyridoxal-5′-phosphate normally present as a coenzyme in serine hydroxymethyltransferase was probably replaced in mung bean serine hydroxymethyltransferase by a covalently bound carbonyl group: (a) inhibition by phenylhydrazine and hydroxylamine, which could not be reversed by dialysis and or addition of pyridoxal-5′ phosphate; (b) irreversible inactivation by sodium borohydride; (c) a spectrum characteristic of a phenylhydrazone upon interaction with phenylhydrazine; and (d) the covalent labeling of the enzyme with substrate/product serine and glycine upon reduction with sodium borohydride. These results indicate that in mung bean serine hydroxymethyltransferase, a covalently bound carbonyl group has probably replaced the pyridoxal-5′-phosphate that is present in the mammalian and bacterial enzymes.  相似文献   

13.
To establish an advantageous method for the production of l-amino acids, microbial isomerization of d- and dl-amino acids to l-amino acids was studied. Screening experiments on a number of microorganisms showed that cell suspensions of Pseudomonas fluorescens and P. miyamizu were capable of isomerizing d- and dl-phenylalanines to l-phenylalanine. Various conditions suitable for isomerization by these organisms were investigated. Cells grown in a medium containing d-phenylalanine showed highest isomerization activity, and almost completely converted d- or dl-phenylalanine into l-phenylalanine within 24 to 48 hr of incubation. Enzymatic studies on this isomerizing system suggested that the isomerization of d- or dl-phenylalanine is not catalyzed by a single enzyme, “amino acid isomerase,” but the conversion proceeds by a two step system as follows: d-pheylalanine is oxidized to phenylpyruvic acid by d-amino acid oxidase, and the acid is converted to l-phenylalanine by transamination or reductive amination.  相似文献   

14.
l-Glutamine d-fructose 6-phosphate amidotransferase (EC 2.6.1.16) was extracted and purified 600-fold by acetone fractionation and diethylaminoethyl cellulose column chromatography from mung bean seeds (Phaseolus aureus). The partially purified enzyme was highly specific for l-glutamine as an amide nitrogen donor, and l-asparagine could not replace it. The enzyme showed a pH optimum in the range of 6.2 to 6.7 in phosphate buffer. Km values of 3.8 mm and 0.5 mm were obtained for d-fructose 6-phosphate and l-glutamine, respectively. The enzyme was competitively inhibited with respect to d-fructose 6-phosphate by uridine diphosphate-N-acetyl-d-glucosamine which had a Ki value of 13 μm. Upon removal of l-glutamine and its replacement by d-fructose 6-phosphate and storage over liquid nitrogen, the enzyme was completely desensitized to inhibition by uridine diphosphate-N-acetyl-d-glucosamine. This indicates that the inhibitor site is distinct from the catalytic site and that uridine diphosphate-N-acetyl-d-glucosamine acts as a feedback inhibitor of the enzyme.  相似文献   

15.
Peanut seeds (Arachis hypogea L. Yue-you 551) contain 50 to 100 nanomoles per gram conjugated 1-aminocyclopropanecarboxylic acid (ACC). Based on paper chromatography, paper electrophoresis, and gas chromatography-mass spectrometry, it was verified that the major ACC conjugate was N-malonyl-ACC (MACC). Germinating peanut seeds converted [2-14C]ACC to ethylene 70 times more efficiently than N-malonyl-[2-14C]ACC; when ACC was administered, most of it was metabolized to MACC. Germinating peanut seeds produced ethylene and converted l-[3,4-14C]methionine to ethylene; this ethylene biosynthesis was inhibited by aminoethoxyvinylglycine. These data indicate that MACC occurs in peanut seeds but does not serve as the source of ethylene during germination; ethylene is, however, synthesized from methionine via ACC.  相似文献   

16.
d-tyrosyl-tRNATyr deacylase (DTD) is an editing enzyme that removes d-amino acids from mischarged tRNAs. We describe an in-depth analysis of the malaria parasite Plasmodium falciparum DTD here. Our data provide structural insights into DTD complexes with adenosine and d-amino acids. Bound adenosine is proximal to the DTD catalysis site, and it represents the authentic terminal adenosine of charged tRNA. DTD-bound d-amino acids cluster at three different subsites within the overall active site pocket. These subsites, called transition, active, and exit subsites allow docking, re-orientation, chiral selection, catalysis, and exit of the free d-amino acid from DTD. Our studies reveal variable modes of d-amino acid recognition by DTDs, suggesting an inherent plasticity that can accommodate all d- amino acids. An in-depth analysis of native, ADP-bound, and d- amino acid-complexed DTD structures provide the first atomic snapshots of ligand recognition and subsequent catalysis by this enzyme family. We have mapped sites for the deacylation reaction and mark possible routes for entry and egress of all substrates and products. We have also performed structure-based inhibitor discovery and tested lead compounds against the malaria parasite P. falciparum using growth inhibition assays. Our studies provide a comprehensive structural basis for the catalytic mechanism of DTD enzymes and have implications for inhibition of this enzyme in P. falciparum as a route to inhibiting the parasite.  相似文献   

17.
Riov J  Jaffe MJ 《Plant physiology》1973,52(3):233-235
A cholinesterase was purified 36-fold from mung bean (Phaseolus aureus) roots by a combination of differential extraction media and gel filtration. The enzyme could be effectively extracted only by high salt concentration, indicating that it is probably membrane-bound. Methods used for assaying animal cholinesterases were tested, two of which were adapted for use with the bean cholinesterase. The bean enzyme hydrolyzed choline and noncholine esters but showed its highest affinity for acetylcholine and acetylthiocholine. The pH optimum was 8.5 for acetylthiocholine and 8.7 for acetylcholine. The Michaelis constants were 72 and 84 μm for acetylcholine and acetylthiocholine, respectively. The cholinesterase was relatively insensitive to eserine (half-maximum inhibition at 0.42 mm) but showed high sensitivity to neostigmine (half-maximum inhibition at 0.6 μm). Other animal cholinesterase inhibitors were also found to inhibit the bean enzyme but most of them at higher concentrations than are generally encountered. Choline stimulated enzymatic activity. The molecular weight of the cholinesterase was estimated to be greater than 200,000, but at least one smaller form was observed. It is suggested that the large form of cholinesterase is converted to the smaller form by proteolysis.  相似文献   

18.
d-Amino acid oxidase (DAO) is a biotechnologically attractive enzyme that can be used in a variety of applications, but its utility is limited by its relatively poor stability. A search of a bacterial genome database revealed a gene encoding a protein homologous to DAO in the thermophilic bacterium Rubrobacter xylanophilus (RxDAO). The recombinant protein expressed in Escherichia coli was a monomeric protein containing noncovalently bound flavin adenine dinucleotide as a cofactor. This protein exhibited oxidase activity against neutral and basic d-amino acids and was significantly inhibited by a DAO inhibitor, benzoate, but not by any of the tested d-aspartate oxidase (DDO) inhibitors, thus indicating that the protein is DAO. RxDAO exhibited higher activities and affinities toward branched-chain d-amino acids, with the highest specific activity toward d-valine and catalytic efficiency (kcat/Km) toward d-leucine. Substrate inhibition was observed in the case of d-tyrosine. The enzyme had an optimum pH range and temperature of pH 7.5 to 10 and 65°C, respectively, and was stable between pH 5.0 and pH 8.0, with a T50 (the temperature at which 50% of the initial enzymatic activity is lost) of 64°C. No loss of enzyme activity was observed after a 1-week incubation period at 30°C. This enzyme was markedly inactivated by phenylmethylsulfonyl fluoride but not by thiol-modifying reagents and diethyl pyrocarbonate, which are known to inhibit certain DAOs. These results demonstrated that RxDAO is a highly stable DAO and suggested that this enzyme may be valuable for practical applications, such as the determination and quantification of branched-chain d-amino acids, and as a scaffold to generate a novel DAO via protein engineering.  相似文献   

19.
Pretreatment of detached carnation petals (Dianthus caryophyllus cv White Sim) for 24 hours with 0.1 millimolar of the cytokinins n6-benzyl-adenine (BA), kinetin, and zeatin blocked the conversion of externally supplied 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene and delayed petal senescence by 8 days. The normal enhanced wilting and increase in endogenous levels of ACC and ethylene production following exposure of petals to ethylene (16 μl/l for 10 hours), were not observed in BA-pretreated petals. In carnation foliage leaves pretreated with 0.1 mm BA, a reduction rather than inhibition of the conversion of exogenous ACC to ethylene was observed. This indicates that foliage leaves respond to cytokinins in a different way than petals. A constant 24-hour treatment with BA (0.1 mm) was not able to reduce ethylene production of senescing carnation petals, while 2 mm aminoxyacetic acid, a known inhibitor of ACC synthesis, or 10 mm propyl gallate, a free radical scavenger, decreased ethylene production significantly.  相似文献   

20.
The effect of several polyamines (putrescine, spermidine, and spermine), their precursors (l-arginine and l-ornithine), and some analogs and metabolic inhibitors (l-canavanine, l-canaline, and methylglyoxal-bis [guanylhydrazone]) on root formation have been studied in mung bean (Vigna radiata [L.] Wilczek) hypocotyl cuttings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号