首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 912 毫秒
1.
2.
Ectopic secretion of ACTH, from sites such as small cell lung cancer (SCLC), results in severe Cushing's syndrome. ACTH is cleaved from POMC. The syndrome may occur when the highly tissue-specific promoter of the human POMC gene (POMC) is activated. The mechanism of activation is not fully understood. This promoter is embedded within a defined CpG island, and CpG islands are usually considered to be unmethylated in all tissues. We demonstrate that much of this CpG island is methylated in normal nonexpressing tissues, in contrast to somatically expressed CpG island promoters reported to date, and is specifically unmethylated in expressing tissues, tumors, and the POMC-expressing DMS-79 SCLC cell line. A narrow 100-bp region is free of methylation in all tissues. E2F factors binding to the upstream domain IV region of the promoter have been shown to be involved in the expression of POMC in SCLC. We show that these sites are methylated in normal nonexpressing tissues, which will prevent binding of E2F, but are unmethylated in expressing tissue. Methylation in vitro is sufficient for silencing of expression, which is not reversed by treatment with Trichostatin A, suggesting that inhibition of expression may be mediated by means other than recruitment of histone deacetylase activity. The DMS-79 cells lack POMC demethylating activity, implying that the methylation and expression patterns are likely to be set early or before neoplastic transformation, and that targeted de novo methylation might be a potential therapeutic strategy.  相似文献   

3.
4.
5.
A comparison of nucleolide sequences of murine LDH-a and Ldh-c genes and human LDH-A, LDH-B, and LDH-C reveals that mouse Ldh-c has lost the CpG “island” present in the genes for the somatic isozymes. However, the human LDH-C gene has a CpG-rich region of 230 bp surrounding its promoter. Endonuclease sensitivity coupled with polymerase chain reaction (PCR) demonstrate the presence of nine heavily methylated sites in this region in different somatic cells. The same sites are specifically hypomethy-lated in expressing tissues. 3′ sites bordering the CpG-rich region appear to be methylated in both expressing and nonexpressing tissues. Furthermore, the methylated promoter forms a specific complex in vitro with a methyl-DNA binding protein. Evolutionary and functional implications of these observations are discussed. © 1995 Wiley-Liss, Inc.  相似文献   

6.
7.
8.
9.
Summary The differentiation processes of the metaxylem cell line in the root ofAllium cepa are characterized by amplification phenomena of repetitive DNA sequences mainly localized in heterochromatic regions of metaphase chromosomes. Moreover, these sequences are heavily methylated. This paper presents additional results on variation in endogenous DNA methylation in different developing root segments. The results show that methylation is higher in apical meristematic cells than the differentiating segments; contrastingly, total RNA synthesis seems to be correlated with undermethylation. Addition of labelled methyl groups to DNA by eukaryotic methylase, DNA digestions with different restriction enzymes specific for methylated sites and HPLC analysis confirmed the above results. Moreover, variation in methylation levels during differentiation occur not only at the internal cytosine of the-CCG-sites, but also at external cytosine. Furthermore, methylation affects other sites containing the trinucleotides-CXG-. In conclusion, root differentiation inAllium cepa seems to be correlated with gene activation modulated by the methylation/demethylation of particular DNA sequences.  相似文献   

10.
11.
12.
Genomic levels of DNA methylation undergo widespread alterations in early embryonic development. However, changes in embryonic methylation have proven difficult to study at the level of single-copy genes due to the small amount of tissue available for assay. This study provides the first detailed analysis of the methylation state of a tissue-specific gene through early development and differentiation. Using bisulfite sequencing, we mapped the methylation profile of the tissue-specific mouse skeletal α-actin promoter at all stages of development, from gametes to postimplantation embryos. We show that the α-actin promoter, which is fully methylated in the sperm and essentially unmethylated in the oocyte, undergoes a general demethylation from morula to blastocyst stages, although the blastula is not completely demethylated. Remethylation of the α-actin promoter occurs after implantation in a stochastic pattern, with some molecules being extensively methylated and others sparsely methylated. Moreover, we demonstrate that tissue-specific expression of the skeletal α-actin gene in the adult mouse does not correlate with the methylation state of the promoter, as we find a similar low level of methylation in both expressing and one of the two nonexpressing tissues tested. However, a subset of CpG sites within the skeletal α-actin promoter are preferentially methylated in liver, a nonexpressing tissue.  相似文献   

13.
14.
15.
16.
Analysis of DNA methylation in different maize tissues   总被引:2,自引:0,他引:2  
DNA methylation plays an important role in gene expression regulation during biological development and tissue differentiation in plants. This study adopted methylation-sensitive Amplified fragment length polymorphism (AFLP) to compare the levels of DNA cytosine methylation at CCGG sites in tassel, bracteal leaf, and ear leaf from maize inbred lines, 18 White and 18 Red, respectively, and also examined specific methylation patterns of the three tissues. Significant differences in cytosine methylation level among the three tissues and the same changing tendency in two inbred lines were detected. Both MSAP (methylation sensitive amplification polymorphism) ratio and full methylation level were the highest in bracteal leaf, and the lowest in tassel. Meanwhile, different methylation levels were observed in the same tissue from the inbred lines, 18 White and 18 Red. Full methylation of internal cytosine was the dominant type in the maize genome. The differential methylation patterns in the three tissues were observed. In addition, sequencing of nine differentially methylated fragments and the subsequent blast search revealed that the cytosine methylated 5 ' -CCGG-3 ' sequences were distributed in repeating sequences, in the coding and noncoding regions. Southern hybridization was used to verify the methylation polymorphism. These results clearly demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and the complexity of DNA methylation change during plant growth and development. The different methylation levels may be related to specific gene expression in various tissues.  相似文献   

17.
Vu TH  Li T  Nguyen D  Nguyen BT  Yao XM  Hu JF  Hoffman AR 《Genomics》2000,64(2):132-143
  相似文献   

18.
P B Becker  S Ruppert  G Schütz 《Cell》1987,51(3):435-443
Using in vivo dimethylsulfate footprinting, we have analyzed protein-DNA interactions within two regions upstream of the tyrosine aminotransferase (TAT) gene that are characterized by an altered chromatin structure in TAT-expressing as compared to nonexpressing cells. All the identified protein contacts to DNA are found exclusively in the TAT-expressing hepatoma cells. In vitro analyses of specific DNA-binding factors in crude nuclear extracts yield DNAase I footprints that correlate well with the binding sites in vivo. Surprisingly, all DNA-binding activities are present in nuclei of TAT-expressing and nonexpressing cells, indicating that the mere presence of factors is not sufficient for their interaction with a binding site in vivo. Genomic sequencing reveals methylation of CpG dinucleotides in the regions analyzed in nonexpressing cells, whereas no methylation is found in TAT-expressing cells. In vitro methylation at a cytosine residue within a footprint region prevents the interaction of a factor with its binding site.  相似文献   

19.
20.
We studied the relation between LTR methylation and expression of the family of endogenous retrovirus-like elements related to mouse intracisternal A-particles (IAP). Comparative HpaII/MspI and HhaI restriction analysis of genomic DNA's showed that in cells and tissues with a low level of IAP gene expression, HpaII and HhaI sites within the 5' LTR were heavily methylated, while in cells abundantly expressing IAP's 20 to 30% of the 5' LTRs were demethylated at these sites. The effects of methylation on the promoter activity of a cloned IAP 5' LTR was studied directly, using the plasmid pMIA5' L-cat in which this LTR was linked to the chloramphenicol acetyl transferase (CAT) gene. In vitro methylation of three HhaI sites located between -137 and -205 bp from the RNA start site of this LTR completely inactivated the promoter activity of pMIA5' L-cat transfected into COS7 cells. Methylation of a HpaII site located 94 bp downstream from the RNA start site reduced the promoter activity by 75%. The results show that methylation at sites both upstream and downstream from the RNA start site profoundly effects the promoter activity of this LTR and suggest that methylation within the 5' LTR can serve to regulate IAP gene expression in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号