首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
《Process Biochemistry》2014,49(10):1682-1690
Double enzymes (alcalase and trypsin) were effectively immobilized in a composite carrier (calcium alginate–chitosan) to produce immobilized enzyme beads referred to as ATCC. The immobilization conditions for ATCC were optimized, and the immobilized enzyme beads were characterized. The optimal immobilization conditions were 2.5% of sodium alginate, 10:4 sodium alginate to the double enzymes, 3:7 chitosan solution to CaCl2 and 2.5 h immobilization time. The ATCC beads had greatly enhanced stability and good usability compared with the free form. The ATCC residual activity was retained at 88.9% of DH (degree of hydrolysis) after 35 days of storage, and 36.0% of residual activity was retained after three cycles of use. The beads showed a higher zein DH (65.8%) compared with a single enzyme immobilized in the calcium alginate beads (45.5%) or free enzyme (49.3%). The ATCC kinetic parameters Vmax and apparent Km were 32.3 mL/min and 456.62 g−1, respectively. Active corn peptides (CPs) with good antioxidant activity were obtained from zein in the ethanol phase. The ATCC might be valuable for preparing CPs and industrial applications.  相似文献   

2.
Dibenzothiophene (DBT) in fossil fuels can be efficiently biodesulfurized by a thermophilic bacterium Mycobacterium goodii X7B. Flavin reductase DszD, which catalyzes the reduction of oxidated flavin by NAD(P)H, is indispensable for the biodesulfurization process. In this work, a flavin reductase DszD in M. goodii X7B was purified to homogeneity, and then its encoding gene dszD was amplified and expressed in Escherichia coli. DszD is a homodimer with each subunit binding one FMN as cofactor. The Km values for FMN and NADH of the purified recombinant DszD were determined to be 6.6 ± 0.3 μM and 77.9 ± 5.4 μM, respectively. The optimal temperature for DszD activity was 55 °C. DszD can use FMN or FAD as substrate to generate FMNH2 or FADH2 as product. DszD was coexpressed with DBT monooxygenase DszC, the enzyme catalyzing the first step of the biodesulfurization process. It was indicated that the coexpressed DszD could effectively enhance the DszC catalyzed DBT desulfurization reaction.  相似文献   

3.
Objective of this study is to realize appropriate enzyme immobilization onto a suitable support material and to develop a model which enables reactions catalyzed with different enzymes arranged in order. Thence, this model was potential for developing a multi-enzyme system. The reactions need more than one enzyme can be realized using immobilized form of them and the enzymes will be in one support at wanted activities. In this study, sodium alginate was used as immobilization material and glycidyl methacrylate was grafted onto sodium alginate. Thus reactive epoxy groups were added to sodium alginate which also has carboxyl groups. Average molecular weight of sodium alginate was determined using Ubbelohde viscosimetri. The molecular mass of sodium alginate was calculated as 15,900 Da. Graft polymerization was made in two steps. Firstly, sodium alginate was activated with benzophenone using UV-light at 254 nm. Secondly, glycidyl methacrylate was grafted under UV-light at 365 nm onto activated sodium alginate. Grafted glycidyl methacrylate was determined gravimetric and titrimetric. Additional groups after grafting were showed with FT-IR spectrum. 1-Ethyl-3-(3-dimetylaminopropyl)-carbodiimide was used for immobilization urease from carboxyl groups at pH 5.0. Suitable 1-ethyl-3-(3-dimetylaminopropyl)-carbodiimide/–COOH ratio was found 1/10 and immobilized product activity was 197 U/g support. Reaction medium pH was 8.0 for immobilization from epoxy group. Optimum immobilization reaction time was found as 2 h and immobilized product activity was 285 U/g support. Sequential immobilization of urease to glycidyl methacrylate grafted sodium alginate was made from –COOH and epoxy groups, respectively.  相似文献   

4.
A gene encoding α-l-arabinofuranosidase (abfA) from Aspergillus niveus was identified, cloned, and successfully expressed in Aspergillus nidulans. Based on amino acid sequence comparison, the 88.6 kDa enzyme could be assigned to the GH family 51. The characterization of the purified recombinant AbfA revealed that the enzyme was active at a limited pH range (pH 4.0–5.0) and an optimum temperature of 70 °C. The AbfA was able to hydrolyze arabinoxylan, xylan from birchwood, debranched arabinan, and 4-nitrophenyl arabinofuranoside. Synergistic reactions using both AbfA and endoxylanase were also assessed. The highest degree of synergy was obtained after the sequential treatment of the substrate with endoxylanase, followed by AbfA, which was observed to release noticeably more reducing sugars than that of either enzyme acting individually. The immobilization of AbfA was performed via ionic adsorption onto various supports: agarose activated by polyethyleneimine polymers, cyanogen bromide activated Sepharose, DEAE-Sepharose, and Sepharose-Q. The Sepharose-Q derivative remained fully active at pH 5 after 360 min at 60 °C, whereas the free AbfA was inactivated after 60 min. A synergistic effect of arabinoxylan hydrolysis by AbfA immobilized in Sepharose-Q and endoxylanase immobilized in glyoxyl agarose was also observed. The stabilization of arabinofuranosidases using immobilization tools is a novel and interesting topic.  相似文献   

5.
Cross-linked Sepharose beads were treated with laccase–TEMPO system for oxidation of the primary alcohol groups on the sugar moieties. Optimal activation conditions using Trametes versicolor laccase were at pH 5 and 22 °C, giving an aldehyde content of 55 μmol g−1 Sepharose with 28 units g−1 of laccase and 12.5 mM TEMPO. The activated Sepharose was used for immobilization of trypsin as model protein. Highest degree of immobilization was obtained at pH 10.5 but the activity yield was only 31% of that loaded on the gel. The yield of gel bound trypsin activity was increased to 76% (corresponding to about 43 U g−1 Sepharose) when the immobilization was performed in the presence of trypsin inhibitor, benzamidine. The immobilization yields were comparable to that obtained on the matrix activated using sodium periodate (containing 72 μmol aldehyde per g Sepharose). Recycling and storage of the immobilized trypsin preparations showed high stability of the enzyme bound to laccase–TEMPO activated gel.  相似文献   

6.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

7.
A novel method was developed for the immobilization of glucoamylase from Aspergillus niger. The enzyme was immobilized onto polyglutaraldehyde-activated gelatin particles in the presence of polyethylene glycol and soluble gelatin, resulting in 85% immobilization yield. The immobilized enzyme has been fully active for 30 days. In addition, the immobilized enzyme retained 90 and 75% of its activity in 60 and 90 days, respectively. The enzyme optimum conditions were not affected by immobilization and the optimum pH and temperature for free and immobilized enzyme were 4 and 65 °C, respectively. The kinetic parameters for the hydrolysis of maltodextrin by free and immobilized glucoamylase were also determined. The Km values for free and immobilized enzyme were 7.5 and 10.1 g maltodextrin/l, respectively. The Vmax values for free and immobilized enzyme were estimated as 20 and 16 μmol glucose/(min μl enzyme), respectively. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes.  相似文献   

8.
Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to enhance catalytic activity and stability. Although stability of enzyme was accomplished with immobilization approaches, activity of the most of the enzymes was declined after immobilization. Herein, we synthesize the flower shaped-hybrid nanomaterials called hybrid nanoflower (HNF) consisting of urease enzyme and copper ions (Cu2+) and report a mechanistic elucidation of enhancement in both activity and stability of the HNF. We demonstrated how experimental factors influence morphology of the HNF. We proved that the HNF (synthesized from 0.02 mg mL−1 urease in 10 mM PBS (pH 7.4) at +4 °C) exhibited the highest catalytic activity of ∼2000% and ∼4000% when stored at +4 °C and RT, respectively compared to free urease. The highest stability was also achieved by this HNF by maintaining 96.3% and 90.28% of its initial activity within storage of 30 days at +4 °C and RT, respectively. This dramatically enhanced activity is attributed to high surface area, nanoscale-entrapped urease and favorable urease conformation of the HNF. The exceptional catalytic activity and stability properties of HNF can be taken advantage of to use it in fields of biomedicine and chemistry.  相似文献   

9.
In this work, an active phytase concentrated extract from soybean sprout was immobilized on a polymethacrylate-based polymer Sepabead EC-EP which is activated with epoxy groups. The immobilized enzyme exhibited an activity of 0.1 U/g of carrier and activity yield of 64.7%. The optimum temperature and pH for the activity of both free and immobilized enzymes were found as 60 °C and pH 5.0, respectively. The immobilized enzyme was more stable than free enzyme in the range of pH 3.0–8.0 and more than 70% of the original activity was recovered. Both the enzymes completely retained nearly about 84% of their original activity at 65 °C. The Km and Vmax values were measured as 5 mM and 0.63 U/mg for free enzyme and 12.5 mM and 0.71 U/mg for immobilized enzyme, respectively. Free and immobilized soybean sprout phytase enzymes were also used in the biodegradation of soymilk phytate. The immobilized enzyme hydrolysed 92.5% of soymilk phytate in 7 h at 60 °C, as compared with 98% hydrolysis observed for the native enzyme over the same period of time. The immobilization procedure on Sepabead EC-EP is very cheap and also easy to carry out, and the features of the immobilized enzyme are very attractive that the potential for practical application is considerable.  相似文献   

10.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

11.
This study deals with the surface functionalization of mesoporous activated carbon, using ethylenediamine and glutaraldehyde to facilitate the strong immobilization of acidic lipase (AL) onto MAC. The AL was produced from Pseudomonas gessardii by using slaughterhouse lipid waste as the substrate. The AL immobilized on functionalized mesoporous activated carbon (ALFMAC) was applied for the hydrolysis of waste cooked oil (WCO). The optimum conditions for the immobilization of AL onto functionalized mesoporous activated carbon (FMAC) were 90 min; pH 3.5; and 35 °C; which resulted at the maximum immobilization of 5440 U/g of FMAC (3.693 mg of AL/g of FMAC or the yield 2.7% or the expressed activity 103.7% or the activity per unit area of FMAC 1.08 mg of AL/m2). The ALFMAC showed better thermal and storage stabilities than the free AL. The ALFMAC retained a 98% and a 92% initial activity at 40 °C and 50 °C, respectively, while the AL showed the thermal stability (residual activities) 65% and 38%, respectively. The storage stability of ALFMAC at 4 °C showed 100% initial activity up to 15 days from the initial day of the storage, whereas AL showed only 88% initial activity up to 15 days. The FMAC and ALFMAC were characterized by using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) analysis. The Km values of the ALFMAC and AL were 0.112 mM and 0.411 mM, respectively. The vmax values of the ALFMAC and AL were 1.26 mM/min and 0.53 mM/min, respectively. Immobilization of AL onto FMAC obeyed the Freundlich and Redlich–Peterson isotherm models. The non-linear models of pseudo first, and second order, intra-particle diffusion, Bangham, and Boyd plot were also performed to understand the dynamic mechanism of immobilization. ALFMAC showed a 100% hydrolysis of WCO up to 21 cycles of reuse, and 60% up to 45 cycles. The hydrolysis of WCO was confirmed by using FT-IR spectra.  相似文献   

12.
A series of porous polyurethane (PU) microparticles from poly(vinyl alcohol) (PVA) and hexamethylene diisocyanate (HMDI) using different ratios of components were obtained by one step method. Molar compositions of PU microparticles were estimated by determination of nitrogen, isocyanate and hydroxyl groups. PU carriers which were synthesized using optimal initial molar ratios of PVA and HMDI were applied for immobilization of maltogenase (MG) from Bacillus stearothermophilus. Immobilized enzyme exhibited higher catalytic activity and enhanced temperature stability in comparison with the native MG. Maximal loading 7.78 mg/g wet carrier was reached when PU microparticles with initial molar ratio of PVA and HMDI = 1:3 was used as a carrier for immobilization. The high efficiency of immobilization (EI) was obtained using PU microparticles when initial molar ratio of HMDI and PVA was 1:1–1:10. High stability of MG immobilized onto PU microparticles during storage was demonstrated. Immobilized starch hydrolyzing enzyme was successfully tested in batch and column type reactors for hydrolysis of potato starch. MG immobilized onto PU enables easy separation from the reaction medium and reuse of the immobilized preparation over seven reaction cycles in bath operation and at least three cycles in column type reactor.  相似文献   

13.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

14.
In this study, two different approaches were assessed in order to direct the immobilization of a cyclodextrin glycosyltransferase on functionalized silica support, one by amino groups using glutaraldehyde activation (Si-NH-G-CGTase) and other by disulfide bond through the Cys on the enzyme surface (Si-SH-CGTase). The efficiency of the immobilization of the enzyme by the Cys in Si-SH was four times higher than with the amino group linkage in Si-NH-G (2.86% and 11.91%, respectively). After immobilization, the optimum pH remained at 5.5 for the two derivatives and the optimum temperature was 70 °C for the free enzyme, 80 °C for Si-SH-CGTase and 90 °C for Si-NH-G-CGTase. Both preparations were used for continuous production of cyclodextrins, and Si-NH-G-CGTase presented higher total productivity, retaining 100% of its initial activity for at least 200 h, while the Si-SH-CGTase presented only 40% at the same time. The Si-SH-CGTase could be reloaded with new enzymes linked by disulfide bonds and was able to be used for more than 200 h.  相似文献   

15.
《Process Biochemistry》2010,45(2):259-263
The para-nitrobenzyl esterase (PNBE), which was encoded by pnbA gene from Bacillus subtilis, was immobilized on amino-functionalized magnetic supports as cross-linked enzyme aggregates (CLEA). The maximum amount of PNBE-CLEA immobilized on the magnetic beads using glutaraldehyde as a coupling agent was 31.4 mg/g of beads with a 78% activity recovery after the immobilization. The performance of immobilized PNBE-CLEA was evaluated under various conditions. As compared to its free form, the optimal pH and temperature of PNBE-CLEA were 1 unit (pH 8.0) and 5 °C higher (45 °C), respectively. Under different temperature settings, the residual enzyme activity was highest for the PNBE-CLEA, followed by covalently fixed PNBE without further cross-linking and the free PNBE. During 40 days of storage pried, the PNBE-CLEA maintained more than 90% of its initial activity while the free PNBE maintained about 60% under the same condition. PNBE-CLEA also retained more than 80% activity after 30 reuses with 30 min of each reaction time, indicating stable reusability under aqueous medium.  相似文献   

16.
Polyamidoamine dendrimer (PAMAM) is one of a number of dendritic polymers with precise molecular structure, highly geometric symmetry, and a large number of terminal groups, and is suitable to carry biomolecules due to its affinity and biocompatibility. In this study, PAMAM was grafted onto the surface of silica by microwave irradiation. A novel media was developed through immobilizing cellulase onto the prepared PAMAM-grafted silica by adsorption and crosslinking methods and applied in hydrolysis of carboxymethyl cellulose. The results demonstrate that the enzyme binding capacity and enzymolysis efficiency increased with generations of PAMAM. The properties of the immobilized cellulase-PAMAM-grafted silica were investigated, which possessed high enzymatic activity and exhibited better stability with respect to pH, temperature compared with free enzyme. The optimal immobilization conditions for adsorption and crosslinking method were respectively obtained at 5 and 4 mg ml−1 cellulase for 2 h of immobilization. A high enzymolysis efficiency was achieved by employing pH 4.8 and 5.8 substrate solution at 60 °C for adsorbed and crosslinked cellulase, respectively. After repeated three run cycles, the retained activities were found to be 75% and 82%. The results indicate that the PAMAM has a good performance as a carrier, and can be potentially adapted to support other biomacromolecules.  相似文献   

17.
The immobilization of enzymes in inorganic materials has been widely used because it can produce an enhancement of the catalytic stability and enzymatic activity. In this article, the effect of the immobilization of iso-1-cytochrome c (CYC-Sc) from Saccharomyces cerevisiae and chloroperoxidase (CPO) from Caldariomyces fumago on the enzyme stability and catalytic oxidation of styrene was studied. The immobilization was carried out in three silica nanostructured supports with different pore size MCM-41 (3.3 nm), SBA-15 (6.4 nm) and MCF (12.1 nm). The adsorption parameters and leaching degree of immobilized enzymes were determined. Catalytic parameters of immobilized and free enzymes were determined at different temperatures (20–60 °C) and in different acetonitrile/water mixtures (15–85% of acetonitrile). The results show that there is low leaching of the enzymes in the three supports assayed and the adsorption capacity (qmax) was higher as the pore size of the support increased. The pore size also produces the enhancement of peroxidase activities on the styrene oxidation. Thus, CPO adsorption into SBA-15 and MCF showed remarkable thermal and solvent stabilities at 40 °C showing a total turnover numbers of 48,000 and 54,000 times higher than free CPO, respectively. The enhancement of activity and stability doubtless is interesting for the potential industrial use of peroxidases.  相似文献   

18.
Bovine liver catalase was covalently immobilized onto Eupergit C. Optimum conditions of immobilization: pH, buffer concentration, temperature, coupling time and initial catalase amount per gram of carrier were determined as 7.5, 1.0 M, 25 °C, 24 h and 4.0 mg/g, respectively. Vmax and Km were determined as 1.4(±0.2) × 105 U/mg protein and 28.6 ± 3.6 mM, respectively, for free catalase, and as 3.7(±0.4) × 103 U/mg protein and 95.9 ± 0.6 mM, respectively, for immobilized catalase. The thermal stability of the immobilized catalase in terms of half-life time (29.1 h) was comparably higher than that of the free catalase (9.0 h) at 40 °C. Comparison of storage stabilities showed that the free catalase completely lost its activity at the end of 11 days both at room temperature and 5 °C. However, immobilized catalase retained 68% of its initial activity when stored at room temperature and 79% of its initial activity when stored at 5 °C at the end of 28 days. The highest reuse number of immobilized catalase was 22 cycles of batch operation when 40 mg of immobilized catalase loaded into the reactor retaining about 50% of its original activity. In the plug flow type reactor, the longest operation time was found as 82 min at a substrate flow rate of 2.3 mL/min when the remaining activity of 40 mg immobilized catalase was about 50% of its original activity. The resulting immobilized catalase onto Eupergit C has good reusability, thermal stability and long-term storage stability.  相似文献   

19.
Surfactants were used to permeabilize cells of Pseudomonas putida KT2440 so as to maximize retention of the arginine deiminase (ADI) activity within the treated cells. The surfactants cetyltrimethylammoniumbromide (CTAB), sodium dodecyl sulfate (SDS) and Triton X100 were tested separately. Statistical models were developed for the effects on the ADI activity of the following factors: the concentration of the surfactant, the length of the treatment period and the concentration of the cells. For all surfactants, the concentration of cells was the most significant factor in influencing permeabilization. All permeabilization treatments used mild conditions (pH 7, 37 °C). The permeabilized cells were immobilized in alginate beads for the biotransformation of arginine to citrulline. The optimal conditions for immobilization and biotransformation were as follows: 2% (w/v, g/100 mL) sodium alginate, 100 g/L of treated cells, 40 mM arginine, pH 6.0, a temperature of 35 °C and an agitation speed of 150 rpm. The immobilized biocatalyst retained nearly 90% of its initial activity after nine cycles of repeated use in batch operations. In contrast, the freely suspended cells were barely active after the second use cycle.  相似文献   

20.
We have analyzed the effects of the buffer nature on the stability of immobilized lipases. Commercial phospholipase Lecitase Ultra (LU), lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl-glyoxyl agarose beads. The enzymes were readily inactivated using 4 M sodium phosphate but 6 M NaCl did not inactivate them. Using 2 M of sodium phosphate, the inactivation of the 3 immobilized enzymes still was very significant even at 25 °C but at lower rate than with higher phosphate concentration. Thermal stress inactivations of the immobilized enzymes revealed that even 100 mM sodium phosphate produced a significant decrease in enzyme stability; this effect was less pronounced for Lecitase but dramatic for CALB. While 6 M NaCl presented slightly positive (LU) or negative (TLL) effects on their thermal stabilities of, CALB was thermally stabilized under the same conditions. Results were very different using free enymes. Fluorescence spectroscopy revealed dramatic structural rearrangements of the immobilized enzymes in the presence of high phosphate concentration. From these results, the use of sodium phosphate does not seem to be recommended for studies on thermal stability of lipases, although this should be verified for each enzyme and immobilized preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号