首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Life history variability includes phenotypic variation in morphology, age, and size at key stage transitions and arises from genotypic, environmental, and genotype-by-environment effects. Life history variation contributes to population abundance, productivity, and resilience, and management units often reflect life history classes. Recent evidence suggests that past Chinook salmon (Oncorhynchus tshawytscha) classifications (e.g., ‘stream’ and ‘ocean’ types) are not distinct evolutionary lineages, do not capture the phenotypic variation present within or among populations, and are poorly aligned with underlying ecological and developmental processes. Here we review recently reported variation in juvenile Chinook salmon life history traits and provide a refined conceptual framework for understanding the causes and consequences of the observed variability. The review reveals a broad continuum of individual juvenile life history pathways, defined primarily by transitions among developmental stages and habitat types used during freshwater rearing and emigration. Life history types emerge from discontinuities in expressed pathways when viewed at the population scale. We synthesize recent research that examines how genetic, conditional, and environmental mechanisms likely influence Chinook salmon life history pathways. We suggest that threshold models hold promise for understanding how genetic and environmental factors influence juvenile salmon life history transitions. Operational life history classifications will likely differ regionally, but should benefit from an expanded lexicon that captures the temporally variable, multi-stage life history pathways that occur in many Chinook salmon populations. An increased mechanistic awareness of life history diversity, and how it affects population fitness and resilience, should improve management, conservation, and restoration of this iconic species.  相似文献   

2.
Species’ impacts on primary production can have strong ecological consequences. In freshwater ecosystems, Pacific salmon (Oncorhynchus spp.) may influence stream periphyton through substrate disturbance during spawning and nutrient subsidies from senescent adults. The shape of relationships between the abundance of spawning salmon and stream periphyton, as well as interactions with environmental variables, are incompletely understood and may differ across the geographic range of salmon. We examined these relationships across 24 sockeye salmon (Oncorhynchus nerka) spawning streams in north-central British Columbia, Canada. The influence of salmon abundance and environmental variables (temperature, light, dissolved nutrients, water velocity, watershed size, and invertebrate grazer abundance) on post-spawning periphyton abundance and nitrogen stable isotope signatures, which can indicate the uptake of salmon nitrogen, was evaluated using linear regression models and Akaike Information Criterion. Periphyton nitrogen stable isotope signatures were best described by a positive log-linear relationship with an upstream salmon abundance metric that includes salmon from earlier years. This suggests the presence of a nutrient legacy. In contrast, periphyton abundance was negatively related to the spawning-year salmon density, which likely results from substrate disturbance during spawning, and positively related to dissolved soluble reactive phosphorus prior to spawning, which may indicate phosphorus limitation in the streams. These results suggest that enrichment from salmon nutrients does not always translate into elevated periphyton abundance. This underscores the need to directly assess the outcome of salmon impacts on streams rather than extrapolating from stable isotope evidence for the incorporation of salmon nutrients into food webs.  相似文献   

3.
In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.  相似文献   

4.
Aspinwall N 《Genetics》1973,73(4):639-643
Genetic crosses of alpha-glycerophosphate dehydrogenase (alpha-GPDH) phenotypes in the pink salmon, Oncorhynchus gorbuscha (Walbaum), reveal that this enzyme is encoded by a single locus with two codominant alleles (Slow and Fast). The significance of single gene control of alpha-GPDH is discussed in relation to the purported tetraploid nature of the salmonids.  相似文献   

5.
With global temperatures projected to surpass the limits of thermal tolerance for many species, evaluating the heritable variation underlying thermal tolerance is critical for understanding the potential for adaptation to climate change. We examined the evolutionary potential of thermal tolerance within a population of chinook salmon (Oncorhynchus tshawytscha) by conducting a full-factorial breeding design and measuring the thermal performance of cardiac function and the critical thermal maximum (CTmax) of offspring from each family. Additive genetic variation in offspring phenotype was mostly negligible, although these direct genetic effects explained 53% of the variation in resting heart rate (fH). Conversely, maternal effects had a significant influence on resting fH, scope for fH, cardiac arrhythmia temperature and CTmax. These maternal effects were associated with egg size, as indicated by strong relationships between the mean egg diameter of mothers and offspring thermal tolerance. Because egg size can be highly heritable in chinook salmon, our finding indicates that the maternal effects of egg size constitute an indirect genetic effect contributing to thermal tolerance. Such indirect genetic effects could accelerate evolutionary responses to the selection imposed by rising temperatures and could contribute to the population-specific thermal tolerance that has recently been uncovered among Pacific salmon populations.  相似文献   

6.
Results of studies of spawning chum salmon Oncorhynchus keta (Walbaum) in Olutorsky Bay and the Apuka River—the largest river in northeast Kamchatka—inflowing Olutorsky Bay of the Bering Sea are presented. It was established that the first individuals of the chum salmon enter the river together with early sockeye salmon and chinook salmon in the first ten-day period of June, and mass-spawning run takes place in July–August. Analysis of biological characteristics of chum salmon caught in the Apuka River and Olutorsky Bay of the Bering Sea enabled us to reveal the inhomogeneity of its spawning school represented by two seasonal forms.  相似文献   

7.
Identification of the spatial extent of genetic structuring that may be influenced by evolutionary, ecological and historical factors is critical for effective conservation or management strategies. Masu salmon Oncorhynchus masou is commonly distributed in Far East, however, many local populations have been under threats of decline due to habitat destruction, overexploitation, and genetic introgression. To reveal the spatial genetic structure of native masu salmon populations in Hokkaido, masu salmon samples were collected from 16 rivers in which there was no official record of artificial releases of any masu salmon stock and were analyzed using 15 microsatellite loci. A Bayesian assignment test revealed that masu salmon populations were divided into two genetically distinct groups: the northeastern and southwestern groups. For within-group genetic structure, all populations, except for geographically proximate populations, were significantly different from each other. AMOVA revealed that genetic variation at among-group level based on groups identified assignment test was greater than that of groups based on geographic locations. There was no significant IBD for the 16 populations. However, the Mantel test revealed significant IBD for the northeastern group, but did not for the southwestern group. This study suggested that native masu salmon populations in Hokkaido exhibit a hierarchical genetic structure that is largely a result of their precise homing behavior. The results of this study also highlight the importance of defining populations by using genetic data rather than by using predefined populations based on geographic locations for the correct determination of genetic structure.  相似文献   

8.
Non-indigenous species (NIS) have been called biological pollutants, which implies that reducing their numbers should reduce negative impacts. To test this hypothesis, we used food web models, parameterized with data from field studies, to ask how reducing the number of NIS co-occurring with endangered salmon would affect salmon mortality. Our analyses indicate that predation on Upper Columbia River spring chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss juveniles was affected very little by NIS reduction. The effects of removing NIS were partly or totally offset by indirect food web interactions, and were subtle compared to effects of native predator management. We predict that the most effective way of reducing predation on salmon smolts will involve managing native predators and targeted removals of specific NIS. Minimizing impact of established NIS thus entails not only reducing NIS prevalence, but also considering background management practices and community context.  相似文献   

9.
Off-channel habitat has become increasingly recognized as key for migratory fishes such as juvenile Chinook salmon (Oncorhynchus tshawytscha). Hence, floodplain habitat has been identified as critical for the continued persistence of California’s Central Valley salmon, particularly the Yolo Bypass, the primary floodplain of the Sacramento River. To provide insight into factors supporting juvenile salmon use of this 240 km2, partially leveed floodplain, we examined inter- and intra-annual relationships between environmental correlates and residency time, apparent growth, emigration, migratory phenotype, and survival over more than a decade for natural-origin (“wild”) fish and experimentally-released hatchery fish. Flood duration was positively associated with hatchery juveniles residing longer and achieving larger size. Wild juveniles grew larger and emigrated later with cumulative temperature experience (accumulated thermal units) and warmer average annual temperatures during flood years. Within years, both wild and hatchery salmon departed the floodplain as flood waters receded. Parr-sized juveniles dominated outmigrant composition, though fry and smolt-sized juveniles were also consistently observed. Survival to the ocean fishery was not significantly different between hatchery fish that reared in the Yolo Bypass versus those that reared in the main stem Sacramento River. Our study indicates improved frequency and duration of connectivity between the Sacramento River and the Yolo Bypass could increase off-channel rearing opportunities that expand the life history diversity portfolio for Central Valley Chinook salmon.  相似文献   

10.
The straying of hatchery salmon may harm wild salmon populations through a variety of ecological and genetic mechanisms. Surveys of pink (Oncorhynchus gorbuscha), chum (O. keta) and sockeye (O. nerka) salmon in wild salmon spawning locations in Prince William Sound (PWS), Alaska since 1997 show a wide range of hatchery straying. The analysis of thermally marked otoliths collected from carcasses indicate that 0–98% of pink salmon, 0–63% of chum salmon and 0–93% of sockeye salmon in spawning areas are hatchery fish, producing an unknown number of hatchery-wild hybrids. Most spawning locations sampled (77%) had hatchery pink salmon from three or more hatcheries, and 51% had annual escapements consisting of more than 10% hatchery pink salmon during at least one of the years surveyed. An exponential decay model of the percentage of hatchery pink salmon strays with distance from hatcheries indicated that streams throughout PWS contain more than 10% hatchery pink salmon. The prevalence of hatchery pink salmon strays in streams increased throughout the spawning season, while the prevalence of hatchery chum salmon decreased. The level of hatchery salmon strays in many areas of PWS are beyond all proposed thresholds (2–10%), which confounds wild salmon escapement goals and may harm the productivity, genetic diversity and fitness of wild salmon in this region  相似文献   

11.
Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush) ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha), and walleye (Sander vitreus). Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.  相似文献   

12.

Background

Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka).

Methodology/Principal Findings

We used genetic analyses to determine the origin of sockeye from Canada''s two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance.

Conclusions/Significance

This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.  相似文献   

13.
Juvenile Atlantic salmon Salmo salar from three allopatric populations (LaHave, Sebago and Saint‐Jean) were placed into artificial streams with combinations of four non‐native salmonids: brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, Chinook salmon Oncorhynchus tshawytscha and coho salmon Oncorhynchus kisutch. Non‐additive effects, as evidenced by lower performance than predicted from weighted summed two‐species competition trials, were detected for S. salar fork length (LF) and mass, but not for survival, condition factor or riffle use. These data support emerging theory on niche overlap and species richness as factors that can lead to non‐additive competition effects.  相似文献   

14.
Theory suggests that gradual environmental change may erode the resilience of ecosystems and increase their susceptibility to critical transitions. This notion has received a lot of attention in ecology in recent decades. An important question receiving far less attention is whether ecosystems can cope with the rapid environmental changes currently imposed. The importance of this question was recently highlighted by model studies showing that elevated rates of change may trigger critical transitions, whereas slow environmental change would not. This paper aims to provide a mechanistic understanding of these rate‐induced critical transitions to facilitate identification of rate sensitive ecosystems. Analysis of rate sensitive ecological models is challenging, but we demonstrate how rate‐induced transitions in an elementary model can still be understood. Our analyses reveal that rate‐induced transitions 1) occur if the rate of environmental change is high compared to the response rate of ecosystems, 2) are driven by rates, rather than magnitudes, of change and 3) occur once a critical rate of change is exceeded. Disentangling rate‐induced transitions from classical transitions in observations would be challenging. However, common features of rate‐sensitive models suggest that ecosystems with coupled fast–slow dynamics, exhibiting repetitive catastrophic shifts or displaying periodic spatial patterns are more likely to be rate sensitive. Our findings are supported by experimental studies showing rate‐dependent outcomes. Rate sensitivity of models suggests that the common definition of ecological resilience is not suitable for a subset of real ecosystems and that formulating limits to magnitudes of change may not always safeguard against ecosystem degradation. Synthesis Understanding and predicting ecosystem response to environmental change is one of the key challenges in ecology. Model studies have suggested that slow, gradual environmental change beyond some critical threshold can trigger so‐called critical transitions and abrupt ecosystem degradation. An important question remains however whether ecosystems can cope with the ongoing rapid anthropogenic environmental changes to which they are currently imposed. In this study we demonstrate that in some ecological models elevated rates of change can trigger critical transitions even if slow environmental change of the same magnitude would not. Such rateinduced critical transitions in models suggest that concepts like resilience and planetary boundaries may not always be sufficient to explain and prevent ecosystem degradation.  相似文献   

15.
Despite advances in our mechanistic understanding of ecological processes, the inherent complexity of real-world ecosystems still limits our ability in predicting ecological dynamics especially in the face of on-going environmental stress. Developing a model is frequently challenged by structure uncertainty, unknown parameters, and limited data for exploring out-of-sample predictions. One way to address this challenge is to look for patterns in the data themselves in order to infer the underlying processes of an ecological system rather than to build system-specific models. For example, it has been recently suggested that statistical changes in ecological dynamics can be used to infer changes in the stability of ecosystems as they approach tipping points. For computer scientists such inference is similar to the notion of a Turing machine: a computational device that could execute a program (the process) to produce the observed data (the pattern). Here, we make use of such basic computational ideas introduced by Alan Turing to recognize changing patterns in ecological dynamics in ecosystems under stress. To do this, we use the concept of Kolmogorov algorithmic complexity that is a measure of randomness. In particular, we estimate an approximation to Kolmogorov complexity based on the Block Decomposition Method (BDM). We apply BDM to identify changes in complexity in simulated time-series and spatial datasets from ecosystems that experience different types of ecological transitions. We find that in all cases, KBDM complexity decreased before all ecological transitions both in time-series and spatial datasets. These trends indicate that loss of stability in the ecological models we explored is characterized by loss of complexity and the emergence of a regular and computable underlying structure. Our results suggest that Kolmogorov complexity may serve as tool for revealing changes in the dynamics of ecosystems close to ecological transitions.  相似文献   

16.
It has long been recognized that, as populations increase in density, ecological processes affecting growth and survival reduce per capita recruitment in the next generation. In contrast to the evidence for such “compensatory” density dependence, the alternative “depensatory” process (reduced per capita recruitment at low density) has proven more difficult to demonstrate in the field. To test for such depensation, we measured the spawner–recruit relationship over five decades for a sockeye salmon (Oncorhynchus nerka) population in Alaska breeding in high-quality, unaltered habitat. Twenty-five years of detailed estimates of predation by brown bears, Ursus arctos, revealed strong density dependence in predation rate; the bears killed ca. 80 % of the salmon in years of low salmon spawning abundance. Nevertheless, the reconstructed spawner–recruit relationship, adjusted to include salmon intercepted in the commercial fishery, provided no evidence of demographic depensation. That is, in years when few salmon returned and the great majority were killed by bears, the few that spawned were successful enough that the population remained highly productive, even when those killed by bears were included as potential spawners. We conclude that the high quality of breeding habitat at this site and the productive nature of semelparous Pacific salmon allowed this population to avoid the hypothesized depressed recruitment from depensatory processes expected at low density. The observed lack of demographic depensation is encouraging from a conservation standpoint because it implies that depleted populations may have the potential to rebound successfully given suitable spawning and rearing habitat, even in the presence of strong predation pressure.  相似文献   

17.
Stream-dwelling fishes inhabit river networks where resources are distributed heterogeneously across space and time. Current theory emphasizes that fishes often perform large-scale movements among habitat patches for reproduction and seeking refugia, but assumes that fish are relatively sedentary during growth phases of their life cycle. Using stationary passive integrated transponder (PIT)-tag antennas and snorkel surveys, we assessed the individual and population level movement patterns of two species of fish across a network of tributaries within the Wood River basin in southwestern Alaska where summer foraging opportunities vary substantially among streams, seasons, and years. Across two years, Arctic grayling (Thymallus arcticus) and rainbow trout (Oncorhynchus mykiss) exhibited kilometer-scale movements among streams during the summer growing season. Although we monitored movements at a small fraction of all tributaries used by grayling and rainbow trout, approximately 50% of individuals moved among two or more streams separated by at least 7 km within a single summer. Movements were concentrated in June and July, and subsided by early August. The decline in movements coincided with spawning by anadromous sockeye salmon, which offer a high-quality resource pulse of food to resident species. Inter-stream movements may represent prospecting behavior as individuals seek out the most profitable foraging opportunities that are patchily distributed across space and time. Our results highlight that large-scale movements may not only be necessary for individuals to fulfill their life-cycle, but also to exploit heterogeneously spaced trophic resources. Therefore, habitat fragmentation and homogenization may have strong, but currently undescribed, ecological effects on the access to critical food resources in stream-dwelling fish populations.  相似文献   

18.
Guided by principles of life history strategy development, this study tested the hypothesis that sexual precocity and violence are influenced by sensitivities to local environmental conditions. Two models of strategy development were compared: The first is based on indirect perception of ecological cues through family disruption and the second is based on both direct and indirect perception of ecological stressors. Results showed a moderate correlation between rates of violence and sexual precocity (r?=?0.59). Although a model incorporating direct and indirect effects provided a better fit than one based on family mediation alone, significant improvements were made by linking some ecological factors directly to behavior independently of strategy development. The models support the contention that violence and teenage pregnancy are part of an ecologically determined pattern of strategy development and suggest that while the family unit is critical in affecting behavior, individuals’ direct experiences of the environment are also important.  相似文献   

19.
The average sizes of Pacific salmon have declined in some areas in the Northeast Pacific over the past few decades, but the extent and geographic distribution of these declines in Alaska is uncertain. Here, we used regression analyses to quantify decadal trends in length and age at maturity in ten datasets from commercial harvests, weirs, and spawner abundance surveys of Chinook salmon Oncorhynchus tshawytscha throughout Alaska. We found that on average these fish have become smaller over the past 30 years (~6 generations), because of a decline in the predominant age at maturity and because of a decrease in age-specific length. The proportion of older and larger 4-ocean age fish in the population declined significantly (P < 0.05) in all stocks examined by return year or brood year. Our analyses also indicated that the age-specific lengths of 4-ocean fish (9 of 10 stocks) and of 3-ocean fish (5 of 10 stocks) have declined significantly (P < 0.05). Size-selective harvest may be driving earlier maturation and declines in size, but the evidence is not conclusive, and additional factors, such as ocean conditions or competitive interactions with other species of salmon, may also be responsible. Regardless of the cause, these wide-spread phenotypic shifts influence fecundity and population abundance, and ultimately may put populations and associated fisheries at risk of decline.  相似文献   

20.
Recent progress in genome-based breeding has created various fish strains carrying desirable genetic traits; however, methods for the long-term preservation of their genetic resources have not yet been developed, mainly due to the lack of cryopreservation techniques for fish eggs and embryos. Recently, we established an alternative cryopreservation technique for fish spermatogonia using a slow-freezing method. Furthermore, we developed a transplantation system to produce functional eggs and sperm derived from spermatogonia. Spermatogonia isolated from the testes of vasa-green fluorescent protein (Gfp) transgenic rainbow trout (Oncorhynchus mykiss) were transplanted into the peritoneal cavity of triploid masu salmon (Oncorhynchus masou) hatchlings of both genders. The transplanted trout spermatogonia migrated towards the gonadal anlagen of the recipient salmon, into which they were subsequently incorporated. We confirmed that the donor-derived spermatogonia resumed gametogenesis, and produced sperm and eggs in male and female recipient salmon, respectively. Fertilization of the resultant eggs and sperm produced only rainbow trout in the first filial (F1) generation, suggesting that the sterile triploid recipient salmon produced functional eggs and sperm derived from the trout donors. A combination of spermatogonial transplantation and cryopreservation could be a powerful tool for preserving valuable fish strains with desirable genetic traits and endangered species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号