首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The seed of an excellent indica restorer line Jinhui10 (Oryza sativa L. ssp. indica) was treated by ethyl methanesulfonate (EMS); a leaf-color mutant displaying distinct phenotype throughout development grown in paddy field was identified from the progeny. The mutant leaf showed white-yellow at seedling stage and then turned to yellow-green at tillering stage, after that, virescent color appeared until to maturity. The mutant was thus temporarily designed as wyv1. The chlorophyll contents decreased significantly and the changing was consistent with the chlorotic level of wyv1 leaves. Chlorophyll fluorescence kinetic parameters measured at the seedling stage showed that co-efficiency of photochemical quenching (qP), actual photosystem II efficiency (ΦPS II), electron transport rate (ETR) and initial chlorophyll fluorescence level (Fo), net photosynthetic rate (Pn) and maximum photochemical efficiency (Fv / Fm) significantly decreased in severe chlorotic leaf of the mutant compared with that of wild type. However, no significant differences were observed for Pn and Fv/Fm between virescent leaf and normal green leaf. Genetic analysis suggested that the mutant phenotype was controlled by a single recessive nuclear gene which was finally mapped between SSR marker Y7 and Y6 on rice chromosome 3 based on F2 population of Xinong1A / wyv1. Genetic distances were 0.06 cM and 0.03 cM respectively, and the physical distance was 84 kb according to the sequence of indica rice 9311. The results must facilitate map-based cloning and functional analysis of WYV1 gene.  相似文献   

2.
The tomato (Lycopersicon esculentum (L.) Mill.) ghost plant is a mutant of the San Marzano cultivar affected in carotenoid biosynthesis. ghost plants exhibit a variable pattern of pigment biosynthesis during development. Cotyledons are green but true leaves are white. Green sectors, which appear to be clonal in origin, are frequently observed in the white tissue. Because of the lack of photosynthesis ghost plants have a very low viability in soil. We have developed a strategy for propagating ghost plants that employs organ culture to generate variegated green-white plants which, supported by the photosynthetic green areas, develop in soil to almost wild-type size. These plants were used to analyze the pigment content of the different tissues observed during development and plastid ultrastructure. Cotyledons and green leaves contain both colored carotenoids and chlorophyll but only the colorless carotenoid phytoene accumulates in white leaves. the plastids in the white tissue of ghost leaves lack internal membrane structures but normal chloroplasts can be observed in the green areas. The chromoplasts of white fruits are also impaired in their ability to form thylakoid membranes.  相似文献   

3.
Cytokinins (CKs) are involved in the regulation of plant development including plastid differentiation and function. Partial location of CK biosynthetic pathways in plastids suggests the importance of CKs for chloroplast development. The impact of genetically modified CK metabolism on endogenous CK, indole-3-acetic acid, and abscisic acid contents in leaves and isolated intact chloroplasts of Nicotiana tabacum was determined by liquid chromatography/mass spectrometry and two-dimensional high-performance liquid chromatography, and alterations in chloroplast ultrastructure by electron microscopy. Ectopic expression of Sho, a gene encoding a Petunia hybrida isopentenyltransferase, was employed to raise CK levels. The increase in CK levels was lower in chloroplasts than in leaves. CK levels were reduced in leaves of tobacco harbouring a CK oxidase/dehydrogenase gene, AtCKX3. The total CK content also decreased in chloroplasts, but CK phosphate levels were higher than in the wild type. In a transformant overexpressing a maize beta-glucosidase gene, Zm-p60.1, naturally targeted to plastids, a decrease of CK-O-glucosides in chloroplasts was found. In leaves, the changes were not significant. CK-O-glucosides accumulated to very high levels in leaves, but not in chloroplasts, of plants overexpressing a ZOG1 gene, encoding trans-zeatin-O-glucosyltransferase from Phaseolus lunatus. Manipulation of the CK content affected levels of indole-3-acetic and abscisic acid. Chloroplasts of plants constitutively overexpressing Sho displayed ultrastructural alterations including the occasional occurrence of crystalloids and an increased number of plastoglobuli. The other transformants did not exhibit any major differences in chloroplast ultrastructure. The results suggest that plant hormone compartmentation plays an important role in hormone homeostasis and that chloroplasts are rather independent organelles with respect to regulation of CK metabolism.  相似文献   

4.
Variegated leaves are often caused by a nuclear recessive mutation in higher plants. Characterization of the gene responsible for variegation has shown to provide several pathways involved in plastid differentiation. Here we describe an Arabidopsis variegated mutant isolated by T-DNA tagging. The mutant displayed green and yellow sectors in all green tissues except for cotyledons. Cells in the yellow sector of the mutant contained both normal-appearing and mutant chloroplasts. The isolated mutant was shown to be an allele of the previously reported mutant, yellow variegated (var2). Cloning and molecular characterization of the VAR2 locus revealed that it potentially encodes a chloroplastic homologue of FtsH, an ATP-dependent metalloprotease that belongs to a large protein family involved in various cellular functions. ftsH-like genes appear to comprise a small gene family in Arabidopsis genome, since at least six homologues were found in addition to VAR2. Dispensability of VAR2 was therefore explained by the redundancy of genes coding for FstHs. In the yellow regions of the mutant leaves, accumulation of photosynthetic protein components in the thylakoid membrane appeared to be impaired. Based on the role of FtsH in a protein degradation pathway in plastids, we propose a possibility that VAR2 is required for plastid differentiation by avoiding partial photooxidation of developing chloroplasts.  相似文献   

5.
High photosynthetic rate of a chlorophyll mutant of cotton   总被引:4,自引:3,他引:1       下载免费PDF全文
In a chlorophyll mutant (virescent) and wild-type cotton (Gossypium hirsutum L.), a number of photosynthetic parameters have been measured and compared with those published for other chlorophyll mutants. (a) The photosynthetic rates at 230 w/m2 (400-700 nm) from a tungsten lamp were 36.8 mg CO2 fixed/dm2·hr (virescent) and 39.5 mg CO2 fixed/dm2·hr (wild-type). On a chlorphyll basis, the photosynthetic rates were 36.8 and 12.1 mg CO2 fixed/mg chl·hr, respectively. (b) The photosynthetic rates at 13 w/m2 (400-700 nm) from a tungsten source were 7.1 mg CO2 fixed/dm2·hr (virescent) and 7.4 mg CO2 fixed/dm2·hr (wild-type). On a chlorophyll basis, the photosynthetic rates were 6.0 and 1.4 mg CO2 fixed/mg chl·hr, respectively. (c) The chlorophyll a/b ratios of the virescent and wild-type leaves were 3.3 and 4.1 (d) The chlorophyll/carotenoid ratios for the virescent and wild-type leaves were 3.2 and 7.3, respectively. (e) The photosynthetic carbon metabolism of the chlorophyll mutant was through the reductive pentose phosphate cycle. (f) The CO2 compensation points for the virescent and wild-type plants were similar. (g) The mutant and wild-type leaves have the same quantum yield in the red part of the visible spectrum, but the virescent leaves have a lower quantum yield in the blue part of the spectrum. (h) Virescent and wild-type leaves contain similar levels on a protein basis of several reductive pentose phosphate cycle enzymes.  相似文献   

6.
7.
Shaw DJ  Gray JC 《Planta》2011,233(5):961-970
Stromules are stroma-filled tubules that extend from the plastids in all multicellular plants examined to date. To facilitate the visualisation of stromules on different plastid types in various tissues of bread wheat (Triticum aestivum L.), a chimeric gene construct encoding enhanced yellow fluorescent protein (EYFP) targeted to plastids with the transit peptide of wheat granule-bound starch synthase I was introduced by Agrobacterium-mediated transformation. The gene construct was under the control of the rice Actin1 promoter, and EYFP fluorescence was detected in plastids in all cell types throughout the transgenic plants. Stromules were observed on all plastid types, although the stromule length and abundance varied markedly in different tissues. The longest stromules (up to 40 μm) were observed in epidermal cells of leaves, whereas only short beak-like stromules were observed on chloroplasts in mesophyll cells. Epidermal cells in leaves and roots contained the highest proportion of plastids with stromules, and stromules were also abundant on amyloplasts in the endosperm tissue of developing seeds. The general features of stromule morphology and distribution were similar to those shown previously for tobacco (Nicotiana tabacum L.) and arabidopsis (Arabidopsis thaliana (L.) Heynh.).  相似文献   

8.
Summary Seeds ofEpilobium hirsutum were treated with 0.5 mC35S isotope. One treated plant gave rise to variegated plants when selfed. Crosses revealed that this was caused by a recessive gene mp2 which induces plastid mutations.That the observed variegation was due to mutations of the plastids could be derived from the evidence of the characteristic patterns of the leaves and from the occurrence of actual mixed cells. Maternal inheritance of the mutated plastids could not be demonstrated as the mp2 gene induces most of the plastid mutations too late in the development of the leaves to exert an effect on the shoots and cell lines giving rise to egg cells.  相似文献   

9.
10.
Comparisons of the ultrastructure of plastids in three kinds of variegated leaves of tomato plants were made. No difference in the structure and development of chloroplasts in normal green leaves and in the green tissue of variegated leaves was found. The albescent tissues of chromosomal genetic variegated leaves contained only aberrant plastids, which were amoeboid or cup-shaped and had large vacuoles in the stroma. Ribosomes were absent from all plastids in this kind of variegated leaves. Three types of plastids, i.e. chloroplasts containing grana, chloroplasts lacking grana, and plastids lacking internal membranes, were present in the pale green tissues of the variegated leaves of extrachromosomal genetic tomato mutants. Depending on the distribution of these plastids, five cell types were observed in these tissues. Ribosomes were present in all plastids in this type of variegated leaves. In the albescent tissues of variegated leaves induced by streptomycin treatment, two kinds of plastids were observed, one containing giant grana and the other lacking organized internal membranes. A common feature of plastids in this albescent tissue was the presence of light stainable ribosomes. It was suggested that the development of variegated leaves may be caused by blocking an early stage of plastid development. This work was carried out in the Department of Botany, University of California, Davis, by Grant-GB-11906 from National Science Foundation of U.S.A.  相似文献   

11.
    
Summary Green-white variegated plants of the pm line of Oenothera hookeri were reported in the literature to be due to the action of a nuclear recessive plastome mutator (pm). The plastid DNAs of green and white leaves have been studied by restriction analysis and Southern hybridization. Remarkable differences in restriction pattern have been found between them. The green plastids show the typical pattern of plastome I; the white plastids give the pattern of plastome III. The conclusion from our experiments is: variegated pm plants contain two genetically different types of plastids. Their variegation is not due to nuclear gene-induced plastome mutations, but is the result of hybrid bleaching of the type III plastids, which were combined with type I plastids following — as we suppose-inadvertent pollination.  相似文献   

12.
Ac-Induced Instability at the Xanthophyllic Locus of Tomato   总被引:4,自引:1,他引:3       下载免费PDF全文
P. W. Peterson  J. I. Yoder 《Genetics》1993,134(3):931-942
To detect genomic instability caused by Ac elements in transgenic tomatoes, we used the incompletely dominant mutation Xanthophyllic-1 (Xa-1) as a whole plant marker gene. Xa-1 is located on chromosome 10 and in the heterozygote state causes leaves to be yellow. Transgenic Ac-containing tomato plants which differed in the location and number of their Ac elements were crossed to Xa-1 tester lines and F(1) progeny were scored for aberrant somatic sectoring. Of 800 test and control F(1) progeny screened, only four plants had aberrantly high levels of somatic sectors. Three of the plants had twin sectors consisting of green tissue adjacent to white tissue, and the other had twin sectors comprised of green tissue adjacent to tissue more yellow than the heterozygote background. Sectoring was inherited and the two sectoring phenotypes mapped to opposite homologs of chromosome 10; the green/yellow sectoring phenotype mapped in coupling to Xa-1 while the green/white sectoring phenotype mapped in repulsion. The two sectoring phenotypes cosegregated with different single, non-rearranged Acs, and loss of these Acs from the genome corresponded to the loss of sectoring. Sectoring was still observed after transposition of the Ac to a new site which indicated that sectoring was not limited to a single locus. In both sectored lines, meiotic recombination of the sectoring Ac to the opposite homolog caused the phenotype to switch between the green/yellow and the green/white phenotypes. Thus the two different sectoring phenotypes arose from the same Ac-induced mechanism; the phenotype depended on which chromosome 10 homolog the Ac was on. We believe that the twin sectors resulted from chromosome breakage mediated by a single intact, transposition-competent Ac element.  相似文献   

13.
14.
Treatment of barley seeds (Hordeum vulgare L.) with streptomycin, an inhibitor of plastid protein synthesis, resulted in growth of the albino phenotype seedlings with ribosome-deficient undifferentiated plastids and chlorophyll (Chl) level as low as 0.1% of that in control plant leaves. A major effect of the antibiotic was almost complete suppression of the ability of plants to synthesize 5-aminolevulinic acid (ALA) intended for Chl biosynthesis. The activity of synthesis of ALA intended for heme porphyrin biosynthesis in etiolated and greening seedlings and in light-grown albinophenotype plants was insensitive to light and cytokinins. In the upper parts of leaves of streptomycin-treated plants, exhibiting 60% Chl deficit, the cells with three types of chloroplasts could be observed: normally developed chloroplasts, chloroplasts composed of single thylakoids and grana, and completely undifferentiated plastids. In this Chl-deficient tissue, ALA synthesis was found to be stimulated by kinetin but much less than in leaves of the control plants. The endogenous cytokinin content in etiolated and greening seedlings treated with streptomycin was almost the same as it was in untreated control seedlings. The cytokinin level in the white tissue of plants grown in the light was on average twice as high as that in green leaves of the control plants. The capability of kinetin to stimulate the synthesis of ALA used for Chl biosynthesis was found to correlate with the Chl content and organization of the chloroplast internal structure. This correlation confirms the hypothesis that the normally developed internal structure of plastids is essential for the adequate phytohormone response in plants.  相似文献   

15.
BACKGROUND AND AIMS: Plant lateral organs such as leaves arise from a group of initial cells within the flanks of the shoot apical meristem (SAM). Alterations in the initiation of lateral organs are often associated with changes in the dimension and arrangement of the SAM as well as with abnormal hormonal homeostasis. A mutation named stem fasciated (stf) that affects various aspects of plant development, including SAM shape and auxin level, was characterized in sunflower (Helianthus annuus). METHODS: F1, F2 and F3 generations were obtained through reciprocal crosses between stf and normal plants. For the genetic analysis, a chi2 test was used. Phenotypic observations were made in field-grown and potted plants. A histological analysis of SAM, hypocotyl, epicotyl, stem and root apical meristem was also conducted. To evaluate the level of endogenous indole-3-acetic acid (IAA), a capillary gas chromatography-mass spectrometry-selected ion monitoring analysis was performed. KEY RESULTS: stf is controlled by a single nuclear recessive gene. stf plants are characterized by a dramatically increased number of leaves and vascular bundles in the stem, as well as by a shortened plastochron and an altered phyllotaxis pattern. By histological analysis, it was demonstrated that the stf phenotype is related to an enlarged vegetative SAM. Microscopy analysis of the mutant's apex also revealed an abnormal enlargement of nuclei in both central and peripheral zones and a disorganized distribution of cells in the L2 layer of the central zone. The stf mutant showed a high endogenous free IAA level, whereas auxin perception appeared normal. CONCLUSIONS: The observed phenotype and the high level of auxin detected in stf plants suggest that the STF gene is necessary for the proper initiation of primordia and for the establishment of a phyllotactic pattern through control of both SAM arrangement and hormonal homeostasis.  相似文献   

16.
During the summer of 1983 in central Alberta, changes in the bacterial population inhabiting the leaves of field beans (Phaseolus vulgaris L.) and canola (Brassica napus L. Altex) were studied to determine if ice-nucleating bacteria were present on these plants. Three colony types (white, yellow, and peach-colored) were found on field beans and canola leaves. Approximately 25% of the isolates from the white colony group, which dominated the population, were ice-nucleating bacteria. No ice-nucleating bacteria were present on canola leaves. Out of a total of 76 ice-nucleating bacteria isolated, 5 representative cultures were characterized in detail and identified as Pseudomonas fluorescens. The fatty acid composition of these cultures was essentially identical to that of typical P. fluorescens cultures and was altered by varying the growth temperature from 10 to 30°C.  相似文献   

17.
Biochemical studies on the iojap mutant of maize   总被引:3,自引:1,他引:2       下载免费PDF全文
The white leaf tissue of seedlings of Zea mays L. affected by the recessive nuclear gene iojap shows no photosynthetic activity; it contains about 1.4% of carotenoid and less than 0.1% of chlorophyll a content of normal green tissue. Neither fraction I protein nor chloroplast adenosine triphosphatase (EC 3.6.1.4) (CF1) is detectable. This confirms earlier observations that plastids of white sectors of iojap maize do not contain ribosomes. About 40% of the activity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) in green leaves could be found in white leaves indicating that the phosphoenolpyruvate carboxylase EC 4.1.1.31 is made on cytoplasmic ribosomes. The oxygen consumption of iojap-affected leaves is decreased.  相似文献   

18.
19.
Pathogenicity of two sequenced isolates of Bean yellow mosaic virus (BYMV) was established on genotypes of Pisum sativum L. reported to carry resistance genes to BYMV and other potyviruses. Resistance to the white lupin strain of BYMV (BYMV-W) is inherited as a recessive gene named wlv that maps to linkage group VI together with other Potyvirus resistances. One of these, sbm1, confers resistance to strains of Pea seedborne mosaic virus and previously has been identified as a mutant allele of the eukaryotic translation initiation factor 4E gene (eIF4E). Sequence comparison of eIF4E from BYMV-W-susceptible and -resistant P. sativum genotypes revealed a polymorphism correlating with the resistance profile. Expression of eIF4E from susceptible plants in resistant plants facilitated BYMV-W infection in inoculated leaves. When cDNA of BYMV-W was agroinoculated, resistance mediated by the wlv gene frequently was overcome, and virus from these plants had a codon change causing an Arg to His change at position 116 of the predicted viral genome-linked protein (VPg). Accordingly, plants carrying the wlv resistance gene were infected upon inoculation with BYMV-W derived from cDNA with a His codon at position 116 of the VPg coding region. These results suggested that VPg determined pathogenicity on plants carrying the wlv resistance gene and that wlv corresponded to the sbm1 allele of eIF4E.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号