首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Immature double-positive (DP) thymocytes mature into CD4(+)CD8(-) cells in response to coengagement of TCR with any of a variety of cell surface "coinducer" receptors, including CD2. In contrast, DP thymocytes are signaled to undergo apoptosis by coengagement of TCR with CD28 costimulatory receptors, but the molecular basis for DP thymocyte apoptosis by TCR plus CD28 coengagement is not known. In the present study, we report that TCR plus CD28 coengagement does not invariably induce DP thymocyte apoptosis but, depending on the intensity of CD28 costimulation, can induce DP thymocyte maturation. We demonstrate that distinct but interacting signal transduction pathways mediate DP thymocyte maturation signals and DP thymocyte apoptotic signals. Specifically, DP maturation signals are transduced by the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and up-regulate expression of the antiapoptotic protein Bcl-2. In contrast, the apoptotic response stimulated by CD28 costimulatory signals is mediated by ERK/MAPK-independent pathways. Importantly, when TCR-activated thymocytes are simultaneously coengaged by both CD28 and CD2 receptors, CD28 signals can inhibit ERK/MAPK-dependent Bcl-2 protein up-regulation. Thus, there is cross-talk between the signal transduction pathways that transduce apoptotic and maturation responses, enabling CD28-initiated signal transduction pathways to both stimulate DP thymocyte apoptosis and also negatively regulate maturation responses initiated by TCR plus CD2 coengagement.  相似文献   

2.
The nature of the signals that influence thymocyte selection and determine the fate of CD4(+)8(+) (double positive) thymocytes remains unclear. Cytokines produced locally in the thymus may modulate signals delivered by TCR-MHC/peptide interactions and thereby influence the fate of double-positive thymocytes. Because the IL-2/IL-2R signaling pathway has been implicated in thymocyte and peripheral T cell survival, we investigated the possibility that IL-2/IL-2R interactions contribute to the deletion of self-reactive, Ag-specific thymocytes. By using nontransgenic and transgenic IL-2-sufficient and -deficient animal model systems, we have shown that during TCR-mediated thymocyte apoptosis, IL-2 protein is expressed in situ in the thymus, and apoptotic thymocytes up-regulate expression of IL-2RS: IL-2R(+) double-positive and CD4 single-positive thymocytes undergoing activation-induced cell death bind and internalize IL-2. IL-2-deficient thymocytes are resistant to TCR/CD3-mediated apoptotic death, which is overcome by providing exogenous IL-2 to IL-2(-/-) mice. Furthermore, disruption or blockade of IL-2/IL-2R interactions in vivo during Ag-mediated selection rescues some MHC class II-restricted thymocytes from apoptosis. Collectively, these findings provide evidence for the direct involvement of the IL-2/IL-2R signaling pathway in the deletion of Ag-specific thymocyte populations and suggest that CD4 T cell hyperplasia and autoimmunity in IL-2(-/-) mice is a consequence of ineffective deletion of self-reactive T cells.  相似文献   

3.
Intrathymic maturation of thymocytes is essential for the proper formation of T-cell repertoire. This process involves two major biochemical pathways, one initiated by the recognition of MHC/peptide by the T-cell receptor and the other mediated by glucocorticoids. These hormones seem to affect thymocyte maturation by increasing the threshold of TCR-mediated positive and negative selection, and by inducing apoptosis of nonselected thymocytes. We have previously reported that an SV40-immortalized murine thymic epithelial cell line, namely 2BH4, was able to protect thymocytes from dexamethasone-induced apoptosis. Here we show that this protection is independent of cell-to-cell contact and does not seem to involve a Bcl-2-mediated resistance, since incubation of thymocytes with 2BH4 cells or its supernatant does not interfere with the levels of this antiapoptotic molecule. The protection conferred by 2BH4 cells, or by a primary culture of thymic stromal cells, is specific for the CD4(+)CD8(-) and CD4(-)CD8(+) single-positive thymocytes, whereas the broad-spectrum caspase inhibitor z-VAD-fmk blocks apoptosis induced by dexamethasone in all thymocyte subpopulations. Our results suggest that positively selected single-positive thymocytes are still susceptible to glucocorticoid-induced apoptosis but are protected from it through the action of a heat-stable protein(s) released by thymic stromal cells.  相似文献   

4.
The Ubc13 E2 ubiquitin-conjugating enzyme is essential for BCR-, TLR-, and IL-1 receptor (IL-1R)-mediated immune responses. Although Ubc13-deficient mice show defects in BCR-, TLR/IL-1R-, or CD40-mediated activation of mitogen-activated protein kinases, the function of Ubc13 in TCR-mediated signaling and responses remains uncertain. To address this, we here generated T cell-specific conditional Ubc13-deficient mice. The frequency of T lymphocytes was severely reduced in spleens from Ubc13-deficient mice. Moreover, Ubc13-deficient thymocytes displayed defective proliferation in response to anti-CD3/CD28 or PMA/ionophore stimulation. Regarding the signal transduction, although NF-kappaB activation was modestly affected, PMA/ionophore-induced activation of Jnk and p38 was profoundly impaired in Ubc13-deficient thymocytes. In addition, PMA/ionophore-mediated ubiquitination of NF-kappaB essential modulator (NEMO)/IkappaB kinase gamma (IKKgamma) and phosphorylation of TGF-beta-activated kinase 1 (TAK1) were nearly abolished in Ubc13-deficient thymocytes. Thus, Ubc13 plays an important role in thymocyte TCR-mediated signaling and immune responses.  相似文献   

5.
In CD45-deficient animals, there is a severe defect in thymocyte-positive selection, resulting in an absence of mature T cells and the accumulation of thymocytes at the DP stage of development. However, the signaling defect(s) responsible for the block in development of mature single-positive T cells is not well characterized. Previous studies have found that early signal transduction events in CD45-deficient cell lines and thymocytes are markedly diminished following stimulation with anti-CD3. Nevertheless, there are also situations in which T cell activation and TCR signaling events can be induced in the absence of CD45. For example, CD45-independent TCR signaling can be recovered upon simultaneous Ab cross-linking of CD3 and CD4 compared with cross-linking of CD3 alone. These data suggest that CD45 may differentially regulate TCR signaling events depending on the nature of the signal and/or on the differentiation state of the cell. In the current study, we have assessed the role of CD45 in regulating primary thymocyte activation following physiologic stimulation with peptide. Unlike CD3-mediated stimulation, peptide stimulation of CD45-deficient thymocytes induces diminished, but readily detectable TCR-mediated signaling events, such as phosphorylation of TCR-associated zeta, ZAP70, linker for activation of T cells, and Akt, and increased intracellular calcium concentration. In contrast, phosphorylation of ERK, which is essential for positive selection, is more severely affected in the absence of CD45. These data suggest that CD45 has a selective role in regulating different aspects of T cell activation.  相似文献   

6.
Selection processes in the thymus eliminate nonfunctional or harmful T cells and allow the survival of those cells with the potential to recognize Ag in association with self-MHC-encoded molecules (Ag/MHC). We have previously demonstrated that thymus-derived glucocorticoids antagonize TCR-mediated deletion, suggesting a role for endogenous thymic glucocorticoids in promoting survival of thymocytes following TCR engagement. Consistent with this hypothesis, we now show that inhibition of thymus glucocorticoid biosynthesis causes an increase in thymocyte apoptosis and a decrease in recovery that are directly proportional to the number of MHC-encoded molecules present and, therefore, the number of ligands available for TCR recognition. Expression of CD5 on CD4+CD8+ thymocytes, an indicator of TCR-mediated activation, increased in a TCR- and MHC-dependent manner when corticosteroid production or responsiveness was decreased. These results indicate that thymus-derived glucocorticoids determine where the window of thymocyte selection occurs in the TCR avidity spectrum by dampening the biological consequences of TCR occupancy and reveal that glucocorticoids mask the high percentage of self-Ag/MHC-reactive thymocytes that exist in the preselection repertoire.  相似文献   

7.
Whether a developing thymocyte becomes positively or negatively selected is thought to be determined by the affinity/avidity of its TCR for MHC/peptide ligands expressed in the thymus. Presumably, differences in affinity translate into differences in the potency of the ensuing TCR-mediated signals, and these differences in signal strength determine the outcome of thymocyte selection. However, there is little direct evidence establishing a relationship between TCR-ligand affinity and signal strength during positive and negative selection. The TCR complex contains multiple signaling motifs, known as immunoreceptor tyrosine-based activation motifs (ITAMs) that are required for T cell activation. To examine the effects of TCR signal strength on selection, the signaling potential of the TCR was modified by substituting transgenic TCR zeta-chains containing either three, one, or zero ITAMs for endogenous (3-ITAM) zeta-chain. These zeta-chain variants were then bred into different alphabetaTCR transgenic backgrounds. We report that reductions in TCR signaling potential have distinct effects on the selection of thymocytes expressing different TCRs, and that the requirement for zeta-chain ITAMs critically depends upon the specificity and apparently, affinity, of the TCR for its selecting ligand(s).  相似文献   

8.
Positive selection during thymocyte development is driven by the affinity and avidity of the TCR for MHC-peptide complexes expressed in the thymus. In this study, we show that programmed death-1 (PD-1), a member of the B7/CD28 family of costimulatory receptors, inhibits TCR-mediated positive selection through PD-1 ligand 1 (PD-L1):PD-1 interactions. Transgenic mice that constitutively overexpress PD-1 on CD4+CD8+ thymocytes display defects in positive selection in vivo. Using an in vitro model system, we find that PD-1 is up-regulated following TCR engagement on CD4+CD8+ murine thymocytes. Coligation of TCR and PD-1 on CD4+CD8+ thymocytes with a novel PD-1 agonistic mAb inhibits the activation of ERK and up-regulation of bcl-2, both of which are downstream mediators essential for positive selection. Inhibitory signals through PD-1 can overcome the ability of positive costimulators, such as CD2 and CD28, to facilitate positive selection. Finally, defects in positive selection that result from PD-1 overexpression in thymocytes resolve upon elimination of PD-L1, but not PD-1 ligand 2, expression. PD-L1-deficient mice have increased numbers of CD4+CD8+ and CD4+ thymocytes, indicating that PD-L1 is involved in normal thymic selection. These data demonstrate that PD-1:PD-L1 interactions are critical to positive selection and play a role in shaping the T cell repertoire.  相似文献   

9.
Apoptosis eliminates inappropriate or autoreactive T lymphocytes during thymic development. Intracellular mediators involved in T-cell receptor (TCR)-mediated apoptosis in developing thymocytes during negative selection are therefore of great interest. Caspases, cysteine proteases that mediate mature T-cell apoptosis, have been implicated in thymocyte cell death, but their regulation is not understood. We examined caspase activities in distinct thymocyte subpopulations that represent different stages of T-cell development. We found caspase activity in CD4+CD8+ double positive (DP) thymocytes, where selection involving apoptosis occurs. Earlier and later thymocyte stages exhibited no caspase activity. Only certain caspases, such as caspase-3 and caspase-8-like proteases, but not caspase-1, are active in DP thymocytes in vivo and can be activated when DP thymocytes are induced to undergo apoptosis in vitro by TCR-crosslinking. Thus, specific caspases appear to be developmentally regulated in thymocytes.  相似文献   

10.
Teh HS  Teh SJ 《Cellular immunology》2001,207(2):100-109
Whether the CD28/B7 signaling pathway is essential for the negative selection of immature CD4+CD8+ (DP) thymocytes expressing self-specific alphabeta TCRs is a controversial issue. In this study we examined the role of CD28 in the deletion of thymocytes that express either the H-Y or the 2C transgenic TCR. In H-2(b) male mice that expressed the H-Y TCR, negative selection of DP H-Y TCR+ thymocytes occurred very efficiently and this deletion was unaffected by the CD28(-/-) mutation. In H-2(b) 2C mice, where the deletion of DP 2C TCR+ thymocytes occurred less efficiently, the CD28(-/-) mutation led to a higher recovery of DP thymocytes. Using an in vitro deletion assay, a requirement for the CD28 signaling pathway in the deletion of DP H-Y TCR+ thymocytes was evident at low, but not high, densities of the antigenic ligand. Similar results were also observed in an in vivo assay for the deletion of these thymocytes. Intraperitoneal administration of an anti-CD3epsilon mAb led to the intrathymic deletion of DP H-Y TCR+ thymocytes in a CD28-dependent manner at the 24-h time point. However, the CD28 dependence was less evident at the 40-h time point. These results indicate that the dependence on CD28 for the efficient deletion of self-specific thymocytes is determined by the concentration, affinity/avidity, and length of exposure to the deleting ligand.  相似文献   

11.
The CD3 complex found associated with the T cell receptor (TCR) is essential for signal transduction following TCR engagement. During T cell development, TCR-mediated signalling promotes the transition from one developmental stage to the next and controls whether a thymocyte undergoes positive or negative selection. The roles of particular CD3 components in these events remain unclear. Indeed, it is unknown whether they have specialized or overlapping roles. However, the multiplicity of CD3 components and their evolutionary conservation suggest that they serve distinct functions. Here the developmental requirement for the CD3 delta chain is analyzed by generating a mouse line specifically lacking this component (delta-/- mice). Strikingly, CD3 delta is shown to be differentially required during development. In particular, CD3 delta is not needed for steps in development mediated by pre-TCR or gamma delta TCR, but is required for further development of thymocytes expressing alpha beta TCR. Absence of CD3 delta specifically blocks the thymic selection processes that mediate the transition from the double-positive to single-positive stages of development.  相似文献   

12.
Negative selection refers to the selective deletion of autoreactive thymocytes. Its molecular mechanisms have not been well defined. Previous studies in our laboratory have demonstrated that retinoic acids, physiological ligands for the nuclear retinoid receptors, selectively inhibit TCR-mediated death under in vitro conditions, and the inhibition is mediated via the retinoic acid receptor (RAR) alpha. The present studies were undertaken to investigate whether ligation of RARalpha leads to inhibition of TCR-mediated death in vivo and to identify the molecular mechanisms involved. Three models of TCR-mediated death were studied: anti-CD3-mediated death of thymocytes in wild-type mice, and Ag- and bacterial superantigen-driven thymocyte death in TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c in the context of the E(k) (class II MHC) molecule. Our data demonstrate that the molecular program of both anti-CD3- and Ag-driven, but not that of superantigen-mediated apoptosis involves up-regulation of nur77, an orphan nuclear receptor, and bim, a BH3-only member of the proapoptotic bcl-2 protein family, proteins previously implicated to participate in the negative selection. Ligation of RARalpha by the synthetic agonist CD336 inhibited apoptosis, DNA binding of nur77, and synthesis of bim induced by anti-CD3 or the specific Ag, but had no effect on the superantigen-driven cell death. Our data imply that retinoids are able to inhibit negative selection in vivo as well, and they interfere with multiple steps of the T cell selection signal pathway.  相似文献   

13.
T cell activation requires Ag-specific stimulation mediated by the TCR as well as an additional stimulus provided by Ag presenting cells. On human T cells, it has been shown that antibodies to the Ag CD28 can provide a potent amplification signal for cytokine production and proliferation. Here we describe the production of a mAb to the murine homologue of CD28, and the use of this antibody to examine the function and distribution of CD28 in the mouse. Anti-murine CD28 synergizes with TCR-mediated signals to greatly enhance lymphokine production and proliferation of T cells, and the CD28 signal is not blocked by cyclosporin A. In the peripheral lymphoid organs and in the blood of the mouse, all CD4+ and CD8+ T cells express CD28. In the thymus, CD28 expression is highest on immature CD3-, CD8+ and CD4+8+ cells, and on CD4-8- cells that express alpha beta and tau delta TCR. The level of CD28 on mature CD4+ and CD8+ alpha beta TCR+ thymocytes is two- to fourfold lower than on the immature cells. The potent costimulatory function of CD28 on mature T cells, together with the high level of expression on CD4+8+ thymocytes, suggest that this costimulatory receptor might play an important role in T cell development and activation.  相似文献   

14.
In addition to TCR-derived signals, costimulatory signals derived from stimulation of the CD28 molecule by its natural ligand, B7, have been shown to be required for CD4+8- T cell activation. We investigate the ability of B7 to provide costimulatory signals necessary to drive proliferation and differentiation of virgin CD4-8+ T-cells that express a transgenic TCR specific for the male (H-Y) Ag presented by H-2Db class I MHC molecules. Virgin male-specific CD4-8+ T cells can be activated either with B7 transfected chinese hamster ovary (CHO) cells and T3.70, a mAb specific for the transgenic TCR-alpha chain that is associated with male-reactivity, or by male dendritic cells (DC). Activated CD4-8+ T cells proliferated in the absence of exogenously added IL-2. IL-2 activity was detected in supernatants of CD4-8+T3.70+ cells that were stimulated with T3.70 and B7+CHO cells. The response of CD4-8+T3.70+ cells to T3.70/B7+CHO or to male DC stimulation were inhibited by CTLA4Ig, a fusion protein comprising the extracellular portion of CTLA4 and human IgG C gamma 1. It has been previously shown that CTLA4Ig binds B7 with high affinity. Staining with CTLA4Ig revealed that DC express about 50 times more B7 than CD4-8+ T cells. CTLA4Ig also specifically blocked the proliferation of male-reactive cells in vivo. We have also used an in vitro deletion assay whereby immature CD4+8+ thymocytes expressing the transgenic male-specific TCR are deleted by overnight incubation with either immobilized T3.70 or male DC to investigate the participation of the CD28/B7 pathway in the negative selection of immature thymocytes. Staining with B7Ig established that both immature murine CD4+8+ and mature CD4-8+ thymocytes express a high level of CD28. However, despite the high expression of CD28 on CD4+8+ thymocytes, it was found that deletion of CD4+8+ thymocytes expressing the male-specific TCR by the T3.70 mAb was not inhibited by B7+CHO cells. Furthermore, the deletion of these thymocytes by DC also was not inhibited by CTLA4Ig. These findings provide evidence that although signaling through CD28 can costimulate a primary anti-male response in mature CD4-8+ T cells, the CD28/B7 pathway does not appear to participate in the negative selection of immature CD4+8+ thymocytes.  相似文献   

15.
How TCR and non-TCR signals are integrated by thymocytes to generate a decision to undergo either positive or negative selection remains incompletely understood. Recent evidence suggests that TCR signal transduction changes its quality during thymocyte maturation, but whether the contributions of various cosignaling or costimulatory pathways to thymocyte selection also are modified during development is unclear. Questions also remain about the possible selective roles of specific costimulatory pathways in induction of differentiation vs death among thymocytes at any given stage of maturity. To address these issues, a quantitative in vitro analysis of initiation of CD4+CD8+ thymocyte differentiation as measured by CD69 up-regulation/coreceptor down-modulation was conducted in parallel with an analysis of induction of death. Using transfected cells varying in their surface display of ICAM-1 or B7.1 along with antibody blocking experiments, we demonstrate here that ICAM-1 provides a selective boost to signaling for differentiation without substantially affecting induction of death among CD4+CD8+ cells, a property that is lost as thymocytes mature further. In contrast, B7 engagement enhances both cell activation and death in parallel. Based on these data, we propose that the high level of ICAM-1 on cortical epithelial cells plays a special role in opening a window between TCR signaling for differentiation vs death, permitting efficient initiation of positive selection on epithelial ligands. In contrast, late CD28-dependent cosignaling on hemopoietic cells in the medulla would help enforce negative selection by augmenting the effects of TCR engagement by low levels of high affinity ligands.  相似文献   

16.
We have recently shown that solid-phase immobilization of anti-1F7 recognizing the 110-kDa CD26 Ag is comitogenic for human peripheral blood T cell activation via both the CD3 and CD2 pathways. We have also demonstrated that binding of anti-1F7 leads to the disappearance of CD26 surface expression, and this anti-1F7-induced modulation results in an increase in anti-CD3 or anti-CD2-mediated peripheral blood T cell activation. In this report, we extended these findings by examining the expression and functional relationship of 1F7 on the CD3 and CD2 pathways of activation of human thymocytes. We now demonstrated that most of the anti-1F7 reactivity is found on medullary thymocytes, the population of thymocytes expressing high level of CD3 (CD3H). We have also shown that binding of anti-1F7 can induce a decrease in CD26 surface expression, with no detectable effect on the surface expression of CD3 or CD2. Most importantly, we showed that solid-phase immobilization of anti-1F7 has a comitogenic effect on thymocyte activation induced by anti-CD3 but not anti-CD2. In addition, anti-1F7-induced modulation of CD26 results in an enhancement in CD3-mediated but not CD2-mediated human thymocyte activation. The observed functional effect of CD26 on the CD3/TCR pathway of activation is mainly restricted to mature thymocytes as distinguished by high surface expression of CD5, although CD26 is also functionally associated with the CD3/TCR pathway on cells expressing low level of CD5. Demonstrating that CD26 involvement in the regulation of human thymocyte activation is restricted mainly to the CD3 pathway, unlike its involvement with both the CD3 and CD2 pathways of mature peripheral blood T lymphocyte activation, our data hence suggested that CD26 may play a role in thymic differentiation and maturation via the differential engagement of the CD3 pathway.  相似文献   

17.
Cao Y  Li H  Liu H  Zhang M  Hua Z  Ji H  Liu X 《The EMBO journal》2011,30(10):2083-2093
The serine/threonine kinase LKB1 is a tumour suppressor that regulates cell growth, polarity, and proliferation in many different cell types. We previously demonstrated that LKB1 controls thymocyte survival via regulation of AMPK activation. In this study, we show that LKB1 was also involved in thymocyte positive selection through regulation of T cell receptor (TCR) signalling. Both Lck-Cre- and CD4-Cre-mediated deletion of LKB1 impaired the generation of mature CD4 and CD8 single positive (SP) thymocytes that might have resulted from the attenuated tyrosine phosphorylation of phospholipase C-γ 1 (PLCγ1) in the absence of LKB1. We found that LKB1 was directly phosphorylated by Lck at tyrosine residues 36, 261, and 365 and predominately interacted with LAT and PLCγ1 following TCR stimulation. Loss of LKB1 led to impaired recruitment of PLCγ1 to the LAT signalosome. Correlatively, LKB1-deficient thymocytes failed to upregulate lineage-specifying factors, and to differentiate into SP thymocytes even if their impaired survival was rescued. These observations indicated that LKB1 is a critical component involved in TCR signalling, and our studies provide novel insights into the mechanisms of LKB1-mediated thymocyte development.  相似文献   

18.
Apoptosis is induced in immature thymocytes and T cell hybridomas upon stimulation via the TCR/CD3 complex. This phenomenon appears to be related to negative selection of T cell clones in the thymus. In T cell hybridomas, it has been shown that glucocorticoids inhibit TCR/CD3-mediated apoptosis, whereas glucocorticoids alone induce apoptosis. All-trans-retinoic acid (RA) at 0.1 to 10 microM also inhibited TCR/CD3-mediated apoptosis assessed by DNA fragmentation and cytolysis, but RA alone hardly induced apoptosis. RA enhanced the effects of glucocorticoids to induce apoptosis and to inhibit TCR/CD3-mediated apoptosis. TCR/CD3-mediated stimulation can be mimicked by the combination of ionomycin, a calcium ionophore, and PMA, an activator of protein kinase C, and the combination-induced DNA fragmentation was also inhibited by RA. RA, however, failed to inhibit the combination-induced increase in intracellular Ca2+ concentration or the combination-induced translocation of protein kinase C from the cytosolic fraction to the particulate fraction. Time course studies of RA addition into the culture indicated that a 3- to 6-h delay in the addition of RA did not reduce its inhibitory effect on anti-CD3-induced DNA fragmentation. These results suggest that RA interferes with the apoptotic process at some point after its initiation stage. It has been suggested that negative selection involves not only TCR/CD3-mediated signals but also LFA-1-mediated signals. RA at 0.01 to 1 microM significantly inhibited the induction of thymocyte apoptosis by co-immobilized mAb to CD3 and LFA-1 molecules. RA by itself hardly induced apoptosis, but enhanced glucocorticoid-induced apoptosis. The results suggest that thymic selection might be influenced by RA at near-physiologic concentrations. The receptors of glucocorticoids and RA belong to the erbA oncogene-related steroid hormone receptor superfamily. Thyroid hormones and 1 alpha,25-dihydroxy vitamin D3, whose receptors also belong to the superfamily, failed to modulate apoptosis in both T cell hybridomas and thymocytes.  相似文献   

19.
Death-associated protein 3 (DAP3) is crucial for promoting apoptosis induced by various stimulations. This report demonstrates that DAP3 is also important for T cell receptor (TCR)-mediated apoptosis induction in immature thymocytes. Enforced expression of DAP3 accelerated the negative selection in developing thymocytes, using the reaggregate thymus organ culture system. In addition, expression of DAP3 accelerated TCR-mediated apoptosis induction in DO11.10 cells. We also demonstrated that DAP3 translocates into the nucleus during TCR-mediated apoptosis in a Nur77 dependent manner. It is concluded that DAP3 is critical for TCR-mediated induction of apoptosis at the downstream of Nur77.  相似文献   

20.
IL-7 induced the proliferation of normal thymocytes and the effect was synergistically potentiated by a small dose of IL-2, which by itself hardly affected thymocyte proliferation. No synergism was observed between IL-7 and any one of the other lymphokines including IL-1, IL-3, and IL-4. The thymocyte culture stimulated with IL-7 and IL-2 consisted of single positive (CD4+CD8- and CD4-CD8+) and double negative (CD4-CD8-) populations, and double positive (CD4+CD8+) cells were completely deleted. Both single positive and double negative thymocytes expressed CD3, but only the former exhibited V beta 8 and V beta 6 in an expected proportion (approximately 30% in BALB/c mice) and the latter none at all. Immunoprecipitation of the cultured thymocytes by anti-TCR gamma antibody, on the other hand, revealed the presence of a TCR gamma chain. Taken together, these results indicated that the thymocyte cultured with IL-7 and IL-2 consisted of mature T cells bearing alpha beta or gamma delta TCR. Experiments using preselected thymocyte subpopulations indicated that double negative cells responded to both IL-7 and IL-2 with positive synergism when combined, while thymocytes enriched for single positive cells preferentially responded to IL-7 with little response to IL-2 and no detectable synergism. Double positive thymocytes showed no proliferation in response to IL-7 and IL-2. In contrast to single positive thymocytes, splenic T cells hardly responded to IL-7, although significant proliferation was induced in the presence of a low dose of IL-2. Thymocytes cultured with IL-7 and IL-2 showed little nonspecific cytotoxic activity, but responded to Con A or alloantigen, whereas those stimulated with a high dose of IL-2 alone exhibited potent cytotoxic activity. These results indicated that IL-7 was involved in the generation of immunocompetent T cells in the thymus in concert with IL-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号