首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Huang QD  Zhong GX  Zhang Y  Ren J  Fu Y  Zhang J  Zhu W  Yu XQ 《PloS one》2011,6(8):e23134

Background

Gene therapy has tremendous potential for both inherited and acquired diseases. However, delivery problems limited their clinical application, and new gene delivery vehicles with low cytotoxicity and high transfection efficiency are greatly required.

Methods

In this report, we designed and synthesized three amphiphilic molecules (L1–L3) with the structures involving 1, 4, 7, 10-tetraazacyclododecane (cyclen), imidazolium and a hydrophobic dodecyl chain. Their interactions with plasmid DNA were studied via electrophoretic gel retardation assays, fluorescent quenching experiments, dynamic light scattering and transmission electron microscopy. The in vitro gene transfection assay and cytotoxicity assay were conducted in four cell lines.

Results

Results indicated that L1 and L3-formed liposomes could effectively bind to DNA to form well-shaped nanoparticles. Combining with neutral lipid DOPE, L3 was found with high efficiency in gene transfer in three tumor cell lines including A549, HepG2 and H460. The optimized gene transfection efficacy of L3 was nearly 5.5 times more efficient than that of the popular commercially available gene delivery agent Lipofectamine 2000™ in human lung carcinoma cells A549. In addition, since L1 and L3 had nearly no gene transfection performance in normal cells HEK293, these cationic lipids showed tumor cell-targeting property to a certain extent. No significant cytotoxicity was found for the lipoplexes formed by L1–L3, and their cytotoxicities were similar to or slightly lower than the lipoplexes prepared from Lipofectamine 2000™.

Conclusion

Novel cyclen-based cationic lipids for effective in vitro gene transfection were founded, and these studies here may extend the application areas of macrocyclic polyamines, especially for cyclen.  相似文献   

2.
This study was aimed to investigate if and to what extent there is an interplay between lipoplex physicochemical properties and plasmid promoter type affecting transfection efficiency in vitro. To reduce the number of variables only one cell type (NIH3T3 cells), one gene (human growth hormone), one cationic lipid (DOTAP) in a plasmid >85% in supercoiled form, and the same medium conditions were used. The variables of the physicochemical properties included presence and type of helper lipid (DOPE, DOPC, or cholesterol, all in 1:1 mole ratio with DOTAP), size and lamellarity of the liposomes used for lipoplex preparation (large unilamellar vesicles, LUV, versus multilamellar vesicles, MLV), and DNA(-)/cationic lipid(+) charge ratio, all containing the same human growth hormone but differing in their promoter enhancer region. Two of the promoters were of viral origin: (a) SV40 promoter (simian virus early promoter) and (b) CMV promoter (cytomegalovirus early promoter); two were of mammalian cell origin: (c) PABP promoter (human poly(A)-binding protein promoter) and (d) S16 promoter (mouse ribosomal protein (rp) S16 promoter). Transfection studies showed that, irrespective of promoter type, large (> or =500 nm) MLV were superior to approximately 100 nm LUV; the extent of superiority was dependent on liposome lipid composition (larger for 100% DOTAP and DOTAP/DOPE than for DOTAP/DOPC and DOTAP/cholesterol). The optimal DNA(-)/DOTAP(+) charge ratio for all types of lipoplexes used was 0.2 or 0.5 (namely, when the lipoplexes were positively charged). Scoring the six best lipoplex formulations (out of 128 studied) revealed the following order: pCMV (DOTAP/DOPE) > pSV (DOTAP/DOPE)=pCMV(DOTAP/cholesterol)=pS16 (100% DOTAP)=pS16 DOTAP/DOPE > pCMV (DOTAP/DOPC). The lack of trivial consistency in the transfection efficiency score, the pattern of transfection efficiency, and statistical analysis of the data suggest that there is cross-talk between promoter type and lipoplex lipid composition, which may be related to the way the promoter is associated with the lipids.  相似文献   

3.
Novel N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl[bis-(2-dimethylaminoethane)] bivalent cationic lipids were synthesized and evaluated for in vitro transfection activity against a murine melanoma cell line. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the dioleoyl derivative 22 (1,2lb5) elicited transfection activity. The transfection activity of this lipid was reduced when formulated with DOPE. Contrary to that, the dimyristoyl derivative 19 (1,2lb2) mediated no activity when used alone but induced the highest levels of marker gene expression in the presence of DOPE. In an effort to correlate the transfection activity with cationic lipid structures, the physicochemical properties of cationic lipids in isolation and of lipoplexes were studied with surface tensiometry, photon correlation spectroscopy, gel electrophoresis mobility shift assay, and fluorescence techniques. In regard to the lipoplex properties, gel electrophoresis mobility shift assay and EtBr exclusion fluorescence assay revealed that the 1,2lb5 was the only lipid to associate and condense plasmid DNA, respectively. Photon correlation spectroscopy analysis found that 1,2lb5/DNA complexes were of relatively small size compared to all other lipoplexes. With respect to the properties of isolated lipids, Langmuir monolayer studies and fluorescence anisotropy on cationic lipid dispersions verified high two-plane elasticity and increased fluidity of the transfection competent dioleoyl derivative 1,2lb5, respectively. The results indicate that high transfection activity is mediated by cationic lipids characterized by an expanded mean molecular area, high molecular elasticity, and increased fluidity.  相似文献   

4.
Lipidic amphiphiles equipped with the trans-2-aminocyclohexanol (TACH) moiety are promising pH-sensitive conformational switches (“flipids”) that can trigger a lipid bilayer perturbation in response to increased acidity. Because pH-sensitivity was shown to improve the efficiency of several gene delivery systems, we expected that such flipids could significantly enhance the gene transfection by lipoplexes. Thus a series of novel lipids with various TACH-based head groups and hydrocarbon tails were designed, prepared and incorporated into lipoplexes that contain the cationic lipid 1,2-dioleoyl-3-trimethylammonio-propane (DOTAP) and plasmid DNA encoding a luciferase gene. B16F1 and HeLa cells were transfected with such lipoplexes in both serum-free and serum-containing media. The lipoplexes consisting of TACH-lipids exhibited up to two orders of magnitude better transfection efficiency and yet similar toxicity compared to the ones with the conventional helper lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol. Thus, the TACH-lipids can be used as novel helper lipids for efficient gene transfection with low cytotoxicity.  相似文献   

5.

Background

Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD) increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance.

Methodology

C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD) or HFD (45 kcal%). Skeletal muscle mitochondria were isolated and fatty acid (FA) composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR.

Principal Findings

At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9) were decreased (−4.0%, p<0.001), whereas saturated FA (16∶0) were increased (+3.2%, p<0.001) in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6) showed a pronounced increase (+4.0%, p<0.001). Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002) and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks.

Conclusions/Interpretation

Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in mitochondrial fat oxidative capacity and (muscle) insulin resistance.  相似文献   

6.

Background

Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)n- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media.

Methodology/Principal Findings

To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features.

Conclusions/Significance

-OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies.  相似文献   

7.
A novel series of symmetric double-chained primary and tertiary 1,3-dialkoylamido monovalent cationic lipids were synthesized and evaluated for their transfection activities. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the primary and tertiary dioleoyl derivatives 1,3lmp5 and 1,3lmt5, respectively elicited transfection activity. This is a striking difference between symmetrical 1,2-diacyl glycerol-based monovalent cationic lipids that always found both dioleoyl and dimyristoyl analogues being efficient transfection reagents. In the presence of helper lipid, all cationic derivatives induced marker gene expression, except the dilauroyl analogues 1,3lmp1 and 1,3lmt1 that elicited no transfection activity. Combining electrophoretic mobility data of the lipoplexes at different charge ratios with transfection activity suggested two requirements for high transfection activity with monovalent double-chained cationic lipids, that is, binding/association of the lipid to the plasmid DNA and membrane fusion properties of the lipid layers surrounding the DNA.  相似文献   

8.

Background

Genes coding for the fatty acid desaturases (FADS1, 2, 3) localized at the cancer genomic hotspot 11q13 locus are required for the biosynthesis of 20 carbon polyunsaturated fatty acids (PUFA) that are direct eicosanoid precursors. In several cancer cell lines, FADS2 encoded Δ6 and Δ8 desaturation is not functional.

Methodology/Principal Findings

Analyzing MCF7 cell fatty acids with detailed structural mass spectrometry, we show that in the absence of FADS2 activity, the FADS1 product Δ5-desaturase operates to produce 5,11,14–20∶3 and 5,11,14,17–20∶4. These PUFA are missing the 8–9 double bond of the eicosanoid signaling precursors arachidonic acid (5,8,11,14–20∶4) and eicosapentaenoic acid (5,8,11,14,17–20∶5). Heterologous expression of FADS2 restores Δ6 and Δ8-desaturase activity and normal eicosanoid precursor synthesis.

Conclusions/Significance

The loss of FADS2-encoded activities in cancer cells shuts down normal PUFA biosynthesis, deleting the endogenous supply of eicosanoid and downstream docosanoid precursors, and replacing them with unusual butylene-interrupted fatty acids. If recapitulated in vivo, the normal eicosanoid and docosanoid cell signaling milieu would be depleted and altered due to reduction and substitution of normal substrates with unusual substrates, with unpredictable consequences for cellular communication.  相似文献   

9.

Background

Phospholipases D (PLD) are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA). PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor.

Methodology/Principal findings

Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA). As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut), which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM) mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18∶2- and 16∶0/18∶3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates.

Conclusions

MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18∶2- and 16∶0/18∶3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.  相似文献   

10.

Background

The neuronal nicotinic receptors that mediate excitatory transmission in autonomic ganglia are thought to be formed mainly by the α3 and β4 subunits. Expressing this composition in oocytes fails to reproduce the properties of ganglionic receptors, which may also incorporate the α5 and/or β2 subunits. We compared the properties of human α3β4 neuronal nicotinic receptors expressed in Human embryonic kidney cells (HEK293) and in Xenopus oocytes, to examine the effect of the expression system and α∶β subunit ratio.

Methodology/Principal Findings

Two distinct channel forms were observed: these are likely to correspond to different stoichiometries of the receptor, with two or three copies of the α subunit, as reported for α4β2 channels. This interpretation is supported by the pattern of change in acetylcholine (ACh) sensitivity observed when a hydrophilic Leu to Thr mutation was inserted in position 9′ of the second transmembrane domain, as the effect of mutating the more abundant subunit is greater. Unlike α4β2 channels, for α3β4 receptors the putative two-α form is the predominant one in oocytes (at 1∶1 α∶β cRNA ratio). This two-α form has a slightly higher ACh sensitivity (about 3-fold in oocytes), and displays potentiation by zinc. The putative three-α form is the predominant one in HEK cells transfected with a 1∶1 α∶β DNA ratio or in oocytes at 9∶1 α∶β RNA ratio, and is more sensitive to dimethylphenylpiperazinium (DMPP) than to ACh. In outside-out single-channel recordings, the putative two-α form opened to distinctive long bursts (100 ms or more) with low conductance (26 pS), whereas the three-α form gave rise to short bursts (14 ms) of high conductance (39 pS).

Conclusions/Significance

Like other neuronal nicotinic receptors, the α3β4 receptor can exist in two different stoichiometries, depending on whether it is expressed in oocytes or in mammalian cell lines and on the ratio of subunits transfected.  相似文献   

11.

Background

Performance of externally paced rhythmic movements requires brain and behavioral integration of sensory stimuli with motor commands. The underlying brain mechanisms to elaborate beat-synchronized rhythm and polyrhythms that musicians readily perform may differ. Given known roles in perceiving time and repetitive movements, we hypothesized that basal ganglia and cerebellar structures would have greater activation for polyrhythms than for on-the-beat rhythms.

Methodology/Principal Findings

Using functional MRI methods, we investigated brain networks for performing rhythmic movements paced by auditory cues. Musically trained participants performed rhythmic movements at 2 and 3 Hz either at a 1∶1 on-the-beat or with a 3∶2 or a 2∶3 stimulus-movement structure. Due to their prior musical experience, participants performed the 3∶2 or 2∶3 rhythmic movements automatically. Both the isorhythmic 1∶1 and the polyrhythmic 3∶2 or 2∶3 movements yielded the expected activation in contralateral primary motor cortex and related motor areas and ipsilateral cerebellum. Direct comparison of functional MRI signals obtained during 3∶2 or 2∶3 and on-the-beat rhythms indicated activation differences bilaterally in the supplementary motor area, ipsilaterally in the supramarginal gyrus and caudate-putamen and contralaterally in the cerebellum.

Conclusions/Significance

The activated brain areas suggest the existence of an interconnected brain network specific for complex sensory-motor rhythmic integration that might have specificity for elaboration of musical abilities.  相似文献   

12.
Here we present a quantitative mechanism-based investigation aimed at comparing the cell uptake, intracellular trafficking, endosomal escape and final fate of lipoplexes and lipid–protamine/deoxyribonucleic acid (DNA) (LPD) nanoparticles (NPs) in living Chinese hamster ovary (CHO) cells. As a model, two lipid formulations were used for comparison. The first formulation is made of the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the zwitterionic lipid dioleoylphosphocholine (DOPC), while the second mixture is made of the cationic 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE). Our findings indicate that lipoplexes are efficiently taken up through fluid-phase macropinocytosis, while a less efficient uptake of LPD NPs occurs through a combination of both macropinocytosis and clathrin-dependent pathways. Inside the cell, both lipoplexes and LPD NPs are actively transported towards the cell nucleus, as quantitatively addressed by spatio-temporal image correlation spectroscopy (STICS). For each lipid formulation, LPD NPs escape from endosomes more efficiently than lipoplexes. When cells were treated with DOTAP–DOPC-containing systems the majority of the DNA was trapped in the lysosome compartment, suggesting that extensive lysosomal degradation was the rate-limiting factors in DOTAP–DOPC-mediated transfection. On the other side, escape from endosomes is large for DC-Chol–DOPE-containing systems most likely due to DOPE and cholesterol-like molecules, which are able to destabilize the endosomal membrane. The lipid-dependent and structure-dependent enhancement of transfection activity suggests that DNA is delivered to the nucleus synergistically: the process requires both the membrane-fusogenic activity of the nanocarrier envelope and the employment of lipid species with intrinsic endosomal rupture ability.  相似文献   

13.
A novel series of N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl-(dimethylaminoethane) cationic derivatives was synthesized and screened for in vitro transfection activity at different charge ratios in the presence and absence of the helper lipids DOPE and cholesterol. Physicochemical properties of lipid-DNA complexes were studied by gel electrophoresis, fluorescence spectroscopy and dynamic light scattering. The interfacial properties of the lipids in isolation were studied using the Langmuir film balance technique at 23 degrees C. It was found that only lipoplexes formulated with the dioleoyl derivative, 1,2lmt[5], mediated significant in vitro transfection activity. Optimum activity was obtained with 1,2lmt[5]/DOPE mixture at a +/-charge ratio of 2. In agreement with the transfection results, 1,2lmt[5] was the only lipid found to complex and retard DNA migration as verified by gel electrophoresis. Despite the efficient complexation, no significant condensation of plasmid DNA was observed as indicated by fluorescence spectroscopy measurements. Monolayer studies showed that the dioleoyl derivative 1,2lmt[5] was the only lipid that existed in an all liquid-expanded state with a collapse area and collapse pressure of 59.5 A2 and 38.7 mN/m, respectively. This lipid was also found to have the highest elasticity with a compressibility modulus at monolayer collapse of 80.4 mN/m. In conclusion, increased acyl chain fluidity and high molecular elasticity of cationic lipids were found to correlate with improved transfection activity.  相似文献   

14.
Lipoplexes, which are formed spontaneously between cationic liposomes and negatively charged nucleic acids, are commonly used for gene and oligonucleotide delivery in vitro and in vivo. Being assemblies, lipoplexes can be characterized by various physicochemical parameters, including size distribution, shape, physical state (lamellar, hexagonal type II and/or other phases), sign and magnitude of electrical surface potential, and level of hydration at the lipid-DNA interface. Only after all these variables will be characterized for lipoplexes with a broad spectrum of lipid compositions and DNA/cationic lipid (L(+)) mole (or charge) ratios can their relevance to transfection efficiency be understood. Of all these physicochemical parameters, hydration is the most neglected, and therefore the focus of this study. Cationic liposomes composed of DOTAP without and with helper lipids (DOPC, DOPE, or cholesterol) or of DC-Chol/DOPE were complexed with pDNA (S16 human growth hormone) at various DNA(-)/L(+) charge ratios (0.1-3.2). (DOTAP=N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride; DC-Chol=(3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholester ol; DOPC=1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE=1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine). The hydration levels of the different cationic liposomes and the DNA separately are compared with the hydration levels of the lipoplexes. Two independent approaches were applied to study hydration. First, we used a semi-quantitative approach of determining changes in the 'generalized polarization' (GP) of laurdan (6-dodecanoyl-2-dimethylaminonaphthalene). This method was recently used extensively and successfully to characterize changes of hydration at lipid-water interfaces. Laurdan excitation GP at 340 nm (GP(340)DOTAP. The GP(340) of lipoplexes of all lipid compositions (except those based on DC-Chol/DOPE) was higher than the GP(340) of the cationic liposomes alone and increased with increasing DNA(-)/L(+) charge ratio, reaching a plateau at a charge ratio of 1. 0, suggesting an increase in dehydration at the lipid-water interface with increasing DNA(-)/L(+) charge ratio. Confirmation was obtained from the second method, differential scanning calorimetry (DSC). DOTAP/DOPE lipoplexes with charge ratio 0.44 had 16.5% dehydration and with charge ratio 1.5, 46.4% dehydration. For DOTAP/Chol lipoplexes with these charge ratios, there was 17.9% and 49% dehydration, respectively. These data are in good agreement with the laurdan data described above. They suggest that the dehydration occurs during lipoplex formation and that this is a prerequisite for the intimate contact between cationic lipids and DNA.  相似文献   

15.
There is a need for the development of nonviral gene transfer systems with improved and original properties. "Fluorinated" lipoplexes are such candidates, as supported by the remarkably higher in vitro and in vivo transfection potency found for such fluorinated lipoplexes as compared with conventional ones or even with PEI-based polyplexes (Boussif, O., Gaucheron, J., Boulanger, C., Santaella, C., Kolbe, H. V. J., Vierling, P. (2001) Enhanced in vitro and in vivo cationic lipid-mediated gene delivery with a fluorinated glycerophosphoethanolamine helper lipid. J. Gene Med. 3, 109-114). Here, we describe the synthesis of fluorinated glycerophosphoethanolamines (F-PEs), close analogues of dioleoylphosphatidylethanolamine (DOPE), and report on their lipid helper properties vs that of DOPE, as in vitro gene transfer components of fluorinated lipoplexes based on pcTG90, DOGS (Transfectam), or DOTAP. To evaluate the contribution of the F-PEs to in vitro lipoplex-mediated gene transfer, we examined the effect of including the F-PEs in lipoplexes formulated with these cationic lipids (CL) for various CL:DOPE:F-PE molar ratios [1:(1 - x):x with x = 0, 0.5 and 1; 1:(2 - y):y with y = 0, 1, 1.5, and 2], and various N/P ratios (from 10 to 0.8, N = number of CL amines, P = number of DNA phosphates). Irrespective of the F-PE chemical structure, of the colipid F-PE:DOPE composition, and of the N/P ratio, comparable transfection levels to those of their respective control DOPE lipoplexes were most frequently obtained when using one of the F-PEs as colipid of DOGS, pcTG90, or DOTAP in place of part of or of all DOPE. However, a large proportion of DOGS-based lipoplexes were found to display a higher transfection efficiency when formulated with the F-PEs rather than with DOPE alone while the opposite tendency was evidenced for the DOTAP-based lipoplexes. The present work indicates that "fluorinated" lipoplexes formulated with fluorinated helper lipids and conventional cationic lipids are very attractive candidates for gene delivery. It confirms further that lipophobicity and restricted miscibility of the lipoplex lipids with the endogenous lipids does not preclude efficient gene transfer and expression. Their transfection potency is rather attributable to their unique lipophobic and hydrophobic character (resulting from the formulation of DNA with fluorinated lipids), thus preventing to some extent DNA from interactions with lipophilic and hydrophilic biocompounds, and from degradation.  相似文献   

16.

Background

The nonsteroidal anti-inflammatory drug (NSAID), indomethacin (Indo), has a large number of divergent biological effects, the molecular mechanism(s) for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16∶0 PC, or DPPC) and dioleoyl phosphatidyl-choline (di18∶1 PC or DOPC) and cholesterol that mimics biomembranes.

Methodology/Principal Findings

Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET) study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes.

Conclusion/Significance

Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.  相似文献   

17.
Context: Cationic lipoplexes are less toxic than viral gene vectors and more convenient to prepare but their efficiencies of gene delivery are generally lower.

Objective: To develop ortho ester-based, pH-sensitive lipoplexes for efficient gene delivery both in cultured cells and in vivo.

Materials and methods: A novel cationic and acid-labile lipid (DOC) containing a cationic headgroup and a cholesterol-derived lipid tail joined together by an acid-labile ortho ester linker was designed and synthesized. DOC was formulated into liposomes with the conical helper lipid DOPE, and then into lipoplexes with plasmid DNA encoding a luciferase reporter gene. The physicochemical properties of the lipoplexes (size, surface charge and pH-sensitivity) were characterized. Gene delivery by DOC/DOPE/DNA lipoplexes was also evaluated in CV-1 cells and in CD-1 mice following intratracheal injection. Lipoplexes consisting of the acid-stable cationic lipid DC-Chol were characterized as a control.

Results: DOC formed cationic lipoplexes with DOPE and DNA. After incubation at acidic pH 4.6, DOC/DOPE/DNA lipoplexes lost their positive charges and aggregated with one another as a result of DOC hydrolysis. Both in CV-1 cell culture and in CD-1 mice, DOC/DOPE/DNA lipoplexes increased the luciferase gene expression by 5- to 10-fold compared with the analogous but acid-stable DC-Chol/DOPE/DNA lipoplexes.

Discussion and conclusion: Incorporation of an acid-labile ortho ester linker into a cationic lipid is a viable approach to enhance gene delivery by the corresponding lipoplexes both in cultured cells and in vivo.  相似文献   


18.

Objectives

Successful control of the HIV/AIDS pandemic requires reduction of HIV-1 transmission at sexually-exposed mucosae. No prevention studies of the higher-risk rectal compartment exist. We report the first-in-field Phase 1 trial of a rectally-applied, vaginally-formulated microbicide gel with the RT-inhibitor UC781 measuring clinical and mucosal safety, acceptability and plasma drug levels. A first-in-Phase 1 assessment of preliminary pharmacodynamics was included by measuring changes in ex vivo HIV-1 suppression in rectal biopsy tissue after exposure to product in vivo.

Methods

HIV-1 seronegative, sexually-abstinent men and women (N = 36) were randomized in a double-blind, placebo-controlled trial comparing UC781 gel at two concentrations (0.1%, 0.25%) with placebo gel (1∶1∶1). Baseline, single-dose exposure and a separate, 7-day at-home dosing were assessed. Safety and acceptability were primary endpoints. Changes in colorectal mucosal markers and UC781 plasma drug levels were secondary endpoints; ex vivo biopsy infectibility was an ancillary endpoint.

Results

All 36 subjects enrolled completed the 7–14 week trial (100% retention) including 3 flexible sigmoidoscopies, each with 28 biopsies (14 at 10 cm; 14 at 30 cm). There were 81 Grade 1 adverse events (AEs) and 8 Grade 2; no Grade 3, 4 or procedure-related AEs were reported. Acceptability was high, including likelihood of future use. No changes in mucosal immunoinflammatory markers were identified. Plasma levels of UC781 were not detected. Ex vivo infection of biopsies using two titers of HIV-1BaL showed marked suppression of p24 in tissues exposed in vivo to 0.25% UC781; strong trends of suppression were seen with the lower 0.1% UC781 concentration.

Conclusions

Single and 7-day topical rectal exposure to both concentrations of UC781 were safe with no significant AEs, high acceptability, no detected plasma drug levels and no significant mucosal changes. Ex vivo biopsy infections demonstrated marked suppression of HIV infectibility, identifying a potential early biomarker of efficacy. (Registered at ClinicalTrials.gov; #NCT00408538)  相似文献   

19.

Background

New antimalarials are needed for P. vivax and P. falciparum malaria. This study compared the efficacy and safety of pyronaridine-artesunate with that of chloroquine for the treatment of uncomplicated P. vivax malaria.

Methods and Findings

This phase III randomized, double-blind, non-inferiority trial included five centers across Cambodia, Thailand, India, and Indonesia. In a double-dummy design, patients (aged >3–≤60 years) with microscopically confirmed P. vivax mono-infection were randomized (1∶1) to receive pyronaridine-artesunate (target dose 7.2∶2.4 mg/kg to 13.8∶4.6 mg/kg) or chloroquine (standard dose) once daily for three days. Each treatment group included 228 randomized patients. Outcomes for the primary endpoint, Day-14 cure rate in the per-protocol population, were 99.5%, (217/218; 95%CI 97.5, 100) with pyronaridine-artesunate and 100% (209/209; 95%CI 98.3, 100) with chloroquine. Pyronaridine was non-inferior to chloroquine: treatment difference −0.5% (95%CI −2.6, 1.4), i.e., the lower limit of the 2-sided 95%CI for the treatment difference was greater than −10%. Pyronaridine-artesunate cure rates were non-inferior to chloroquine for Days 21, 28, 35 and 42. Parasite clearance time was shorter with pyronaridine-artesunate (median 23.0 h) versus chloroquine (32.0 h; p<0.0001), as was fever clearance time (median 15.9 h and 23.8 h, respectively; p = 0.0017). Kaplan-Meier estimates of post-baseline P. falciparum infection incidence until Day 42 were 2.5% with pyronaridine-artesunate, 6.1% with chloroquine (p = 0.048, log-rank test). Post-baseline P. vivax or P. falciparum infection incidence until Day 42 was 6.8% and 12.4%, respectively (p = 0.022, log rank test). There were no deaths. Adverse events occurred in 92/228 (40.4%) patients with pyronaridine-artesunate and 72/228 (31.6%) with chloroquine. Mild and transient increases in hepatic enzymes were observed for pyronaridine-artesunate.

Conclusion

Pyronaridine-artesunate efficacy in acute uncomplicated P. vivax malaria was at least that of chloroquine. As pyronaridine-artesunate is also efficacious against P. falciparum malaria, this combination has potential utility as a global antimalarial drug.

Trial registration

Clinicaltrials.gov NCT00440999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号