首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex natural systems with eroded resilience, such as populations, ecosystems and socio‐ecological systems, respond to small perturbations with abrupt, discontinuous state shifts, or critical transitions. Theory of critical transitions suggests that such systems exhibit fold bifurcations featuring folded response curves, tipping points and alternate attractors. However, there is little empirical evidence of fold bifurcations occurring in actual complex natural systems impacted by multiple stressors. Moreover, resilience of complex systems to change currently lacks clear operational measures with generic application. Here, we provide empirical evidence for the occurrence of a fold bifurcation in an exploited fish population and introduce a generic measure of ecological resilience based on the observed fold bifurcation attributes. We analyse the multivariate development of Barents Sea cod (Gadus morhua), which is currently the world's largest cod stock, over six decades (1949–2009), and identify a population state shift in 1981. By plotting a multivariate population index against a multivariate stressor index, the shift mechanism was revealed suggesting that the observed population shift was a nonlinear response to the combined effects of overfishing and climate change. Annual resilience values were estimated based on the position of each year in relation to the fitted attractors and assumed tipping points of the fold bifurcation. By interpolating the annual resilience values, a folded stability landscape was fit, which was shaped as predicted by theory. The resilience assessment suggested that the population may be close to another tipping point. This study illustrates how a multivariate analysis, supported by theory of critical transitions and accompanied by a quantitative resilience assessment, can clarify shift mechanisms in data‐rich complex natural systems.  相似文献   

2.
Synthesis The quickly expanding literature on early warning signals for critical transitions in ecosystems suggests that critical slowing down is a key phenomenon to measure the distance to a tipping point in ecosystems. Such work is broadly misinterpreted as showing that slowing down is specific to tipping points. In this contribution, we show why this is not the case. Early warning signals based on critical slowing down indicate a broader class of situations where a system becomes increasingly sensitive to perturbations. Ecosystem responses to external changes can surprise us by their abruptness and irreversibility. Models have helped identifying indicators of impending catastrophic shifts, referred to as ‘generic early warning signals’. These indicators are linked to a phenomenon known as ‘critical slowing down’ which describes the fact that the recovery rate of a system after a perturbation decreases when the system approaches a bifurcation – such as the classical fold bifurcation associated to catastrophic shifts. However, contrary to what has sometimes been suggested in the literature, a decrease in recovery rate cannot be considered as specific to approaching catastrophic shifts. Here, we analyze the behavior of early warning signals based on critical slowing down in systems approaching a range of catastrophic and non‐catastrophic situations. Our results show that slowing down generally happens in situations where a system is becoming increasingly sensitive to external perturbations, independently of whether the impeding change is catastrophic or not. These results highlight that indicators specific to catastrophic shifts are still lacking. More importantly, they also imply that in systems where we have no reason to expect catastrophic transitions, slowing down may still be used in a more general sense as a warning signal for a potential decrease in stability.  相似文献   

3.
Transitions in ecological systems often occur without apparent warning, and may represent shifts between alternative persistent states. Decreasing ecological resilience (the size of the basin of attraction around a stable state) can signal an impending transition, but this effect is difficult to measure in practice. Recent research has suggested that a decreasing rate of recovery from small perturbations (critical slowing down) is a good indicator of ecological resilience. Here we use analytical techniques to draw general conclusions about the conditions under which critical slowing down provides an early indicator of transitions in two-species predator-prey and competition models. The models exhibit three types of transition: the predator-prey model has a Hopf bifurcation and a transcritical bifurcation, and the competition model has two saddle-node bifurcations (in which case the system exhibits hysteresis) or two transcritical bifurcations, depending on the parameterisation. We find that critical slowing down is an earlier indicator of the Hopf bifurcation in predator-prey models in which prey are regulated by predation rather than by intrinsic density-dependent effects and an earlier indicator of transitions in competition models in which the dynamics of the rare species operate on slower timescales than the dynamics of the common species. These results lead directly to predictions for more complex multi-species systems, which can be tested using simulation models or real ecosystems.  相似文献   

4.
The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here, we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of “critical slowing down” that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down; (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system, bearing in mind that a positive indication for some systems is a negative indication in others; and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.  相似文献   

5.
宋明华  朱珏妃  牛书丽 《生态学报》2020,40(18):6282-6292
生态系统在气候变化和土地利用及人类活动等的影响下其状态会由某一稳态转变到另一稳态。由于环境压力的复杂性、非线性、随机性等特征,往往导致状态转变表现为非线性、突变、跃变等特点。准确界定系统状态跃变的拐点或阈值点存在很大的挑战,而捕捉接近临界拐点前的生态系统结构和属性上的变化特征作为早期预警信号是切实可行的。早期预警信号理论经历理论框架构建、方法确立、机理认知等近半个多世纪的探索,已经由最初的通过仅依赖检测临界点恢复力的速率减慢、方差增加、系统自相关增强等统计学信号过度到更加多样化的检测方法,如检测系统组分属性的变化特征,诊断系统组分各属性之间的关系变化,系统组分的性状变化、系统组分网络结构变化等等,并且试图整合多信号提高预警的精确性。利用来自自然生态系统的长时间高密度数据集和空间代替时间的数据集,基于多度及性状信号的早期预警,结合稳定性、临界恢复力的减速、以及统计参数的指示作用对系统跃变进行早期诊断和预警是预测生态学的主旨。早期预警信号的深入研究不仅能够完善已有理论的不足,同时还能够为生态系统的保护和管理提供切实有效的理论指导。  相似文献   

6.
Various ecological and other complex dynamical systems may exhibit abrupt regime shifts or critical transitions, wherein they reorganize from one stable state to another over relatively short time scales. Because of potential losses to ecosystem services, forecasting such unexpected shifts would be valuable. Using mathematical models of regime shifts, ecologists have proposed various early warning signals of imminent shifts. However, their generality and applicability to real ecosystems remain unclear because these mathematical models are considered too simplistic. Here, we investigate the robustness of recently proposed early warning signals of regime shifts in two well-studied ecological models, but with the inclusion of time-delayed processes. We find that the average variance may either increase or decrease prior to a regime shift and, thus, may not be a robust leading indicator in time-delayed ecological systems. In contrast, changing average skewness, increasing autocorrelation at short time lags, and reddening power spectra of time series of the ecological state variable all show trends consistent with those of models with no time delays. Our results provide insights into the robustness of early warning signals of regime shifts in a broader class of ecological systems.  相似文献   

7.
Most work on generic early warning signals for critical transitions focuses on indicators of the phenomenon of critical slowing down that precedes a range of catastrophic bifurcation points. However, in highly stochastic environments, systems will tend to shift to alternative basins of attraction already far from such bifurcation points. In fact, strong perturbations (noise) may cause the system to “flicker” between the basins of attraction of the system’s alternative states. As a result, under such noisy conditions, critical slowing down is not relevant, and one would expect its related generic leading indicators to fail, signaling an impending transition. Here, we systematically explore how flickering may be detected and interpreted as a signal of an emerging alternative attractor. We show that—although the two mechanisms differ—flickering may often be reflected in rising variance, lag-1 autocorrelation and skewness in ways that resemble the effects of critical slowing down. In particular, we demonstrate how the probability distribution of a flickering system can be used to map potential alternative attractors and their resilience. Thus, while flickering systems differ in many ways from the classical image of critical transitions, changes in their dynamics may carry valuable information about upcoming major changes.  相似文献   

8.
Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called 'early warning signals', and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data.  相似文献   

9.
Critical slowing down (CSD) reflects the decline in resilience of equilibria near a bifurcation and may reveal early warning signals (EWS) of ecological phase transitions. We studied CSD in the recruitment dynamics of 120 stocks of three Pacific salmon (Oncorhynchus spp.) species in relation to critical transitions in fishery models. Pink salmon (Oncorhynchus gorbuscha) exhibited increased variability and autocorrelation in populations that had a growth parameter, r, close to zero, consistent with EWS of extinction. However, models and data for sockeye salmon (Oncorhynchus nerka) indicate that portfolio effects from heterogeneity in age-at-maturity may obscure EWS. Chum salmon (Oncorhynchus keta) show intermediate results. The data do not reveal EWS of Ricker-type bifurcations that cause oscillations and chaos at high r. These results not only provide empirical support for CSD in some ecological systems, but also indicate that portfolio effects of age structure may conceal EWS of some critical transitions.  相似文献   

10.
Numerous model studies demonstrate that ecosystems might not shift smoothly with a gradual change in resource concentration. At specific points, vegetation can suddenly shift from one stable state to another. To predict such undesirable shifts, statistical indicators are proposed for early warning prediction. These so-called classical indicators can address whether vegetation state is moving towards the tipping point of an abrupt transition, however when the transition will occur is hard to predict. Recent studies suggest that complex network based indicators can improve early warning signals of abrupt transitions in complex dynamic systems. In this study, both classical and network based indicators are tested in a coupled land–atmosphere ecological model in which a scale-dependent hydrology-infiltration feedback and a large scale vegetation–precipitation feedback are represented. Multiple biomass equilibria are found in the model and abrupt transitions can occur when rainfall efficiency is decreased. Interaction network based indicators of these transitions are compared with classical indicators, such as the lag-1 autocorrelation and Moran's coefficient, with particular focus on the transition associated with desertification. Two criteria are used to evaluate the quality of these early warning indicators and several high quality network based indicators are identified.  相似文献   

11.
Critical transitions are sudden, often irreversible, changes that can occur in a large variety of complex systems; signals that warn of critical transitions are therefore highly desirable. We propose a new method for early warning signals that integrates multiple sources of information and data about the system through the framework of a generalized model. We demonstrate our proposed approach through several examples, including a previously published fisheries model. We regard our method as complementary to existing early warning signals, taking an approach of intermediate complexity between model-free approaches and fully parameterized simulations. One potential advantage of our approach is that, under appropriate conditions, it may reduce the amount of time series data required for a robust early warning signal.  相似文献   

12.
13.
Many complex systems exhibit critical transitions. Of considerable interest are bifurcations, small smooth changes in underlying drivers that produce abrupt shifts in system state. Before reaching the bifurcation point, the system gradually loses stability (‘critical slowing down’). Signals of critical slowing down may be detected through measurement of summary statistics, but how extrinsic and intrinsic noises influence statistical patterns prior to a transition is unclear. Here, we consider a range of stochastic models that exhibit transcritical, saddle-node and pitchfork bifurcations. Noise was assumed to be either intrinsic or extrinsic. We derived expressions for the stationary variance, autocorrelation and power spectrum for all cases. Trends in summary statistics signaling the approach of each bifurcation depend on the form of noise. For example, models with intrinsic stochasticity may predict an increase in or a decline in variance as the bifurcation parameter changes, whereas models with extrinsic noise applied additively predict an increase in variance. The ability to classify trends of summary statistics for a broad class of models enhances our understanding of how critical slowing down manifests in complex systems approaching a transition.  相似文献   

14.
Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated. A spatial analog for conditional heteroskedasticity might be especially useful in arid environments where spatial interactions are critical in structuring ecosystem pattern and process. We tested the efficacy of a test for spatial heteroskedasticity as a leading indicator of regime shifts with simulated data from spatially extended vegetation models with regular and scale‐free patterning. These models simulate shifts from extensive vegetative cover to bare, desert‐like conditions. The magnitude of spatial heteroskedasticity increased consistently as the modeled systems approached a regime shift from vegetated to desert state. Relative spatial autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of early warning indicators for regime shifts analyzed with spatially explicit data.  相似文献   

15.
In the vicinity of tipping points—or more precisely bifurcation points—ecosystems recover slowly from small perturbations. Such slowness may be interpreted as a sign of low resilience in the sense that the ecosystem could easily be tipped through a critical transition into a contrasting state. Indicators of this phenomenon of ‘critical slowing down (CSD)’ include a rise in temporal correlation and variance. Such indicators of CSD can provide an early warning signal of a nearby tipping point. Or, they may offer a possibility to rank reefs, lakes or other ecosystems according to their resilience. The fact that CSD may happen across a wide range of complex ecosystems close to tipping points implies a powerful generality. However, indicators of CSD are not manifested in all cases where regime shifts occur. This is because not all regime shifts are associated with tipping points. Here, we review the exploding literature about this issue to provide guidance on what to expect and what not to expect when it comes to the CSD-based early warning signals for critical transitions.  相似文献   

16.
Prediction of ecosystem response to global environmental change is a pressing scientific challenge of major societal relevance. Many ecosystems display nonlinear responses to environmental change, and may even undergo practically irreversible ‘regime shifts’ that initiate ecosystem collapse. Recently, early warning signals based on spatiotemporal metrics have been proposed for the identification of impending regime shifts. The rapidly increasing availability of remotely sensed data provides excellent opportunities to apply such model‐based spatial early warning signals in the real world, to assess ecosystem resilience and identify impending regime shifts induced by global change. Such information would allow land‐managers and policy makers to interfere and avoid catastrophic shifts, but also to induce regime shifts that move ecosystems to a desired state. Here, we show that the application of spatial early warning signals in real‐world landscapes presents unique and unexpected challenges, and may result in misleading conclusions when employed without careful consideration of the spatial data and processes at hand. We identify key practical and theoretical issues and provide guidelines for applying spatial early warning signals in heterogeneous, real‐world landscapes based on literature review and examples from real‐world data. Major identified issues include (1) spatial heterogeneity in real‐world landscapes may enhance reversibility of regime shifts and boost landscape‐level resilience to environmental change (2) ecosystem states are often difficult to define, while these definitions have great impact on spatial early warning signals and (3) spatial environmental variability and socio‐economic factors may affect spatial patterns, spatial early warning signals and associated regime shift predictions. We propose a novel framework, shifting from an ecosystem perspective towards a landscape approach. The framework can be used to identify conditions under which resilience assessment with spatial remotely sensed data may be successful, to support well‐informed application of spatial early warning signals, and to improve predictions of ecosystem responses to global environmental change.  相似文献   

17.
Early warning signals (EWS) are statistical indicators that a rapid regime shift may be forthcoming. Their development has given ecologists hope of predicting rapid regime shifts before they occur. Accurate predictions, however, rely on the signals being appropriate to the system in question. Most of the EWS commonly applied in ecology have been studied in the context of one specific type of regime shift (the type brought on by a saddle‐node bifurcation, at which one stable equilibrium point collides with an unstable equilibrium and disappears) under one particular perturbation scheme (temporally uncorrelated noise that perturbs the net population growth rate in a density independent way). Whether and when these EWS can be applied to other ecological situations remains relatively unknown, and certainly underappreciated. We study a range of models with different types of dynamical transitions (including rapid regime shifts) and several perturbation schemes (density‐dependent uncorrelated or temporally‐correlated noise) and test the ability of EWS to warn of an approaching transition. We also test the sensitivity of our results to the amount of available pre‐transition data and various decisions that must be made in the analysis (i.e. the rolling window size and smoothing bandwidth used to compute the EWS). We find that EWS generally work well to signal an impending saddle‐node bifurcation, regardless of the autocorrelation or intensity of the noise. However, EWS do not reliably appear as expected for other types of transition. EWS were often very sensitive to the length of the pre‐transition time series analyzed, and usually less sensitive to other decisions. We conclude that the EWS perform well for saddle‐node bifurcation in a range of noise environments, but different methods should be used to predict other types of regime shifts. As a consequence, knowledge of the mechanism behind a possible regime shift is needed before EWS can be used to predict it.  相似文献   

18.
Ecosystem dynamics may exhibit alternative stable states induced by positive feedbacks between the state of the system and environmental drivers. Bistable systems are prone to abrupt shifts from one state to another in response to even small and gradual changes in external drivers. These transitions are often catastrophic and difficult to predict by analyzing the mean state of the system. Indicators of the imminent occurrence of phase transitions can serve as important tools to warn ecosystem managers about an imminent transition before the bifurcation point is actually reached. Thus, leading indicators of phase transitions can be used either to prepare for or to prevent the occurrence of a shift to the other state. In recent years, theories of leading indicators of ecosystem shift have been developed and applied to a variety of ecological models and geophysical time series. It is unclear, however, how some of these indicators would perform in the case of systems with a delay. Here, we develop a theoretical framework for the investigation of precursors of state shift in the presence of drivers acting with a delay. We discuss how the effectiveness of leading indicators of state shift based on rising variance may be affected by the presence of delays. We apply this framework to an ecological model of desertification in arid grasslands.  相似文献   

19.
Predator-prey systems in continuously operated chemostats exhibit sustained oscillations over a wide range of operating conditions. When the chemostat is operated periodically, the interaction of the natural oscillation frequency with the external forcing gives rise to a wealth of dynamic behavior patterns. Using numerical bifurcation techniques, we perform a detailed computational study of these patterns and the transitions (local and especially global) between them as the amplitude and frequency of the forcing vary. The transition from low-forcing-amplitude quasiperiodicity to entrainment of the chemostat behavior by strong forcing (involving the concerted closing of resonance horns) is analyzed. We concentrate on certain strong resonance phenomena between the two frequencies and provide an extensive atlas of computed phase portraits for our model system. Our observations corroborate recent mathematical results and case studies of periodically forced chemical oscillators. In particular, the existence and relative succession of several distinct types of global bifurcations resulting in chaotic transients and multistability are studied in detail. The location in the operating diagram of several key codimension 2 local bifurcations of periodic solutions is computed, and their interaction with an interesting feature we name "real-eigenvalues horns" is examined.  相似文献   

20.
Many complex systems have been found to exhibit critical transitions, or so-called tipping points, which are sudden changes to a qualitatively different system state. These changes can profoundly impact the functioning of a system ranging from controlled state switching to a catastrophic break-down; signals that predict critical transitions are therefore highly desirable. To this end, research efforts have focused on utilizing qualitative changes in markers related to a system’s tendency to recover more slowly from a perturbation the closer it gets to the transition—a phenomenon called critical slowing down. The recently studied scaling of critical slowing down offers a refined path to understand critical transitions: to identify the transition mechanism and improve transition prediction using scaling laws.Here, we outline and apply this strategy for the first time in a real-world system by studying the transition to spiking in neurons of the mammalian cortex. The dynamical system approach has identified two robust mechanisms for the transition from subthreshold activity to spiking, saddle-node and Hopf bifurcation. Although theory provides precise predictions on signatures of critical slowing down near the bifurcation to spiking, quantitative experimental evidence has been lacking. Using whole-cell patch-clamp recordings from pyramidal neurons and fast-spiking interneurons, we show that 1) the transition to spiking dynamically corresponds to a critical transition exhibiting slowing down, 2) the scaling laws suggest a saddle-node bifurcation governing slowing down, and 3) these precise scaling laws can be used to predict the bifurcation point from a limited window of observation. To our knowledge this is the first report of scaling laws of critical slowing down in an experiment. They present a missing link for a broad class of neuroscience modeling and suggest improved estimation of tipping points by incorporating scaling laws of critical slowing down as a strategy applicable to other complex systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号