首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel biodegradable poly(ethylene glycol) (PEG) based hydrogels, namely, PEG sebacate diacrylate (PEGSDA) were synthesized, and their properties were evaluated. Chemical structures of these polymers were confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H NMR) spectroscopy. After photopolymerization, the dynamic shear modulus of the hydrogels was up to 0.2 MPa for 50% PEGSDA hydrogel, significantly higher than conventional hydrogels such as PEG diacrylate (PEGDA). The swelling ratios of these macromers were significantly lower than PEGDA. The in vitro degradation study demonstrated that these hydrogels were biodegradable with weight losses about 66% and 32% for 25% and 50% PEGSDA after 8 weeks of incubation in phosphate-buffered saline at 37 degrees C. In vitro biocompatibility was assessed using cultured rat bone marrow stromal cells (MSCs) in the presence of unreacted monomers or degradation products. Unlike conventional PEGDA hydrogels, PEGSDA hydrogel without RGD peptide modification induced MSC cell adhesion similar to tissue culture polystyrene. Finally, complex three-dimensional structures of PEGSDA hydrogels using solid free form technique were fabricated and their structure integrity was better maintained than PEGDA hydrogels. These hydrogels may find use as scaffolds for tissue engineering applications.  相似文献   

2.
Biocompatible hydrogels that serve as the hosting membrane for various bioreceptors contribute to the response of impedimetric biosensors. The temperature response of poly(2-hydroxymethacrylate) [p(HEMA)]-based hydrogel networks prepared with poly(ethylene glycol) methacrylate (PEGMA) for enhanced biocompatibility and with N-[tris(hydroxymethyl)methyl] acrylamide (HMMA) was studied. Hydrogels were cross-linked with tetraethyleneglycol diacrylate (TEGDA) and synthesized by UV initiation (2M% DMPA photoinitiator). The p(HEMA-co-PEGMA-co-HMMA) based hydrogels were fabricated as discrete gel pads (D=2.5 mm, H=2 mm and V=9.82 μL) on top of 250 μm diameter cysteamine modified and acryloyl (polyethylene glycol)(110) N-hydroxy succinamide ester (acryloyl-PEG-NHS) derivatized gold microelectrodes set within 8-well (8W1E) cell culture biochips. Gel pads were fabricated with cross-link densities corresponding to 1, 3, 5, 7, 9 and 12 M% TEGDA and were studied by frequency dependent 3-electrode electrochemical impedance spectroscopy (1 mHz to 100 kHz; 50 mV p-t-p) and by temporal 2-electrode impedimetry (64 kHz; 50 mV p-t-p) over the temperature range 30-45°C at 90% RH or in aqueous 0.1 M Tris/KCl at pH 7.2 buffer. The p(HEMA-co-PEGMA-co-HMMA) hydrogels showed an increase in the real component of impedance with increasing cross-link density and demonstrated activation energies for impedimetric transport that ranged from 15 kJ/mol (3 M%) to 20 kJ/mol (12 M%) confirming the dominance of proton migration in the impedance of the hydrogels.  相似文献   

3.
The use of poly(ethylene glycol) (PEG) hydrogels in tissue engineering is limited by their persistence in the site of regeneration. In an attempt to produce inert hydrolytically degradable PEG-based hydrogels, star (SPELA) poly(ethylene glycol-co-lactide) acrylate macromonomers with short lactide segments (<15 lactides per macromonomer) were synthesized. The SPELA hydrogel was characterized with respect to gelation time, modulus, water content, sol fraction, degradation, and osteogenic differentiation of encapsulated marrow stromal cells (MSCs). The properties of SPELA hydrogel were compared with those of the linear poly(ethylene glycol-co-lactide) acrylate (LPELA). The SPELA hydrogel had higher modulus, lower water content, and lower sol fraction than the LPELA. The shear modulus of SPELA hydrogel was 2.2 times higher than LPELA, whereas the sol fraction of SPELA hydrogel was 5 times lower than LPELA. The degradation of SPELA hydrogel depended strongly on the number of lactide monomers per macromonomer (nL) and showed a biphasic behavior. For example, as nL increased from 0 to 3.4, 6.4, 11.6, and 14.8, mass loss increased from 7 to 37, 80, 100% and then deceased to 87%, respectively, after 6 weeks of incubation. The addition of 3.4 lactides per macromonomer (<10 wt % dry macromonomer or <2 wt % swollen hydrogel) increased mass loss to 50% after 6 weeks. Molecular dynamic simulations demonstrated that the biphasic degradation behavior was related to aggregation and micelle formation of lactide monomers in the macromonomer in aqueous solution. MSCs encapsulated in SPELA hydrogel expressed osteogenic markers Dlx5, Runx2, osteopontin, and osteocalcin and formed a mineralized matrix. The expression of osteogenic markers and extent of mineralization was significantly higher when MSCs were encapsulated in SPELA hydrogel with the addition of bone morphogenetic protein-2 (BMP2). Results demonstrate that hydrolytically degradable PEG-based hydrogels are potentially useful as a delivery matrix for stem cells in regenerative medicine.  相似文献   

4.
To address the need for bioactive materials toward clinical applications in wound healing and tissue regeneration, an artificial protein was created by recombinant DNA methods and modified by grafting of poly(ethylene glycol) diacrylate. Subsequent photopolymerization of the acrylate-containing precursors yielded protein-graft-poly(ethylene glycol) hydrogels. The artificial protein contained repeating amino acid sequences based on fibrinogen and anti-thrombin III, comprising an RGD integrin-binding motif, two plasmin degradation sites, and a heparin-binding site. Two-dimensional adhesion studies showed that the artificial protein had specific integrin-binding capability based on the RGD motif contained in its fibrinogen-based sequence. Furthermore, heparin bound strongly to the protein's anti-thrombin III-based region. Protein-graft-poly(ethylene glycol) hydrogels were plasmin degradable, had Young's moduli up to 3.5 kPa, and supported three-dimensional outgrowth of human fibroblasts. Cell attachment in three dimensions resulted from specific cell-surface integrin binding to the material's RGD sequence. Hydrogel penetration by cells involved serine-protease mediated matrix degradation in temporal and spatial synchrony with cellular outgrowth. Protein-graft-poly(ethylene glycol) hydrogels represent a new and versatile class of biomimetic hybrid materials that hold clinical promise in serving as implants to promote wound healing and tissue regeneration.  相似文献   

5.
Cheng Y  He C  Xiao C  Ding J  Zhuang X  Huang Y  Chen X 《Biomacromolecules》2012,13(7):2053-2059
Thermosensitive hydrogels based on PEG and poly(l-glutamate)s bearing different hydrophobic side groups were separately synthesized by the ring-opening polymerization (ROP) of l-glutamate N-carboxyanhydrides containing different alkyl protected groups, that is, methyl, ethyl, n-propyl, and n-butyl, using mPEG(45)-NH(2) as macroinitiator. The resulting copolymers underwent sol-gel transitions in response to temperature change. Interestingly, the polypeptides containing methyl and ethyl showed significantly lower critical gelation temperatures (CGTs) than those bearing n-propyl and butyl side groups. Based on the analysis of (13)C NMR spectra, DLS, circular dichroism spectra, and ATR-FTIR spectra, the sol-gel transition mechanism was attributed to the dehydration of poly(ethylene glycol) and the increase of β-sheet conformation content in the polypeptides. The in vivo gelation test indicated that the copolymer solution (6.0 wt %) immediately changed to a gel after subcutaneous injection into rats. The mass loss of the hydrogel in vitro was accelerated in the presence of proteinase K, and the MTT assay revealed that the block copolymers exhibited no detectable cytotoxicity. The present work revealed that subtle variation in the length of a hydrophobic side group displayed the decisive effect on the gelation behavior of the polypeptides. In addition, the thermosensitive hydrogels could be promising materials for biomedical applications due to their good biocompatibility, biodegradability, and the fast in situ gelation behavior.  相似文献   

6.
A series of poly(ethylene glycol)-protein hydrogels were synthesized with different proteins, and the resultant structures were characterized in terms of swelling behavior and mechanical, optical, and drug release properties. Irrespectively of the protein involved in polymerization with poly(ethylene glycol), all studied systems were found to be loosely cross-linked networks, where both polymer and protein are completely solvated, enabling as high as 96% water content. Changes in the apparent transparency of the hydrogels synthesized with different proteins were attributed to the ability of the protein component to self-associate via hydrophobic interactions. The polyelectrolyte nature of the protein component governs the pH responsiveness of the network, which manifested itself in a pH-dependent mechanism of swelling and drug release. It was demonstrated that there is great opportunity to modulate the final characteristics of the hydrogel system to fit the need of specific biomedical application.  相似文献   

7.
Hemicellulose-based hydrogels were prepared by radical polymerization of 2-hydroxyethyl methacrylate or poly(ethylene glycol) dimethacrylate with oligomeric hydrosoluble hemicellulose modified with well-defined amounts of methacrylic functions. The polymerization reaction was carried out in water at 40 degrees C using a redox initiator system. The hydrogels were in general elastic, soft, and easily swellable in water. Their viscoelastic properties were determined by oscillatory shear measurements on 2 mm thick hydrogels under a slight compression to avoid slip, over the frequency range 10(-1) to 10(2). The rheological characterization indicated that the elastic response of the hydrogels was stronger than the viscous response, leading to the conclusion that the hydrogel systems displayed a predominantly solid-like behavior. The curves showed an increase in shear storage modulus with increasing cross-linking density. The nature of the synthetic comonomer in the hemicellulose-based hydrogels also influenced the shear storage modulus. Comparison of hemicellulose-based hydrogels with pure poly(2-hydroxyethyl methacrylate) hydrogels showed that their behaviors were rather similar, demonstrating that the synthetic procedure made it possible to prepare hemicellulose-based hydrogels with properties similar to those of pure poly(2-hydroxyethyl methacrylate) hydrogels.  相似文献   

8.
In situ forming hydrogels based on thermosensitive polymers have attractive properties for tissue engineering. However, the physical interactions in these hydrogels are not strong enough to yield gels with sufficient stability for many of the proposed applications. In this study, additional covalent cross-links were introduced by photopolymerization to improve the mechanical properties and the stability of thermosensitive hydrogels. Methacrylate groups were coupled to the side chains of triblock copolymers (ABA) with thermosensitive poly( N-(2-hydroxypropyl) methacrylamide lactate) A blocks and a hydrophilic poly(ethylene glycol) B block. These polymers exhibit lower critical solution temperature (LCST) behavior in aqueous solution and the cloud point decreased with increasing amounts of methacrylate groups. These methacrylate groups were photopolymerized above the LCST to render covalent cross-links within the hydrophobic domains. The mechanical properties of photopolymerized hydrogels were substantially improved and their stability was prolonged significantly compared to nonphotopolymerized hydrogels. Whereas non-UV-cured gels disintegrated within 2 days at physiological pH and temperature, the photopolymerized gels degraded in 10 to 25 days depending on the degree of cross-linking. To assess biocompatibility, goat mesenchymal stem cells were seeded on the hydrogel surface or encapsulated within the gel and they remained viable as demonstrated by a LIVE/DEAD cell viability/cytotoxicity assay. Expression of alkaline phosphatase and production of collagen I demonstrated the functionality of the mesenchymal stem cells and their ability to differentiate upon encapsulation. Due to the improved mechanical properties, stability, and adequate cytocompatibility, the photopolymerized thermosensitive hydrogels can be regarded as highly potential materials for applications in tissue engineering.  相似文献   

9.
Eight-arm poly(ethylene glycol)-poly(L-lactide), PEG-(PLLA)(8), and poly(ethylene glycol)-poly(D-lactide), PEG-(PDLA)(8), star block copolymers were synthesized by ring-opening polymerization of either L-lactide or D-lactide at room temperature in the presence of a single-site ethylzinc complex and 8-arm PEG (M(n) = 21.8 x 10(3) or 43.5 x 10(3)) as a catalyst and initiator, respectively. High lactide conversions (>95%) and well-defined copolymers with PLLA or PDLA blocks of the desired molecular weights were obtained. Star block copolymers were water-soluble when the number of lactyl units per poly(lactide) (PLA) block did not exceed 14 and 17 for PEG21800-(PLA)(8) and PEG43500-(PLA)(8), respectively. PEG-(PLA)(8) stereocomplexed hydrogels were prepared by mixing aqueous solutions with equimolar amounts of PEG-(PLLA)(8) and PEG-(PDLA)(8) in a polymer concentration range of 5-25 w/v % for PEG21800-(PLA)(8) star block copolymers and of 6-8 w/v % for PEG43500-(PLA)(8) star block copolymers. The gelation is driven by stereocomplexation of the PLLA and PDLA blocks, as confirmed by wide-angle X-ray scattering experiments. The stereocomplexed hydrogels were stable in a range from 10 to 70 degrees C, depending on their aqueous concentration and the PLA block length. Stereocomplexed hydrogels at 10 w/v % polymer concentration showed larger hydrophilic and hydrophobic domains as compared to 10 w/v % single enantiomer solutions, as determined by cryo-TEM. Correspondingly, dynamic light scattering showed that 1 w/v % solutions containing both PEG-(PLLA)(8) and PEG-(PDLA)(8) have larger "micelles" as compared to 1 w/v % single enantiomer solutions. With increasing polymer concentration and PLLA and PDLA block length, the storage modulus of the stereocomplexed hydrogels increases and the gelation time decreases. Stereocomplexed hydrogels with high storage moduli (up to 14 kPa) could be obtained at 37 degrees C in PBS. These stereocomplexed hydrogels are promising for use in biomedical applications, including drug delivery and tissue engineering, because they are biodegradable and the in-situ formation allows for easy immobilization of drugs and cells.  相似文献   

10.
Four new poly(hydroxyethylaspartamide)-based copolymers bearing (a) poly(ethylene glycol) 2000, (b) poly(ethylene glycol) 5000, (c) poly(ethylene glycol) 2000 and hexadecylalkyl, (d) poly(ethylene glycol) 5000 and hexadecylalkyle, as pendant groups were synthesised. The copolymers were obtained by partial aminolysis of polysuccinimide with poly(ethylene glycol) and hexadecylalkyl amino derivatives followed by reaction with ethanolamine. Naked polyhydroxyaspartamide was obtained by polysuccinimide reaction with ethanolamine. The nuclear magnetic resonance, infrared, light scattering and elemental analysis allowed for the extensive physico-chemical characterisation of the carriers. The molecular mass of all the polymers was in the range of 27000-34000 Da, and the polydispersivity was in the range of 1.5-1.7. By intravenous injection to mice bearing a solid tumour, all the polymeric carriers displayed a bi-compartmental pharmacokinetic behaviour. Both the poly(ethylene glycol) and the hexadecylalkyle conjugation prolonged and enhanced the distribution phase of poly(hydroxyethylaspartamide). The poly(ethylene glycol) conjugation was found to promote the carrier elimination by kidney ultrafiltration and to prevent partially the accumulation in the spleen and in the liver. The poly(ethylene glycol)/hexadecylalkyle conjugates localised preferentially in the liver were over 30% of the dose/g of tissue was determined after 144 h from administration. In the tumour all the polymers displayed a relevant accumulation that significantly increased throughout the time to reach high concentrations after 24 h. In particular, the poly(ethylene glycol)/hexadecylalkyle conjugates achieved a concentration of 15-25% of the dose/g of tissue after 24 h from administration that was maintained up to 144 h.  相似文献   

11.
Zhang Y  Tao L  Li S  Wei Y 《Biomacromolecules》2011,12(8):2894-2901
An inexpensive, facile, and environmentally benign method has been developed for the preparation of multiresponsive, dynamic, and self-healing chitosan-based hydrogels. A dibenzaldehyde-terminated telechelic poly(ethylene glycol) (PEG) was synthesized and was allowed to form Schiff base linkages between the aldehyde groups and the amino groups in chitosan. Upon mixing the telechelic PEG with chitosan at 20 °C, hydrogels with solid content of 4-8% by mass were generated rapidly in <60 s. Because of the dynamic equilibrium between the Schiff base linkage and the aldehyde and amine reactants, the hydrogels were found to be self-healable and sensitive to many biochemical-stimuli, such as pH, amino acids, and vitamin B6 derivatives. In addition, chitosan could be digested by enzymes such as papain, leading to the decomposition of the hydrogels. Encapsulation and controlled release of small molecules such as rhodamine B and proteins such as lysozyme have been successfully carried out, demonstrating the potential biomedical applications of these chitosan-based dynamic hydrogels.  相似文献   

12.
Carboxymethylchitosan microspheres crosslinked with poly(ethylene glycol) bisglycidyl ether were prepared and then tested as an adsorbent for selective removal of low-density lipoprotein (LDL) in human plasma. The microspheres were formed by a method of electrostatic instillation and crosslinked with poly(ethylene glycol) bisglycidyl ether. FTIR spectral analyses and X-ray photoelectron spectroscopy revealed that carboxymethylchitosan was crosslinked through amino groups to poly(ethylene glycol) bisglycidyl ether. The plasma lipoprotein sorption tests showed that the adsorption properties of the crosslinked microspheres for LDL were dependent on the concentrations of carboxymethylchitosan and poly(ethylene glycol) bisglycidyl ether. When the concentrations of carboxymethylchitosan and poly(ethylene glycol) bisglycidyl ether were 3.5% and 6%, respectively, 40% LDL and lower than 10% high density lipoprotein in plasma could be removed and the adsorption could be reach an equilibrium in 30 min.  相似文献   

13.
Currently, oligo[poly(ethylene glycol) fumarate] (OPF) hydrogels are being investigated as an injectable and biodegradable system for tissue engineering applications. In this study, cytotoxicity of each component of the OPF hydrogel formulation and the resulting cross-linked network was examined. Specifically, OPF synthesized with poly(ethylene glycol) (PEG) of different molecular weights (MW), the cross-linking agent [PEG-diacrylate (PEG-DA)], and the redox initiator pair [ammonium persulfate (APS) and ascorbic acid (AA)] were evaluated for cytotoxicity at 2 and 24 h using marrow stromal cells (MSCs) as model cells. The effect of leachable byproducts of OPF hydrogels on cytotoxicity was also investigated. Upon exposure to various concentrations of OPF for 2 h, greater than 50% of the MSCs were viable, regardless of OPF molecular weight or concentration in the media. After 24 h, the MSCs maintained more than 75% viability except for OPF concentrations higher than 25% (w/v). When examining the cross-linking agent, PEG-DA of higher MW (3400) demonstrated significantly higher viability compared to PEG-DA with MW 575 at all concentrations tested. Considering initiators, when MSCs were exposed to AA and APS, as well as the combination of AA and APS, higher viability was observed at lower concentrations. Once cross-linked, the leachable products from the OPF hydrogels had minimal adverse effects on the viability of MSCs (percentage of live cells was higher than 90% regardless of hydrogel types). The results suggest that, after optimization of cross-linking parameters, OPF-based hydrogels hold promise as novel injectable scaffolds or cell carriers in tissue engineering.  相似文献   

14.
Poly(ethylene glycol dimethacrylate), poly(EGDMA), was grafted onto chitosan by using a redox initiation system. Chitosan-graft-poly(EGDMA) products were characterized by DSC, TGA, FTIR and XRD techniques. Chitosan-graft-poly(EGDMA) was found to be enzymatically degradable in aqueous solutions of lysozyme, lipase and a mixture of α-amylase and protease. The biocompatibility of chitosan-graft-poly(EGDMA) with 871% grafting yield was investigated by studying its cytotoxicity, sensitization, irritation, acute systemic toxicity and hemolytic activity. The results of biocompatibility experiments showed that the product can potentially be used for external intervention devices on bone and other tissue.  相似文献   

15.
Aggregation and fusion of unilamellar vesicles by poly(ethylene glycol)   总被引:5,自引:0,他引:5  
Various aspects of the interaction between the fusogen, poly(ethylene glycol) and phospholipids were examined. The aggregation and fusion of small unilamellar vesicles of egg phosphatidylcholine (PC), bovine brain phosphatidylserine (PS) and dimyristoylphosphatidylcholine (DMPC) were studied by dynamic light scattering, electron microscopy and NMR. The fusion efficiency of Dextran, glycerol, sucrose and poly(ethylene glycol) of different molecular weights were compared. Lower molecular weight poly(ethylene glycol) are less efficient with respect to both aggregation and fusion. The purity of poly(ethylene glycol) does not affect its fusion efficiency. Dehydrating agents, such as Dextran, glycerol and sucrose, do not induce fusion. 31P-NMR results revealed a restriction in the phospholipid motion by poly(ethylene glycol) greater than that by glycerol and Dextran of similar viscosity and dehydrating capacity. This may be associated with the binding of poly(ethylene glycol) to egg PC, with a binding capacity of 1 mol of poly(ethylene glycol) to 12 mol of lipid. Fusion is greatly enhanced below the phase transition for DMPC, with extensive fusion occurring below 6% poly(ethylene glycol). Fusion of PS small unilamellar vesicles depends critically on the presence of cations. Large unilamellar vesicles were found to fuse less readily than small unilamellar vesicles. The results suggest that defects in the bilayer plays an important role in membrane fusion, and the 'rigidization' of the phospholipid molecules facilitates fusion possibly through the creation of defects along domain boundaries. Vesicle aggregation caused by dehydration and surface charge neutralization is a necessary but not a sufficient condition for fusion.  相似文献   

16.
The mass transport of solutes through hydrogels is an important design consideration in materials used for tissue engineering, drug delivery, and protein arrays used to quantify protein concentration and activity. We investigated the use of poly(ethylene glycol) (PEG) as a porogen to enhance diffusion of macromolecules into the interior of polyacrylamide and PEG hydrogel posts photopatterned within microfluidic channels. The diffusion of GST-GFP and dextran-FITC into hydrogels was monitored and effective diffusion coefficients were determined by fitting to the Fickian diffusion equations. PEG-diacrylate (M(r) 700) with porogen formed a macroporous structure and permitted significant penetration of 250 kDa dextran. Proteins copolymerized in these macroporous hydrogels retained activity and were more accessible to antibody binding than proteins copolymerized in nonporous gels. These results suggest that hydrogel macroporosity can be tuned to regulate macromolecular transport in applications such as tissue engineering and protein arrays.  相似文献   

17.
This study investigated the in vitro degradation characteristics of macroporous hydrogels based on poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)). Four formulations were fabricated to test the effect of porosity and cross-linking density on the degradation of the resulting macroporous hydrogels. Macroporosity was introduced by the addition of sodium bicarbonate and ascorbic acid, the precursors of the carbon dioxide porogen, in the initiation system for the hydrogel cross-linking. Macroporous hydrogels with porosities of 0.80 +/- 0.03 and 0.89 +/- 0.03 were synthesized by the addition of sodium bicarbonate of concentrations 40 and 80 mg/mL and ascorbic acid of concentrations 0.05 and 0.1 mol/L, respectively. Poly(ethylene glycol) diacrylate (PEG-DA) was utilized as a cross-linker. The molecular weight between cross-links had a significant effect on weight loss after 12 weeks, where samples with M(C) of 1,880 +/- 320 synthesized with a P(PF-co-EG):PEG-DA ratio of 3:1 had a significantly greater mass loss due to degradation than those with M(C) of 1,000 +/- 100 synthesized with a P(PF-co-EG):PEG-DA ratio of 1:1. In contrast, porosity played a minimal role in determining the weight loss. Mechanical testing of the hydrogels under confined compression showed a decrease in compressive modulus over the degradation time for all formulations. In addition, an increase in hydrogel equilibrium water content and pore wall thickness was observed with degradation time, whereas the hydrogel porosity and surface area density remained invariant. The results from microcomputed tomography corroborated with the rest of the measurements and indicated a bulk degradation mechanism of the macroporous hydrogels.  相似文献   

18.
We synthesized positively charged biodegradable hydrogels by cross-linking of agmatine-modified poly(ethylene glycol)-tethered fumarate (Agm-PEGF) and poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) to investigate the effect of the guanidino groups of the agmatine on hydrogel swelling behavior and smooth muscle cell adhesion to the hydrogels. The weight swelling ratio of these hydrogels at pH 7.0 increased from 279 +/- 4 to 306 +/- 7% as the initial Agm-PEGF content increased from 0 to 200 mg/g of P(PF-co-EG), respectively. The diffusional exponents, n, during the initial phase of water uptake were independent of the initial Agm-PEGF content and were determined to be 0.66 +/- 0.08, 0.71 +/- 0.07, and 0.60 +/- 0.05 for respective initial Agm-PEGF contents of 0, 100, and 200 mg/g. The heat of fusion of water present in the hydrogels increased from 214 +/- 11 to 254 +/- 4 J/g as the initial Agm-PEGF content increased from 0 to 200 mg/g. The number of adherent smooth muscle cells increased dose-dependently from 15 +/- 6 to 75 +/- 7% of the initial seeding density as the initial Agm-PEGF content increased from 0 to 200 mg/g. These results suggest that the incorporation of the guanidino groups of agmatine into P(PF-co-EG) hydrogels increases the hydrogel free water content and the total water content of the hydrogels and also enhances cell adhesion to the hydrogels.  相似文献   

19.
Two fluorescence energy transfer assays for phospholipid vesicle-vesicle fusion have been developed, one of which is also sensitive to vesicle aggregation. Using a combination of these assays it was possible to distinguish between vesicle aggregation and fusion as induced by poly(ethylene glycol) PEG 8000. The chromophores used were 1-(4′-carboxyethyl)-6-diphenyl-trans-1,3,5-hexatriene as fluorescent ‘donor’ and 1-(4′-carboxyethyl)-6-(4″-nitro)diphenyl-trans-1,3,5-hexatriene as ‘acceptor’. These acids were appropriately esterified giving fluorescent phospholipid and triacylglycerol analogues. At 20°C poly(ethylene glycol) 8000 (PEG 8000) caused aggregation of l-α-dipalmitoylphosphatidylcholine (DPPC) vesicles without extensive fusion up to a concentration of about 35% (w/w). Fusion occurred above this poly(ethylene glycol) concentration. The triacylglycerol probes showed different behaviour from the phospholipids: while not exchangeable through solution in the absence of fusogen, they appeared to redistribute between bilayers under aggregating conditions. DPPC vesicles aggregated with < 35% poly(ethylene glycol) could not be disaggregated by dilution, as monitored by the phospholipid probes. However, DPPC vesicles containing approx. 5% phosphatidylserine which had been aggregated by poly(ethylene glycol) could be disaggregated by either dilution or sonication. Phospholipid vesicles aggregated by low concentrations of poly(ethylene glycol) appear to fuse to multilamellar structures on heating above the lipid phase transition temperature.  相似文献   

20.
Thermo-sensitive semi-IPN hydrogels were prepared via in situ copolymerization of N-isopropylacrylamide (NIPAAm) with poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-co-PCL) macromer in the presence of sodium alginate by UV irradiation technology. The effects of the sodium alginate content, temperature, and salt on the swelling behavior of the as-obtained hydrogels were studied. The results showed that the swelling ratio of the hydrogels increased with the increasing sodium alginate content at the same temperature, and decreased with the increase in temperature. The salt sensitivity of the semi-IPN hydrogels was dependent on the content of sodium alginate introduced in the hydrogels. The mechanical rheology of the hydrogels and in vitro release behavior of bovine serum albumin (BSA) in situ encapsulated within the hydrogels were also investigated. It was found that the introduction of sodium alginate with semi-IPN structure improved mechanical strength of the hydrogels and the cumulative release percentage of BSA from the hydrogels. Such double-sensitive semi-IPN hydrogel materials could be exploited as potential candidates for drug delivery carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号