首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Antisera were prepared in syngeneic hosts against subcellular fractions of simian virus 40 (SV40)-transformed cells (MoalphaPM, MoalphaNuc), glutaraldehydefixed SV40-transformed cells (HaalphaH-50-G, MoalphaVLM-G), and electrophoretically purified denatured SV40 tumor antigen (T-ag) (RaalphaT). Immune sera were also collected from animals bearing tumors induced by SV40-transformed cells (HaalphaT, MoalphaT, HAF) and from SV40-immunized animals that had rejected a transplant of SV40-transformed cells (HaalphaS, MoalphaS). Immunological reagents prepared against cell surface (MoalphaPM, HaalphaS, MoalphaS, HaalphaH-50-G, MoalphaVLM-G) reacted exclusively with the surface of SV40-transformed cells by indirect immunofluorescence or protein A surface antigen radioimmunoassay. Immunological reagents prepared against the nuclear fraction (MoalphaNuc) or whole-cell determinants (HaalphaT, MoalphaT, HAF, RaalphaT) reacted with both the nuclei and surface of SV40-transformed or -infected cells. All reagents were capable of immunoprecipitating 96,000-molecular weight large T-ag from solubilized whole cell extracts of SV40-transformed cells. The exclusive surface reactivity of HaalphaS exhibited in immunofluorescence tests was abolished by solubilization of subcellular fractions, which then allowed immunoprecipitation of T-ag by HaalphaS from both nuclear and plasma membrane preparations. Specificity was established by the fact that all T-reactive reagents failed to react in serological tests against chemically transformed mouse cells, and sera from mice bearing transplants chemically transformed mouse cells (MoalphaDMBA-2) failed to react with SV40-transformed mouse or hamster cells. Reagents demonstrating positive surface immunofluorescence and protein A radioimmunoassay reactions against SV40-transformed cells were capable of blocking the surface binding of RaalphaT to SV40-transformed cells in a double-antibody surface antigen radioimmunoassay. This blocking ability demonstrated directly that a component specificity of each surface-reactive reagent is directed against SV40 T-ag. A model is presented which postulates that the differential detection of T-ag by the various serological reagents is a reflection of immunogenic and antigenic differences between T-ag polypeptides localized in nuclei and plasma membranes.  相似文献   

2.
When BALB/c mice were injected with a syngeneic cell line transformed by Abelson murine leukemia virus (A-MuLV), the tumor was usually lethal. In sera from tumor-bearing mice, and at highest levels in sera from mice that reject their tumors, was an antibody that immunoprecipitates a specific protein from [35S]-methionine-labeled A-MuLV-transformed BALB/c cells. This protein was not the previously characterized A-MuLV-specific protein (P120) but a 50,000-molecular-weight protein (P50). Such sera may also immunoprecipitate P120, but no other protein was reproducibly precipitated by them. A monoclonal antibody (RA3-2C2) that has been shown to stain normal B-lymphocytes also selectively immunoprecipitated P50. P50 was present in A-MuLV-transformed lymphoid and fibroblastic cells of a variety of mouse strains. One A-MuLV-transformed cell line had a very low P50 level, the L1-2 tumor of C57L origin. This tumor was previously shown to be rejected by C57L mice and is used to produce anti-P120 (anti-AbT) sera. P50 was not a Moloney MuLV protein and was found at low levels in normal cells of cells transformed by agents other than A-MuLV; thus, it was probably a host cell protein whose concentration was selectively accentuated by A-MuLV transformation. P50 was phosphorylated and, by using indirect immunofluorescence, anti-P50 serum stained live A-MuLV-transformed cells. The protein was not glycosylated and did not label by lactoperoxidase-catalyzed iodination. Thus, P50 was very like P120 in its cellular localization and properties, but it did not exhibit proptein kinase activity in vitro. The selective accentuation of this protein in A-MuLV transformants and its strong antigenicity in syngeneic animals suggest that it is a unique and functionally important protein.  相似文献   

3.
Transformation of isolated rat hepatocytes with simian virus 40   总被引:3,自引:1,他引:2       下载免费PDF全文
Rat hepatocytes were transformed by simian virus 40 (SV40). Hepatocytes from two different strains of rats and a temperature-sensitive mutant (SV40tsA 1609), as well as wild-type virus were used. In all cases, transformed cells arose from approximately 50% of the cultures containing hepatocytes on collagen gels or a collagen gel-nylon mesh substratum. Cells did not proliferate in mock-infected cultures. SV40-transformed hepatocytes were epithelial in morphology, retained large numbers of mitochondria, acquired an increased nucleus to cytoplasm ratio, and contained cytoplasmic vacuoles. Evidence that these cells were transformed by SV40 came from the findings that transformants were 100% positive for SV40 tumor antigen expression, and that SV40 was rescued when transformed hepatocytes were fused with monkey cells. All SV40-transformed cell lines tested formed clones in soft agarose. Several cell lines transformed by SV40tsA 1609 were temperature dependent for colony formation on plastic dishes. Transformants were diverse in the expression of characteristic liver gene functions. Of eight cell lines tested, one secreted 24% of total protein as albumin, which was comparable to albumin production by freshly plated hepatocytes; two other cell lines produced 4.2 and 5.7%, respectively. Tyrosine aminotransferase activity was present in five cell lines tested but was inducible by dexamethasone treatment in only two. We conclude from these studies that adult, nonproliferating rat hepatocytes are competent for virus transformation.  相似文献   

4.
Differential screening of a cDNA library was used to isolate probes for mRNAs that are induced in simian virus 40 (SV40)-transformed human keratinocytes. Several of these cDNAs hybrid select mRNAs which encode transformation-induced proteins found in the cytoskeletal component of SV40-transformed keratinocytes. One of these cDNAs was used to study the phenotype of normal and transformed cell lines derived from various tissues. We found that mRNA encoding the novel transformation-induced proteins is expressed in two squamous carcinoma cell lines derived from the oral epithelium, four SV40-transformed keratinocyte cell lines, and two SV40-transformed fibroblasts. Normal or transformed lymphoid cells or cell lines derived from carcinoma of the cervix do not express mRNAs which hybridize to these probes. The results from this study suggest that these probes may be used to detect markers of transformation in certain cell types.  相似文献   

5.
Simian virus 40 (SV40)-transformed monolayer cells were analyzed in situ by indirect immunofluorescence microscopy for the postulated cell surface location of SV40 T-antigen-related molecules. With antisera prepared against purified, sodium dodecyl sulfate-denatured SV40 T-antigen, positive surface staining was obtained when the cells had been treated with formaldehyde before immunofluorescence analysis. In contrast, living SV40-transformed cells analyzed in monolayer were surface fluorescence negative. The fixation procedure developed in this study combined with a double staining immunofluorescence technique allowed the simultaneous analysis of the same cells for the expression of both SV40 T-antigen-related surface antigen and nuclear T-antigen. The localization of SV40 T-antigen-related surface antigen on the outer surface of the plasma membrane of formaldehyde-fixed SV40-transformed cells was demonstrated directly by the protein A-mediated binding of Staphylococcus aureus bacteria on formaldehyde-fixed SV40-transformed cells precoated with antiserum against sodium dodecyl sulfate-denatured T-antigen. Both cell surface staining and S. aureus binding were found to be highly specific for SV40 T-antigen-related binding sites. These results indicate that T-antigen-related molecules in a cryptic form are located on the surface of SV40-transformed monolayer cells and can be detected in situ after modification of the cell surface architecture.  相似文献   

6.
J S Butel  C Wong    B K Evans 《Journal of virology》1986,60(2):817-821
Higher-molecular-weight forms of the simian virus 40 (SV40) large tumor antigen (T-Ag), designated super T-Ag, are commonly found in SV40-transformed rodent cells. We examined the potential role of super T-Ag in neoplastic progression by using a series of clonal SV40-transformed mouse mammary epithelial cell lines. We confirmed an association between the presence of super T-Ag and cellular anchorage-independent growth in methylcellulose. However, tumorigenicity in nude mice did not correlate with the expression of super T-Ag. In the tumors that developed in nude mice, super T-Ag expression fluctuated almost randomly. Cell surface iodination showed that super T-Ag molecules were transported to the epithelial cell surface. The biological functions of super T-Ag remain obscure, but it is clear that it is not important for tumorigenicity by SV40-transformed mouse mammary epithelial cells. Super T-Ag may be most important as a marker of genomic rearrangements by the resident viral genes in transformed cells.  相似文献   

7.
When the DNA-binding proteins (DBPs) of WI38 normal human fibroblasts and their SV40-transformed counterpart were compared, two DBPs were present in greater amounts in the transformed cells. These two DBPs, P5a and P6b, were also present in greater amounts in HeLa cells versus WI38 cells and in chemically transformed human liver cells versus normal liver cells. Therefore, these DBP differences do not appear to be specific for transformation by SV40. Increased amounts of P5a were present in 7 of 9 transformed cell lines examined. The two tumor cell lines lacking the P5a change were sensitive to density-dependent inhibition of replication, whereas the other seven cell lines were not. This correlation suggests that the increase in P5a may play a role in the release from density-dependent inhibition of replication observed in most transformed cells.  相似文献   

8.
Primate polyoma virus-transformed hamster, mouse, and rat cell lines were examined by indirect immunofluorescence staining for cell surface-associated T antigens, by using a rabbit antiserum prepared against sodium dodecyl sulfate-denatured large T antigen of simian virus 40 (anti-SV40-SDS-T serum). Positive surface staining was shown not only on SV40-transformed cells, but also on BK and JC virus-transformed cells. In contrast, normal cells and cells transformed with mouse polyoma-, human adeno-, and murine sarcoma viruses were negative. The data on SV40-transformed cells confirmed the reports of others demonstrating the cell surface location of SV40 large T antigen, and the data on BK and JC virus-transformed cells proved that these cells have cell-surface T antigens that cross-react with anti-SV40-SDS-T serum.  相似文献   

9.
We have developed quantitative radioimmunological solid phase assays for the host protein p53 from mouse cells and from human cells. The first assay, for mouse p53, depends on having two monoclonal antibodies reacting with different determinants on the p53 molecule. With this assay we have shown that SV40-transformed cells have approximately 100-fold more p53 than untransformed mouse cells and that other transformed cells have intermediate levels. Embryonal carcinoma cell lines have approximately 50-fold less p53 than SV40-transformed cells. This is in contrast to the high levels of incorporation of [35S]methionine into p53 in these cells and indicates that metabolic labelling is not a valid approach for measuring p53 levels. The second assay, for human p53, required a different approach and made use of the anti-p53 antibodies detected in the sera of some breast cancer patients. Human tumour cell lines contained amounts of p53 varying from the high level seen in SV40-transformed human fibroblasts down to less than one hundredth of this amount. Normal human cells showed low levels of p53. The data confirm that many, but not all, human tumour cell lines contain more p53 than normal cells.  相似文献   

10.
Antisera reactive with the Abelson murine leukemia virus (A-MuLV)-specified P120 (anti-AbT sera) were produced in C57L/J mice. Of many strains tested, only C57L/J reproducibly rejected syngenic A-MuLV-induced tumor cells; after multiple immunizations their sera would immunoprecipitate both P120 and Moloney-MuLV (M-MuLV) proteins. Using labeled A-MuLV-induced nonproducer cells, only P120 could be detected by anti-AbT sera, suggesting that it may be the only A-MuLV-specified protein. Reactivity of anti-AbT sera with P120 was not blocked by M-MuLV virion proteins, implying that the sera recognize a portion of P120 that is not homologous to any M-MuLV product. Anti-AbT sera stained the surface of live, A-MuLV-transformed nonproducer cells in a two-stage immunofluorescence assay, and such staining was not blocked by M-MuLV protein. Also, intact A-MuLV-transformed cells absorbed much of the reactivity of certain anti-AbT sera for P120. Thus a portion of P120 appears to be exposed on the surface of transformed cells. P120 lacks detectable carbohydrate, is not affected by endoglycosidase H, and cannot be labeled by lactoperoxidase-catalyzed iodination. Thus P120 is an unusual surface protein.  相似文献   

11.
K Maruyama  T Hiwasa    K I Oda 《Journal of virology》1981,37(3):1028-1043
Eight clones of flat revertants were isolated by negative selection from simian virus 40 (SV40)-transformed mouse and rat cell lines in which two and six viral genome equivalents per cell were integrated, respectively. These revertants showed either a normal cell phenotype or a phenotype intermediate between normal and transformed cells as to cellular morphology and saturation density and were unable to grow in soft agar medium. One revertant derived from SV40-transformed mouse cells was T antigen positive, whereas the other seven revertants were T antigen negative. SV40 could be rescued only from the T-antigen-positive revertant by fusion with permissive monkey cells. The susceptibility of the revertants to retransformation by wild-type SV40 was variable among these revertants. T-antigen-negative revertants from SV40-transformed mouse cells were retransformed at a frequency of 3 to 10 times higher than their grandparental untransformed cells. In contrast, T-antigen-negative revertants from SV40-transformed rat cells could not be retransformed. The arrangement of viral genomes was analyzed by digestion of cellular DNA with restriction enzymes of different specificity, followed by detection of DNA fragments containing a viral sequence and rat cells were serially arranged within the length of about 30 kilobases, with at least two intervening cellular sequences. A head-to-tail tandem array of unit length viral genomes was present in at least one insertion site in the transformed rat cells. All of the revertants had undergone a deletion(s), and only a part of the viral genome was retained in T-antigen-negative revertants. A relatively high frequency of reversion in the transformed rat cells suggests that reversion occurs by homologous recombination between the integrated viral genomes.  相似文献   

12.
The susceptibility of mouse cells expressing full-length or truncated transforming protein (T antigen) of simian virus 40 (SV40) to lysis by murine natural killer (NK) cells was assessed. For these studies, C57BL/6 mouse embryo fibroblasts (B6/MEF) were transformed by transfection with SV40 DNA encoding the entire T antigen. The transformed cell lines were tested for susceptibility to lysis by nonimmune CBA splenocytes as a source of NK cells and to lysis by C57BL/6, SV40-specific cytolytic T cells (CTL). It was found that 13 of 15 clonally derived, SV40-transformed H-2b cell lines were susceptible to lysis by NK cells. However, there was some variation in their susceptibility to lysis by NK cells. There was no correlation between susceptibility to lysis by SV40-specific CTL and to lysis by NK cells. Cells transfected with a plasmid which encodes only the N-terminal half of the SV40 T antigen were consistently less susceptible to lysis by NK cells, suggesting that expression of only the N-terminus of the T antigen was insufficient for optimal susceptibility to lysis by NK cells. Primary mouse embryo fibroblasts transformed by human adenovirus type 5 E1 region DNA were also found to be susceptible to NK cell-mediated lysis. Lysis of SV40-transformed cells by nonimmune CBA splenocytes was mediated by NK cells because: lysis was augmented when the effector cells were treated with interferon before assay; and lysis was abrogated when the effector cells were obtained from mice that had been depleted of NK activity by treatment with antiserum against the asialo GM1 surface marker. These results indicate that primary mouse cells which are transformed by SV40 and which express the native T antigen are susceptible to lysis by mouse NK cells. Conversely, cells transformed by a plasmid encoding only the N-terminal half of the T antigen express reduced susceptibility to lysis by NK cells.  相似文献   

13.
The phosphorylation of ribosomal protein S6 in fibroblasts, primary human tumour cells, established and SV40-transformed human cell lines was compared after the addition of 12-O-tetradecanoylphorbol 13-acetate (TPA). In fibroblasts and primary tumour cell cultures, stimulation of S6 phosphorylation was about 4-6-fold. Established and transformed cell lines showed enhanced S6 phosphorylation which was not further stimulated by the addition of TPA. These findings indicated that the influence of TPA on the metabolic pathway, that finally leads to the phosphorylation of protein S6 in cells with a limited lifespan (fibroblasts, primary human tumour cells) can be mimicked by unknown steps also associated with immortalization (establishment function) and the transformed state of the tumour cells. Another interesting observation were morphological changes of the established and SV40-transformed cells which were visible as early as 20 min after the addition of TPA. In fibroblasts and primary tumour cells no changes in morphology were observed, even after 8h incubation.  相似文献   

14.
D I Linzer  A J Levine 《Cell》1979,17(1):43-52
SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.  相似文献   

15.
The display of microtubules in transformed cells.   总被引:48,自引:0,他引:48  
M Osborn  K Weber 《Cell》1977,12(3):561-571
Monospecific tubulin antibodies have been used in indirect immunofluorescence microscopy on a variety of well characterized, transformed cell lines grown in tissue culture. Networks of colcemid-sensitive fibers are seen in SV40-transformed 3T3 cells, SV40-transformed rat embryo cells, HeLa cells and other transformed cell lines. In each case, greater than 90% of the cells contain visible microtubular networks, and where individual microtubules can be distinguished, they run for long distances. Documentation of these metworks is more difficult in transformed than in normal cells, because transformed cells are in general more rounded and have less well spread cytoplasm. In addition, the microtubular networks can be readily visualized in "cytoskeletons" of both normal and transformed cells, obtained by treatment of cells with nonionic detergents in a buffer which stabilizes microtubules in vitro. Addition of calcium to this buffer results in in situ fragmentation and destruction of the microtubular network. In view of these results, we conclude that transformed cells contain significant numbers of microtubules, and that in transformed cells, as in normal cells, microtubules are arranged in networks.  相似文献   

16.
The susceptibility of targets to destruction by tumoricidal rat and mouse macrophages was studied with virus-transformed cell lines in which various elements of the transformed phenotype are only expressed at specific temperatures. BHK cells transformed by the ts3 mutant of polyoma virus, rat embryo 3Y1 cells transformed by a temperature-sensitive A cistron mutant of simian virus 40 (SV40) and the ts-H6-15 temperature-sensitive line of SV40-transformed mouse 3T3 cells were killed in vitro by macrophages at both the permissive (33 °C) or nonpermissive (39 °C) temperatures for expression of the transformed phenotype. 3T3, 3Y1 and BHK cells transformed by wild-type SV40 or polyoma virus were also destroyed by tumoricidal macrophages at both 33 and 39 °C, but untransformed 3T3, 3Y1, and BHK cells were not. Thus, transformed cells are killed by macrophages regardless of whether or not they express cell surface LETS protein or Forssman antigen, display surface changes which permit agglutination by low doses of plant lectins, express SV40 T antigen, have a low saturation density, or exhibit density-dependent inhibition of DNA synthesis.  相似文献   

17.
The antigenic structure of simian virus 40 (SV40) large tumor antigen (T-ag) in the plasma membranes of SV40-transformed mouse cells and SV40-infected monkey cells was characterized as a step toward defining possible biological function(s). Wild-type SV40, as well as a deletion mutant of SV40 (dl1263) which codes for a truncated T-ag with an altered carboxy terminus, was used to infect permissive cells. Members of a series of monoclonal antibodies directed against antigenic determinants on either the amino or the carboxy terminus of the T-ag polypeptide were able to precipitate surface T-ag (as well as nuclear T-ag) from both SV40-transformed and SV40-infected cells. Cellular protein p53 was coprecipitated with T-ag by all T-ag-reactive reagents from the surface and nucleus of SV40-transformed cells. In contrast, T-ag, but not T-ag-p53 complex, was recovered from the surface of SV40-infected cells. These results confirm that nuclear T-ag and surface T-ag are highly related molecules and that a complex of SV40 T-ag and p53 is present at the surface of SV40-transformed cells. Detectable levels of such a complex do not appear to be present on SV40-infected cells. Both the carboxy and amino termini of T-ag are exposed on the surfaces of SV40-transformed and -infected cells. The possible relevance of the presence of a T-ag-p53 complex on the surface of SV40-transformed cells and its absence from SV40-infected cells is considered.  相似文献   

18.
Human cells transformed in vitro by SV40 rarely form tumors in nude mice. We examined whether these cells as a group are inherently nontumorigenic or whether they are potentially tumorigenic but rejected by the athymic host, possibly by nonspecific immune mechanisms. SV80 and NG8 are SV40-transformed human cell lines that express all of the transformed properties, including anchorage-independent growth, but do not form tumors in adult nude mice after injection of as many as 10(8) cells. Both the SV80 and NG8 cell lines have SV40-specific transplantation antigens which crossreact with those present on SV40-transformed (but tumorigenic) rodent cells. We found that SV80 cells, though not NG8 cells, induced progressively growing lethal tumors if the cells are injected repeatedly into neonatal nude mice. Somatic cell hybrids between SV80 or NG8 cells and a highly tumorigenic cell line derived from a human tumor continue to express the virus-induced antigens and fail to form tumors in adult nude mice. These results strongly suggest that at least for some SV40-transformed human cells, the failure to form tumors in nude mice may be due to their expression of virus-induced transplantation antigens rather than the absence of tumorigenic potential.  相似文献   

19.
Simian virus 40 (SV40) infection of human diploid cells failed to cause an enhanced production of thymidine kinase during the first 10 days after infection. Thymidine kinase activities from extracts of SV40-transformed cultures (human or simian) were considerably higher than the activity levels in extracts from the normal cells of origin. In addition, whereas the kinase activities obtained for human diploid cultures decreased as the cell sheet became confluent, the kinase activities for SV40-transformed human cells remained high after confluence was reached. Antisera obtained from hamsters bearing SV40 or adeno-7-SV40 hybrid virus tumors selectively inhibited enzyme from transformed sources (human or simian). Also, the antisera selectively inhibited enzyme extracted from SV40-lytically infected monkey cells. Sera from normal animals or from hamsters bearing polyoma tumors failed to inhibit enzymes from normal, SV40-transformed, or SV40-lytically infected cells. The Michaelis constant of partially purified enzyme from SV40-transformed cells was two to five times as high as that obtained for partially purified enzyme from human diploid cell cultures.  相似文献   

20.
It has previously been shown that fibroblastic cells transformed by SV40 exhibit a reduced requirement for PDGF for growth. In addition, NIH/3T3 cells lose both their chemotactic response to PDGF and specific cell surface binding of PDGF after transformation with SV40. We have now examined whether the SV40 transformed NIH/3T3 cells are producing a factor which acts similarly to PDGF. Our studies indicate that NIH/3T3 cells transformed with SV 40 produce a factor which shares many biological properties with PDGF. We were unable to detect this activity in conditioned media from nontransformed NIH/3T3 cells. The SV40/NIH/3T3 derived factor appears to possess both chemotactic and mitogenic activity for connective tissue cells but not endothelial or epithelial cells. Furthermore, in preliminary studies, this activity competes with 125I-PDGF for binding to smooth muscle cells. The biochemical properties of the SV40/NIH/3T3 derived factor are different from those of PDGF. The SV40 activity appears to reside in a heat labile acidic protein (pI less than 7.0) of MW less than 30,000 whereas PDGF is a heat stable basic protein (pI9.8) of 30,000 MW. Production of this factor may play a role in the decreased serum requirement for cell replication exhibited by SV40-transformed NIH/3T3 cells by supplying the cells with their own PDGF-like growth factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号