首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schisandra chinensis is a traditional Chinese medicine that has multiple biological activities, including antioxidant, anticancer, tonic, and anti-aging effects. Deoxyschisandrin (SA) and schisandrin B (SB), the two major lignans isolated from S. chinensis, exert high antioxidant activities in vitro and in vivo by scavenging free radicals, such as reactive oxygen species (ROS). Ultraviolet B-ray (UVB) radiation induces the production of ROS and DNA damage, which eventually leads to cell death by apoptosis. However, it is unknown whether SA or SB protects cells against UVB-induced cellular DNA damage. Our study showed that both SA and SB effectively protected HaCaT cells from UVB-induced cell death by antagonizing UVB-mediated production of ROS and induction of DNA damage. Our results showed that both SA and SB significantly prevented UVB-induced loss of cell viability using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assays showed that the production of ROS following UVB exposure was inhibited by treatment with SA and SB. Moreover, SA and SB decreased the UVB-induced DNA damage in HaCaT cells by comet assays. In addition, SA and SB also prevented UVB-induced cell apoptosis and the cleavage of caspase-3, caspase-8 and caspase-9. In a word, our results imply that the antioxidants SA and SB could protect cells from UVB-induced cell damage via scavenging ROS.  相似文献   

2.
This study aims at exploring the oxidative stress in keratinocytes induced by UVB irradiation and the protective effect of nutritional antioxidants. Cultured Colo-16 cells were exposed to UVB in vitro followed by measurement of reactive oxygen species (ROS), endogenous antioxidant enzyme activity, as well as cell death in the presence or absence of supplementation with vitamin C, vitamin E, or Ginsenoside Panoxatriol. Intracellular ROS content was found significantly reduced 1 h after exposure, but increased at later time points. After exposure to 150–600 J m−2 UVB, reduction of ROS content was accompanied by increased activity of catalase and CuZn-superoxide dismutase at early time points. Vitamins C and E, and Ginsenoside Panoxatriol counteracted the increase of ROS in the Colo-16 cells induced by acute UVB irradiation. At the same time, Ginsenoside Panoxatriol protected the activity of CuZn-superoxide dismutase, while vitamin E showed only a moderate protective role. Vitamins C and E, and Ginsenoside Panoxatriol in combination protected the Colo-16 cells from UVB-induced apoptosis, but not necrosis. These findings suggest that vitamins C and E as well as Ginsenoside Panoxatriol are promising protective agents against UVB-induced damage in skin cells.  相似文献   

3.
Although aldose reductase (AR) has been implicated in the cellular response to oxidative stress, the role of AR in ultraviolet-B (UVB)-induced cellular injury has not been investigated. Here, we show that an increased expression of AR in human keratinocytes modulates UVB-induced apoptotic cell death and senescence. Overexpression of AR in HaCaT cells significantly attenuated UVB-induced cellular damage and apoptosis, with a decreased generation of reactive oxygen species (ROS) and aldehydes. Ablation of AR with small interfering RNA or inhibition of AR activity abolished these effects. We also show that increased AR activity suppressed UVB-induced activation of the p38 and c-Jun N-terminal kinases, but did not affect the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. Similarly, UVB-induced translocation of Bax and Bcl-2 to mitochondria and cytosol, respectively, was markedly attenuated in cells overexpressing AR. Knockdown or inhibition of AR activity in primary cultured keratinocytes enhanced UVB-induced cellular senescence and increased the level of a cell-cycle regulatory protein, p53. Finally, cellular apoptosis induced by UVB radiation was significantly reduced in the epidermis of transgenic mice overexpressing human AR. These findings suggest that AR plays an important role in the cellular response to oxidative stress by sequestering ROS and reactive aldehydes generated in keratinocytes.  相似文献   

4.
Polypeptide from Chlamys farreri (PCF) is a novel marine active product isolated from gonochoric Chinese scallop Chlamys farreri which has recently been found to be an effective antioxidant. In this study, we assessed the effect of PCF on UVB-induced intracellular signalling of apoptosis in HaCaT cells. Pre-treatment with PCF significantly inhibited UVB-induced apoptosis in HaCaT cells. PCF strongly reduced the intracellular reactive oxygen species (ROS) level followed by inhibiting the release of cytochrome c. The expression of CD95 and Fas-associating protein with death domain (FADD) was eliminated in a dose-dependent manner by PCF pre-treatment in UVB-irradiated HaCaT cells, followed by inhibition of cleavage of procaspase-8, whose activation induced cell apoptosis. Furthermore, pre-treatment with the ROS scavenger N-acetylcysteine (NAC) and the caspase-8 inhibitor z-IETD-fmk was found to effectively prevent UVB-induced apoptosis, suggesting that UVB-induced HaCaT cell apoptosis was partially due to generation of ROS and activation of the caspase-8 pathway. Consequently, the protective effect of PCF against UVB irradiation in HaCaT cells is exerted by suppression of generation of ROS followed by inhibition of cytochrome c release and inactivation of Fas-FADD–caspase-8 pathway, resulting in blockage of UVB-induced apoptosis.  相似文献   

5.
Li BH  Zhou YB  Guo SB  Wang CB 《Free radical research》2007,41(11):1224-1232
Polypeptide from Chlamys farreri (PCF) is a novel marine active product isolated from gonochoric Chinese scallop Chlamys farreri which has recently been found to be an effective antioxidant. In this study, we assessed the effect of PCF on UVB-induced intracellular signalling of apoptosis in HaCaT cells. Pre-treatment with PCF significantly inhibited UVB-induced apoptosis in HaCaT cells. PCF strongly reduced the intracellular reactive oxygen species (ROS) level followed by inhibiting the release of cytochrome c. The expression of CD95 and Fas-associating protein with death domain (FADD) was eliminated in a dose-dependent manner by PCF pre-treatment in UVB-irradiated HaCaT cells, followed by inhibition of cleavage of procaspase-8, whose activation induced cell apoptosis. Furthermore, pre-treatment with the ROS scavenger N-acetylcysteine (NAC) and the caspase-8 inhibitor z-IETD-fmk was found to effectively prevent UVB-induced apoptosis, suggesting that UVB-induced HaCaT cell apoptosis was partially due to generation of ROS and activation of the caspase-8 pathway. Consequently, the protective effect of PCF against UVB irradiation in HaCaT cells is exerted by suppression of generation of ROS followed by inhibition of cytochrome c release and inactivation of Fas-FADD-caspase-8 pathway, resulting in blockage of UVB-induced apoptosis.  相似文献   

6.
Chronic exposure of the skin to ultraviolet B (UVB) radiation induces oxidative stress, which plays a crucial role in the induction of skin aging. In this study, potential protective effect of extracts of six species of brown seaweeds on UVB radiation-induced cell damage was assessed via cell viability in HaCaT cells. The Ecklonia cava extract showed a profound protective effect against UVB radiation-induced cell damage, compared to that exhibited by other brown seaweed extracts. Thus, E. cava was selected for use in further experiments and was extracted with different solvents. The protection effect was evaluated via DCFH-DA, MTT, and morphological changes in HaCaT cells. Profound protective effect against UVB radiation-induced cell damage was detected in the 100% methanol extract. Partitioning of the 100% methanol extract with different organic solvents revealed a pronounced protective effect in the ethyl acetate fraction. The isolated active compounds were phlorotannins, especially dieckol, as identified using ultra-performance liquid chromatography-tandem mass spectrometry. Among the phlorotannins, dieckol showed a higher protective effect on UVB-induced cell damage in HaCaT cells than the other phlorotannins. Therefore, UVB protection of dieckol was evaluated via DCFH-DA, DAF-FM DA, acridine orange, and morphological changes in zebrafish model. Reactive oxygen species, nitric oxide, and cell death in live zebrafish induced by UVB radiation were reduced by the addition of dieckol. These results indicated that dieckol has potential protective effects on UVB-induced skin damage, which might be useful in pharmaceutical and cosmetic formulations.  相似文献   

7.
Many deleterious effects on the skin have been associated with the ultraviolet B (UVB) portion of the solar spectrum. The role of green tea polyphenols (GTP) in protecting HaCaT cells against the UVB-induced damages was examined. The promotion effect of low level GTP on cell viability was revealed in a dose-dependent manner. High level GTP had a cytotoxic effect. UVB induced destruction of HaCaT cells, including shedding of cell membrane microvilli, degeneration of nucleus and nucleols and changes of mitochondrial size and internal cristae. GTP alleviated the UVB-induced destructive morphological changes in HaCat cells. It is considered that GTP affords protection against the UVB-induced stress via both interacting with UVB-induced reactive oxygen species and attenuating mitochondrion-mediated apoptosis.  相似文献   

8.
The infiltration of both monocyte and activated T cells in the skin is one of critical steps in the development of UVB-induced inflammation. Upregulation of adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1) on the surface of keratinocytes plays an important role in this process. In this study, we examined the molecular mechanism responsible for UVB-induced expression of ICAM-1 and subsequent monocyte adhesion by keratinocyte. We observed that (1) UVB induced protein and mRNA expression of ICAM-1 in a dose- and time-dependent manner in human keratinocyte cell HaCaT; (2) UVB induced the translocation of NF-kappaB and inhibition of NF-kappaB by NF-kappaB inhibitors suppressed UVB-induced mRNA and protein expression of ICAM-1; (3) UVB increased the intracellular level of reactive oxygen species (ROS) by HaCaT cells; (4) UVB-induced increase of intracellular ROS level was suppressed by pretreatment with diphenyl iodonium (DPI) and N-acetyl cysteine (NAC); and (5) inhibition of UVB-induced ROS production by DPI or NAC suppressed UVB-mediated translocation of NF-kappaB, expression of ICAM-1 and subsequent monocyte adhesion in HaCaT cells. These results suggest that UVB-induced ROS is involved in the translocation of NF-kappaB which is responsible for expression of ICAM-1 and subsequent increased monocyte adhesion in human keratinocyte.  相似文献   

9.
10.
Ultraviolet B (UVB) irradiation plays a key role in skin damage, which induces oxidative and inflammatory damages, thereby causing photoaging or photocarcinogenesis. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses significant antioxidative and anti-inflammatory effects on multiple tissues. In the present study, the photoprotective effects and potential underlying molecular mechanisms of LBP against UVB-induced photo-damage were investigated in immortalized human keratinocytes (HaCaT cells). The data indicated that pretreatment with LBP significantly attenuated UVB-induced decrease in cell viability, increase in ROS production and DNA damage. LBP also significantly suppressed UVB-induced p38 MAPK activation, and subsequently reversed caspase-3 activation and MMP-9 expression. Notably, LBP was found to induce Nrf2 nuclear translocation and increase the expression of Nrf2-dependent ARE target genes. Furthermore, the protective effects of LBP were abolished by siRNA-mediated Nrf2 silencing. These results showed that the antioxidant LBP could partially protect against UVB irradiation-induced photo-damage through activation of Nrf2/ARE pathway, thereby scavenging ROS and reducing DNA damage, and subsequently suppressing UVB-induced p38 MAP pathway. Thus, LBP can be potentially used for skincare against oxidative damage from environmental insults.  相似文献   

11.
12.
This study aims to investigate the photoprotective properties of a Lomentaria hakodatensis ethanol extract (LHE) against ultraviolet B (UVB) radiation-induced cellular damage in human HaCaT keratinocytes. LHE exhibited scavenging activity against intracellular reactive oxygen species (ROS), which were generated by either hydrogen peroxide (H2O2) or UVB radiation. Moreover, LHE scavenged superoxide anion generated by the xanthine/xanthine oxidase system and hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2). Furthermore, LHE exhibited UVB absorptive properties and attenuated injury to cellular components (e.g., lipids, proteins and DNA), resulting from UVB-induced oxidative stress. In addition, LHE reduced apoptosis in response to UVB, as shown by decreased DNA fragmentation and the formation of apoptotic bodies. These results suggest that LHE protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS and absorbing UVB rays; thereby reducing damage to biological components.  相似文献   

13.
Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells. [BMB Reports 2014; 47(4): 209-214]  相似文献   

14.
UVB radiation damages keratinocytes, potentially inducing chronic skin damage, cutaneous malignancy, and suppression of the immune system. Naturally occurring agents have been considered for prevention and treatment of various kinds of cancer, including skin cancer. Inositol hexaphosphate (IP6), an antioxidant, is a naturally occurring polyphosphorylated carbohydrate that has shown a strong anticancer activity in several experimental models. We assessed the protective effects of IP6 against UVB irradiationinduced injury and photocarcinogenesis by using HaCaT cells (human immortalized keratinocytes) and SKH1 hairless mice. We found that IP6 counteracts the harmful effects of UVB irradiation and increases the viability and survival of UVB-exposed cells. Treatment with IP6 after UVB irradiation (30 mJ/cm(2)) arrested cells in the G(1) and G(2) M phases while decreasing the S phase of the cell cycle. Treatment with IP6 also decreased UVB-induced apoptosis and caspase 3 activation. Topical application of IP6 followed by exposure to UVB irradiation in SKH1 hairless mice decreased tumor incidence and multiplicity as compared with control mice. Our results suggest that IP6 protects HaCaT cells from UVB-induced apoptosis and mice from UVB-induced tumors.  相似文献   

15.
Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency – with particular reference to NER and skin cancer risk.  相似文献   

16.
Beak SM  Lee YS  Kim JA 《Biochimie》2004,86(7):425-429
The detrimental effects of ultraviolet B (UVB) irradiation have been connected with the enhanced generation of reactive oxygen species (ROS) by UVB. However, the exact source of ROS produced by UVB has not been clearly revealed yet. In this study, we determined the source of ROS production and its role in the UVB-induced activation of nuclear factor (NF)-kappaB in HaCaT human keratinocytes. UVB irradiation generated ROS in a dose-dependent manner, and this was significantly inhibited by diphenylene iodonium (DPI), apocynin (Apo) and neopterine (Neo), inhibitors of the NADPH oxidase, and indomethacin (Indo), a cyclooxygenase (COX) inhibitor, but not by the mitochondrial electron transport inhibitors and other cytosolic enzyme inhibitors. In addition, these inhibitors of the NADPH oxidase and COX significantly blocked the UVB irradiation-induced nuclear translocation of NF-kappaB. These results suggest that the NADPH oxidase and COX may be major sources for the UVB-induced ROS generation, and play an essential role in the activation of NF-kappaB which is involved in the expression of a variety of genes induced by UVB in HaCaT cells. These results further suggest that these enzymes may be good targets for the preventive strategy of UVB-induced skin injury.  相似文献   

17.
18.
Several recent studies by us have shown the strong chemopreventive efficacy of silibinin against both ultraviolet B (UVB) radiation and chemical carcinogen-induced tumorigenesis in mouse skin models. The molecular mechanisms underlying silibinin protective efficacy, however, are not completely known. Here, we examined the effect of silibinin on UVB-caused apoptosis in human epidermoid carcinoma A431 cells. Irradiation of cells with different doses of UVB (5-100 mJ/cm2) and different time periods (0.5-24h) resulted in a dose- and time-dependent increase in apoptosis (P < 0.05-0.001). Silibinin (100-200 microM) pre-treatment, however, resulted in an increase in UVB-induced apoptosis (P < 0.05-0.001); interestingly, its post-treatment caused a decrease in UVB-induced apoptosis (P < 0.05-0.001). A similar pattern in the activation of caspases-9, -3, and -7 was observed with these silibinin treatments. Further, silibinin treatment prior to or immediately after UVB exposure altered Bcl-2, Bax, Bak, and cytochrome c levels in mitochondria and cytosol in favor of or against apoptosis, respectively. Silibinin treatment prior to UVB also increased the activation of mitogen/stress activated protein kinases Erk1/2, JNK, and p38 kinase as compared to its post-treatment. Together, for the first time, our results demonstrate the role of mitochondrial apoptotic machinery and MAPK signaling cascade in silibinin-caused increase as well as protection in UVB-induced apoptosis in A431 cells, and suggest that similar mechanisms might be involved in preventive efficacy of silibinin against UVB-induced skin tumorigenesis.  相似文献   

19.
The aim of this study was to investigate the protective effects of the ethanol extract of the red algae Chondracanthus tenellus (Harvey) Hommersand (CTE) on cultured human keratinocyte cell line. The cellular protection conferred by CTE was evidenced by the ability of the extract to absorb ultraviolet B (UVB; 280?C320 nm) and to scavenge the radical 1,1-diphenyl-2-picrylhydrazyl, as well as intracellular reactive oxygen species (ROS), induced by either hydrogen peroxide (H2O2) or UVB radiation. In addition, both superoxide anion generated by the xanthine/xanthine oxidase system and hydroxyl radical generated by the Fenton reaction (FeSO4?+?H2O2) were scavenged by CTE, as confirmed using electron spin resonance spectrometry. In the human keratinocyte cell line, CTE decreased the degree of injury resulting from UVB-induced oxidative stress to lipids, proteins, and DNA. CTE-treated cells also showed a reduction in UVB-induced apoptosis, as exemplified by fewer apoptotic bodies and less DNA fragmentation. Taken together, these results suggest that CTE confers protection on the human keratinocyte cell line against UVB-induced oxidative stress by absorbing UVB ray and scavenging ROS, thereby reducing injury to cellular constituents.  相似文献   

20.
Exposure to ultraviolet radiation exacerbates the skin lesions of autoimmune diseases, and is known to induce cell surface expression of SS-A/Ro antigen on keratinocytes in vitro. Following up on recent reports on ultraviolet-B (UVB)-induced oxidative stress, we examined the role of oxidative stress in the surface expression of SS-A/Ro antigen on human keratinocytes. First, the exclusive induction by UVB irradiation of the 52-kDa protein (Ro52) but not of the 60-kDa protein (Ro60) of SS-A/Ro antigen was demonstrated by means of indirect immunofluorescence. The surface expression of Ro52 induced by UVB irradiation was concentration-dependently inhibited by N-acetyl-L-cysteine, an antioxidant. Furthermore, surface expression of Ro52 was similarly induced by diamide, a chemical oxidant. We next used Hoechst 33342 staining and the TUNEL assay to demonstrate that a low dose (20 mJ/cm(2)) of UVB did not induce apoptosis but induced the surface expression of Ro52. Moreover, zVAD-fmk, a pan-caspase inhibitor, did not inhibit UVB-induced surface expression of Ro52 even at a high dose (200 mJ/cm(2)) of UVB, which was sufficient to induce apoptosis in keratinocytes in the absence of zVAD-fmk. Taken together, we concluded that UVB-induced surface expression of Ro52 on keratinocytes is mediated by oxidative stress through a pathway other than apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号