首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
多巴胺Ⅱ型受体在大脑基底神经节纹状体区域表达丰富,可反馈性调节突触前多巴胺合成并介导细胞信号转导。纹状体神经元突触可塑性受多巴胺Ⅱ型受体介导的cAMP/PKA和PLC信号通路调节,也是自主运动控制的神经基础。在运动性疲劳及以帕金森病为代表的运动功能障碍的中枢疾病中,多巴胺Ⅱ型受体通过平衡基底神经节直接通路和间接通路发挥重要作用。本文对多巴胺Ⅱ型受体在纹状体神经元突触可塑性和运动功能障碍中枢调控中的作用进行综述,为相关疾病的靶向干预和治疗提供理论基础。  相似文献   

2.
地塞米松是一种糖皮质激素药物,具有抗炎、抑制免疫等多种药理作用,广泛应用于治疗多种疾病。临床上常使用地塞米松来促进早产儿的肺成熟以及预防胎儿呼吸窘迫综合征。目前的流行病学以及试验研究表明,地塞米松孕期暴露会增加子代患软骨病、肾脏损伤等疾病的风险。为了探究孕期地塞米松暴露(prenatal dexamethasone exposure, PDE)对大鼠子代胎鼠海马神经元增殖发育以及胎鼠海马突触可塑性形成的影响,对孕中晚期Wistar大鼠皮下注射地塞米松(0.2 mg·kg-1·d-1),对照组注射等剂量0.9%氯化钠溶液。收集GD20子代海马,采用实时荧光定量PCR以及Western blot法对海马神经增殖、突触可塑性形成和APPL1(adaptor protein containing pH domain, PTB domain and leucine zipper motif 1)进行相关功能检测,并进一步使用投射电镜观察海马突触超微结构。结果显示,与空白对照组相比,PDE胎海马Ki67、增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)、突触融合蛋白(syntaxin)、25 kD突触相关蛋白(SNAP25)等特异性指标显著降低,提示PDE对胎海马神经增殖、突触发育具有不同程度的抑制作用。Western blot 结果显示,PDE组突触后致密蛋白95(PSD95)显著下调,进一步电镜结果证实PDE可导致子代海马突触可塑性受损。APPL1检测结果显示,PDE子代海马APPL1表达水平下调,故而推测PDE可能是通过调节APPL1表达改变子代海马突触可塑性。研究结果揭示PDE具有海马发育毒性并可导致海马神经元增殖减少以及突触可塑性发育损伤。研究结果为指导孕期合理用药和有效评估胎儿海马发育毒性风险提供了实验与理论依据。  相似文献   

3.
大脑神经回路高度有序的神经元活动是高级脑功能的基础,神经元之间的突触联结是神经回路的关键功能节点。神经突触根据神经元活动调整其传递效能的能力,亦即突触可塑性,被认为是神经回路发育和学习与记忆功能的基础。其异常则可能导致如抑郁症和阿尔茨海默病等精神、神经疾病。将介绍这两种疾病与突触可塑性的关系,聚焦于相关分子和细胞机制以及新的研究、治疗手段等进展。  相似文献   

4.
突触可塑性可以导致神经元传递效率的改变,是神经系统发育、学习记忆等脑的高级功能活动中细胞功能的重要基础。蛋白质磷酸化修饰通过蛋白激酶和蛋白磷酸酶之间的动态平衡对突触可塑性和突触传递的长期调节,参与各种脑疾病(包括精神疾病和神经退行性疾病)的发生发展。本文综述了磷酸化修饰和突触可塑性的关系,重点介绍了长时程增强和长时程抑制相关的离子型谷氨酸受体磷酸化修饰研究进展,以期为神经元突触可塑性改变相关的脑疾病研究提供新的思路。  相似文献   

5.
Wnt信号通路与大脑发育和中枢神经系统成熟密切相关,参与神经突触调节和重塑,在突触可塑性和学习记忆中有重要作用.该文综述了Wnt信号在突触结构与功能中的作用,Wnt信号途径与突触结构和神经功能的建立与维持的关系,以及Wnt信号在学习记忆相关的突触重塑与稳定中的重要作用.对Wnt信号通路的深入了解有助于理解学习记忆的结构...  相似文献   

6.
神经元的突触可塑性与学习和记忆   总被引:7,自引:0,他引:7  
大量研究表明,神经元的突触可塑性包括功能可塑性和结构可塑性,与学习和记忆密切相关.最近,在经过训练的动物海马区,记录到了学习诱导的长时程增强(long term potentiation,LTP),如果用激酶抑制剂阻断晚期LTP,就会使大鼠丧失训练形成的记忆.这些结果指出,LTP可能是形成记忆的分子基础.因此,进一步研究哺乳动物脑内突触可塑性的分子机制,对揭示学习和记忆的神经基础有重要意义.此外,在精神迟滞性疾病和神经退行性疾病患者脑内记录到异常的LTP,并发现神经元的树突棘数量减少,形态上产生畸变或萎缩,同时发现,产生突变的基因大多编码调节突触可塑性的信号通路蛋白,故突触可塑性研究也将促进精神和神经疾病的预防和治疗.综述了突触可塑性研究的最新进展,并展望了其发展前景.  相似文献   

7.
一般认为,突触的结构在记忆的巩固过程中发生变化。β-连环蛋白(β-catenin)已被证实与神经元突触的调节和重塑有关。β-连环蛋白可与钙粘蛋白(cadherin)结合形成复合物参与突触发育及其连接性和活性的调节。此外,β-连环蛋白在Wnt信号传导通路中发挥着重要作用。这条信号通路在海马切片标本中被证实参与突触可塑性的调节。由此推测,β-连环蛋白可能是影响突触可塑性的核心蛋白,并参与调节学习和记忆等重要活动。但之前尚无实验证明它在动物学习和记忆中潜在的重要作用。  相似文献   

8.
表观调节机制在阿尔茨海默病的发生、发展过程中起着重要作用。乙酰化组蛋白和乙酰化非组蛋白在基因表达与信号转导过程中具有重要的调控作用。组蛋白去乙酰化酶抑制剂可以改善AD患者突触可塑性与学习记忆能力。HDAC2在控制神经元形成中起关键作用。HDAC2参与海马区域记忆形成相关蛋白表达,对学习和记忆的形成具有负调节作用,影响神经突触可塑性和数量。目前应用的HDAC抑制剂为广谱药物缺乏特异性,分析HDAC2作用机制有利于研究出针对疾病的靶点药物。  相似文献   

9.
老年痴呆症的主要临床表现为认知功能严重受损,其原因可能是皮层与海马内的突触结构或功能障碍及神经环路活动异常所致。可溶性Aβ尤其是Aβ寡聚体(而不是沉积在脑组织中的淀粉样斑块)可能首先选择性地攻击GABA能抑制性神经元,使海马或皮层内兴奋性神经元由于所受抑制减弱而过度兴奋,进而导致神经环路或网络活动异常。神经网络异常又通过一系列的代偿反应引起突触传递和突触可塑性受损。正常生理水平的tau通过不同的机制在介导Aβ的突触及神经环路毒性中扮演重要角色。  相似文献   

10.
围神经元网是中枢神经系统中一种包绕在特定类型神经元胞体和近端神经突周围的细胞外基质网络。在1883年,围神经元网最早被Camillo Golgi所描述,直到近几十年,研究人员才对其分子组成、发育成熟以及潜在的功能有密集的研究。研究表明,围神经元网主要由透明质酸、硫酸软骨素蛋白多糖、连接蛋白和肌腱蛋白-R组成。围神经元网在神经发育的晚期才渐次出现,它的发育成熟水平和神经可塑性水平的高低呈负相关。功能上,一方面,围神经网络被认为在稳定细胞外微环境、维持被包裹神经元的性能和保护被包裹的神经元免受有害物质的影响等方面起到了重要的作用,围神经元网的异常可以导致诸如癫痫、中风和阿尔茨海默病等中枢神经系统的机能障碍;另一方面,围神经元网作为包裹在细胞外的一道屏障限制了神经可塑性的发生和阻碍了神经损伤后的再生。在成年动物中,用软骨素酶法降解围神经元网可以促进脊髓损伤后的功能修复以及恢复活动依赖的中枢神经系统可塑性调节机制,表明围神经元网在调节神经可塑性方面起到了非常重要的作用。本文就早期发育中活动依赖的围神经网络的形成和围神经网络信号通路中的重要分子——硫酸软骨素蛋白多糖受体的研究进展进行综述,并就它们如何调节神经可塑性展开讨论。  相似文献   

11.
老化通常指生物体生长发育成熟以后,随年龄增加生理机能逐渐减退,内环境稳定性下降,组织器官逐渐发生退行性改变,最终走向衰老、死亡的过程。神经系统老化是神经元退行性病变形成的基础和条件。由于神经生长因子(nerve growth factor,NGF)与中枢神经系统胆碱能神经元的存活和可塑性调节密切相关,所以NGF在神经系统老化和神经退行性变疾病如老年性痴呆(Alzheimer’s disease,AD)的发生发展过程中发挥重要作用。本文综述了NGF在脑老化中的变化及其与AD发病机制的关系。  相似文献   

12.
刘金变  江伟  王莉 《生命科学》2008,20(2):279-282
谷氨酸是哺乳动物中枢神经系统重要兴奋性神经递质,参与学习、记忆、药物依赖成瘾及神经系统退行性疾病等多种病理生理过程。谷氨酸通过激活离子型(iGluRs)和代谢型谷氨酸受体(mGluRs)发挥作用。业已有研究提示iGluRs和mGluRs之间存在相互作用,但具体机制尚待阐明。本文从蛋白分子结构、突触可塑性、相互作用可能涉及的信号分子和通路等方面综述了NMDAR与Ⅰ组mGluRs之间的相互作用,旨在为深入研究谷氨酸受体之间的相互作用提供线索。  相似文献   

13.
Sonic hedgehog (SHH) is a secreted morphogen that regulates the patterning and growth of many tissues in the developing mouse embryo, including the central nervous system (CNS). We show that a member of the FK506-binding protein family, FKBP8, is an essential antagonist of SHH signaling in CNS development. Loss of FKBP8 causes ectopic and ligand-independent activation of the Shh pathway, leading to expansion of ventral cell fates in the posterior neural tube and suppression of eye development. Although it is expressed broadly, FKBP8 is required to antagonize SHH signaling primarily in neural tissues, suggesting that hedgehog signal transduction is subject to cell-type specific modulation during mammalian development.  相似文献   

14.
As one part of epigenetics, histone deacetylases (HDACs) have been demonstrated to get into the neural events, including neurogenesis, synaptic plasticity, and neurodegeneration through regulating acetylation status of target proteins to influence protein function and gene expression. However, the recent studies indicated that HDAC2, a member of HDACs family, played a role in insulin signaling pathway and synaptic plasticity. Here, we are concerned about whether HDAC2 was co-located with insulin signaling components in postsynaptic glutamatergic neurons (PSGNs) of the adult mouse hippocampus using double immunofluorescence staining. The results displayed that HDAC2 was present in PSGNs marked by N-methyl-d-aspartate receptor subunit 2B, in which major components of insulin signaling pathway such as insulin receptor alpha and beta and insulin receptor substrate-1 were also involved. Accordingly, we speculate that the interaction of HDAC2 and insulin signaling system in PSGNs observed in the present study may serve as a potential mechanism in memory formation. We hope this could provide a valuable basis for understanding the roles of HDAC2 and insulin on cognitive impairment of diabetes mellitus, involved Alzheimer??s disease, which is also called type 3 diabetes recently. And this will also benefit to the treatment of insulin-related diseases in the central nervous system.  相似文献   

15.
The morphogenesis of dendritic spines, the major sites of excitatory synaptic transmission in the brain, is important in synaptic development and plasticity. We have identified an ephrinB-EphB receptor trans-synaptic signaling pathway which regulates the morphogenesis and maturation of dendritic spines in hippocampal neurons. Activation of the EphB receptor induces translocation of the Rho-GEF kalirin to synapses and activation of Rac1 and its effector PAK. Overexpression of dominant-negative EphB receptor, catalytically inactive kalirin, or dominant-negative Rac1, or inhibition of PAK eliminates ephrin-induced spine development. This novel signal transduction pathway may be critical for the regulation of the actin cytoskeleton controlling spine morphogenesis during development and plasticity.  相似文献   

16.
Proper development of neuronal networks relies on the polarization of the neurons, thus the establishment of two compartments, axons and dendrites, whose formation depends on cytoskeletal rearrangements. Rnd proteins are regulators of actin organization and they are important players in several aspects of brain development as neurite formation, axon guidance and neuron migration. We have recently demonstrated that mice lacking RhoE/Rnd3 expression die shortly after birth and have neuromotor impairment and neuromuscular alterations, indicating an abnormal development of the nervous system. In this study, we have further investigated the specific role played by RhoE in several aspects of neuronal development by using hippocampal neuron cultures. Our findings show that neurons from a mice lacking RhoE expression exhibit a decrease in the number and the total length of the neurites. We also show that RhoE-deficient neurons display a reduction in axon outgrowth and a delay in the process of neuronal polarization. In addition, our results suggest an involvement of the RHOA/ROCK/LIMK/COFILIN signaling pathway in the neuronal alterations induced by the lack of RhoE. These findings support our previous report revealing the important role of RhoE in the normal development of the nervous system and may provide novel therapeutic targets in neurodegenerative disorders.  相似文献   

17.
Wnt(wingless-type MMTV integration site family members)信号通路与细胞的发育分化密切相关,尤其对动物胚胎期中枢神经系统的发育至关重要。在眼的早期发育中,视泡背部视网膜色素上皮细胞(RPE)Wnt/βcatenin信号通路高度活跃,对神经视网膜及RPE的发育调控起重要作用。本文结合目前该领域研究进展,综合评述Wnt信号通路、Wnt蛋白家族以及Wnt信号通路与RPE发育的关系。  相似文献   

18.
MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.  相似文献   

19.
树突棘是神经元之间产生直接联系的部位,其形态可塑性是记忆的结构基础。谷氨酸信息传递是中枢神经信息传递的主要方式,能产生突触传递效率的可塑性,由此引起树突棘形态的可塑性变化。本文从谷氨酸受体途径的角度对树突棘形态可塑性的调控机制做一综述。谷氨酸受体主要通过其下游信号分子调节棘内肌动蛋白动力学蛋白,参与树突棘的形态发生和稳定。该作用在局部受到不同的蛋白、信号分子、激素、mi RNAs的调节,从而参与生理及病理过程。最后,提出展望,研究脑区特异的局部微环境变化对记忆相关疾病病因及治疗探讨有参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号