首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental inoculation of neonatal immunocompetent strains of mice with Cryptosporidium parvum results in a transient, noninflammatory enteric infection. In the present study, we show that inoculation of mice deficient in alphabeta and gammadelta T cells (TCR-beta- x TCR-delta-deficient mice) with C. parvum results in persistent infection and severe inflammatory bowel disease-like lesions. The most severe lesions in these mice were in the cecum with similar yet less severe lesions in the ileum and proximal colon. The most notable aspect of the histopathology was glandular hyperplasia with abscess formation, extensive fibrosis of the lamina propria with infiltrates of predominately polymorphonuclear cells and macrophages, and a few small aggregates of B cells. Persistently infected mice also developed extensive hepatic periportal fibrosis in association with C. parvum colonization of bile ducts. Lesions observed in TCR-beta- x TCR-delta-deficient mice were markedly different than previously described lesions detected in C. parvum-infected TCR-alpha-deficient mice. Cryptosporidium parvum-infected TCR-alpha-deficient mice have extensive infiltrations of B cells, whereas TCR-beta- x TCR-delta-deficient mice had only a few small aggregates of B cells. These findings indicate that although gammadelta T cells are not necessary for induction of intestinal inflammation in C. parvum-infected alphabeta T-cell-deficient mice, their presence does alter the morphology of the ensuing lesion.  相似文献   

2.
Cryptosporidium parvum is a parasitic protozoa increasingly appreciated as a cause of intestinal malabsorptive syndrome leading to malnutrition and/or growth failure. Because a major mechanism for apical peptide absorption by small intestine is via the proton-coupled transporter PepT1, we investigated the expression and functionality of this transporter in our model of acute cryptosporidiosis. Four-day-old Sprague-Dawley rats were inoculated by gavage with 5 x 10(5) oocysts of C. parvum and killed at Day 12 (peak of the infection) or Day 21 (spontaneous clearance of the parasite). PepT1 expression and functionality were quantified in the distal small intestine, preferential site of C. parvum implantation, and in the proximal small intestine, free of parasite, using Western blot and Ussing chambers, respectively. No difference in total PepT1 protein expression or in glycyl-sarcosine fluxes was observed in C. parvum-infected rats compared with controls either on Day 12 or on Day 21, both in the proximal and in the distal small intestine. However, a significant decrease of apical membrane protein expression of PepT1 was observed in C. parvum-infected enterocytes compared with controls. This maintained dipeptide transport observed despite villous atrophy and decreased expression of the protein at the brush-border membrane strongly suggest a transient upregulation of PepT1 activity, probably related to gamma-interferon regulation.  相似文献   

3.
Differences in the immune response between 2 strains of interferon-gamma knockout mice (BALB/c-GKO and C57BL/6-GKO) infected with Cryptosporidium parvum were examined because the course of infection among these 2 strains is markedly different. Infection of the BALB/c-GKO with C. parvum (2 X 10(6) oocysts/mouse) resulted in slight weight loss, oocyst shedding, and recovery from infection by 2 wk postinfection (PI). Infection with 100 oocysts in the C57BL/6-GKO mice resulted in significant weight loss, oocyst shedding, and death by day 10 PI. Splenocytes from infected mice were able to proliferate in a dose-dependent manner to soluble C. parvum-sporozoite antigen (SAg). In vitro stimulation with SAg resulted in an increase in interleukin (IL)-2, IL-4, IL-5, and tumor necrosis factor-alpha mRNA cytokine expression from splenocytes of infected BALB/cGKO mice. In contrast, only IL-5 mRNA expression was increased in the splenocytes from C. parvum-infected C57BL/6-GKO mice. Phenotypic analysis indicated no significant differences in the splenic cell populations. Previous studies indicated that susceptibility to C. parvum is dependent on CD4+ T cells and interferon-gamma production. The present study indicates that although both of these strains of knockout mice become infected with C. parvum, resolution of infection may be in part dependent on the expression of Th2 cytokines.  相似文献   

4.
Dendritic cells (DCs) play a key role in activating and orientating immune responses. Little is currently known about DC recruitment during Cryptosporidium parvum infection. In the intestine, epithelial cells act as sensors, providing the first signals in response to infection by enteric pathogens. We analyzed the contribution of these cells to the recruitment of DCs during cryptosporidiosis. We found that intestinal epithelial cells produced a broad range of DC-attracting chemokines in vitro in response to C. parvum infection. The supernatant of the infected cells induced the migration of both bone marrow-derived DCs (BMDC) and the SRDC lymphoid dendritic cell line. Chemokine neutralization abolished DC migration in these assays. We next analyzed chemokine mRNA expression in the mucosa of C. parvum-infected neonatal mice and recruitment of the various subsets of DCs. Myeloid (CD11c+ CD11b+) and double-negative DCs (CD11c+ CD11b- CD8alpha-) were the main subsets recruited in the ileum during C. parvum infection, via a mechanism involving IFNgamma. DCs were also recruited and activated in the draining lymph nodes during C. parvum infection, as shown by the upregulation of expression of MHC II and of the costimulation molecules CD40 and CD86.  相似文献   

5.
He H  Zhao B  Liu L  Zhou K  Qin X  Zhang Q  Li X  Zheng C  Duan M 《DNA and cell biology》2004,23(5):335-339
Cryptosporidiosis, a protozoan disease, is caused by Cryptosporidium parvum in animals and humans. To study the humoral and cellular immune responses induced by DNA vaccine expressing the sporozoite surface protein, CP15/60, of Cryptosporidium parvum, the recombinant plasmid containing the CP15/60 gene was injected into tibialis a interior muscle of BALB/c mice. The mice were subsequently given booster doses twice at 3-week intervals. The humoral and cellular immune responses were detected at different times after immunization. The mice were then challenged by inoculation of 1 x 10(6) oocysts of C. parvum. The experimental results have shown that the recombinant plasmid can induce corresponding specific immune responses and thus protect the mice from challenge of the oocysts, suggesting that the recombinant plasmid could be a potential candidate of DNA vaccine.  相似文献   

6.
The purpose of this study was to determine whether gamma-irradiated Cryptosporidium parvum oocysts could elicit protective immunity against cryptosporidiosis in dairy calves. Cryptosporidium parvum Iowa strain oocysts (1 x 10(6) per inoculation) were exposed to various levels of gamma irradiation (350-500 Gy) and inoculated into 1-day-old dairy calves. The calves were examined daily for clinical signs of cryptosporidiosis, and fecal samples were processed for the presence of C. parvum oocysts. At 21 days of age, the calves were challenged by oral inoculation with 1 x 10(5) C. parvum oocysts and examined daily for oocyst shedding and clinical cryptosporidiosis. Calves that were inoculated with C. parvum oocysts exposed to 350-375 Gy shed C. parvum oocysts in feces. Higher irradiation doses (450 or 500 Gy) prevented oocyst development, but the calves remained susceptible to C. parvum challenge infection. Cryptosporidium parvum oocysts exposed to 400 Gy were incapable of any measurable development but retained the capacity to elicit a protective response against C. parvum challenge. These findings indicate that it may be possible to protect calves against cryptosporidiosis by inoculation with C. parvum oocysts exposed to 400-Gy gamma irradiation.  相似文献   

7.
This study evaluated the efficacy of UV irradiation on the inactivation of Cryptosporidium parvum oocysts in fresh apple cider. Cider was inoculated with oocysts and exposed to 14.32 mJ of UV irradiation/cm(2). Oocyst viability was assessed with the gamma interferon gene knockout (GKO) mouse and infant BALB/cByJ mouse models. All GKO mice challenged with UV-treated cider demonstrated no morbidity or mortality, and infant BALB/c mice challenged with treated cider were negative for the presence of C. parvum. In contrast, the GKO mice challenged with non-UV-treated inoculated cider died and the parasite was detected in the ileums of all challenged infant mice. This study shows that UV irradiation can be used to inactivate C. parvum in fresh apple cider.  相似文献   

8.
Immunotherapy of cryptosporidiosis in immunodeficient animal models.   总被引:4,自引:0,他引:4  
Immunotherapy for persistent infection caused by Cryptosporidium parvum was attempted in two immunodeficient animal models. BALB/c Athymic (nude) mice were infected with two oral doses of 2 x 10(7) C. parvum oocysts, and subsequently treated with monoclonal antibody (MAb) 17.41 that neutralizes sporozoites and merozoites. Persistent infection was established in all exposed mice. Daily oral treatment with MAb 17.41 for 10 days significantly reduced (p less than 0.005) the number of C. parvum organisms observed by microscopic study of intestinal tracts of infected mice. Young horses with severe combined immunodeficiency (SCID) also developed persistent infection following oral exposure with 10(8) C. parvum oocysts. In contrast to nude mice, SCID foals exhibited diarrhea associated with oocyst shedding. Two foals were treated orally with MAb 18.44 and immune serum, both of which neutralized C. parvum sporozoites and merozoites. Oocyst shedding patterns did not significantly differ from those in five SCID foals treated with nonimmune reagents. The results obtained indicate that SCID foals are a useful large animal model of clinical disease associated with persistent C. parvum infection, and that nude mice are a convenient animal model for testing therapeutic potential of antibodies in persistent cryptosporidial infection.  相似文献   

9.
Cell culture models implicate increased nitric oxide (NO) synthesis as a cause of mucosal hyperpermeability in intestinal epithelial infection. NO may also mediate a multitude of subepithelial events, including activation of cyclooxygenases. We examined whether NO promotes barrier function via prostaglandin synthesis using Cryptosporidium parvum-infected ileal epithelium in residence with an intact submucosa. Expression of NO synthase (NOS) isoforms was examined by real-time RT-PCR of ileal mucosa from control and C. parvum-infected piglets. The isoforms mediating and mechanism of NO action on barrier function were assessed by measuring transepithelial resistance (TER) and eicosanoid synthesis by ileal mucosa mounted in Ussing chambers in the presence of selective and nonselective NOS inhibitors and after rescue with exogenous prostaglandins. C. parvum infection results in induction of mucosal inducible NOS (iNOS), increased synthesis of NO and PGE2, and increased mucosal permeability. Nonselective inhibition of NOS (NG-nitro-L-arginine methyl ester) inhibited prostaglandin synthesis, resulting in further increases in paracellular permeability. Baseline permeability was restored in the absence of NO by exogenous PGE2. Selective inhibition of iNOS [L-N6-(1-iminoethyl)-L-lysine] accounted for approximately 50% of NOS-dependent PGE2 synthesis and TER. Using an entire intestinal mucosa, we have demonstrated for the first time that NO serves as a proximal mediator of PGE2 synthesis and barrier function in C. parvum infection. Expression of iNOS by infected mucosa was without detriment to overall barrier function and may serve to promote clearance of infected enterocytes.  相似文献   

10.
The importance of B cells in host resistance to, and recovery from, Cryptosporidium parvum infection was examined in gene-targeted B cell-deficient (muMT-/-) mice. Neonatal muMT-/- mice infected with C. parvum at 5 days of age completely cleared the infection by day 20 PI. The kinetics of infection and clearance were similar to those seen with age-matched C57BL/6 control mice. Furthermore, B cells were not required to clear existing C. parvum infection in adult mice. Reconstitution of persistently infected Rag-1-/- adult mice with spleen cells from muMT-/- donor mice resulted in significant reduction of infection, as in the results seen with spleen cells from C57BL6 donors. These findings indicate clearly that B cells are not essential for host resistance to, and recovery from, C. parvum infection in mice.  相似文献   

11.
The structure and infectivity of the oocysts of a new species of Cryptosporidium from the feces of humans are described. Oocysts are structurally indistinguishable from those of Cryptosporidium parvum. Oocysts of the new species are passed fully sporulated, lack sporocysts. and measure 4.4-5.4 microm (mean = 4.86) x 4.4-5.9 microm (mean = 5.2 microm) with a length to width ratio 1.0-1.09 (mean 1.07) (n = 100). Oocysts were not infectious for ARC Swiss mice, nude mice. Wistar rat pups, puppies, kittens or calves, but were infectious to neonatal gnotobiotic pigs. Pathogenicity studies in the gnotobiotic pig model revealed significant differences in parasite-associated lesion distribution (P = 0.005 to P = 0.02) and intensity of infection (P = 0.04) between C. parvum and this newly described species from humans. In vitro cultivation studies have also revealed growth differences between the two species. Multi-locus analysis of numerous unlinked loci, including a preliminary sequence scan of the entire genome demonstrated this species to be distinct from C. parvum and also demonstrated a lack of recombination, providing further support for its species status. Based on biological and molecular data, this Cryptosporidium infecting the intestine of humans is proposed to be a new species Cryptosporidium hominis n. sp.  相似文献   

12.
13.
Cryptosporidium sp. from guinea pigs and C. parvum were compared morphologically, electrophoretically, and for the ability to infect suckling mice. Oocysts from guinea pigs measured 5.4 x 4.6 (4.8-5.6 x 4.0-5.0) microns and had a shape index (length/width) of 1.17 (1.04-1.33). Oocysts of C. parvum were similar and measured 5.2 x 4.6 (4.8-5.6 x 4.2-4.8) microns with a shape index of 1.16 (1.04-1.33). All suckling mice inoculated with oocysts of C. parvum became infected, whereas most, but not all, mice fed oocysts of the guinea pig isolate also became infected. However, mice inoculated with oocysts from guinea pigs produced on average 100-fold fewer oocysts by day 7 postinoculation than did mice infected with C. parvum, and the resulting infections were sparse and patchy along the ileum. Electrophoretic profiles were similar, but 125I surface labeling of outer oocyst wall proteins revealed striking differences between the two isolates. Cryptosporidium parvum had a wide molecular size range of 125I-labeled bands, whereas C. sp. from guinea pigs had a banding pattern clustered between 39 and 66 kDa, with a smaller number of bands greater than 100 kDa.  相似文献   

14.
Cryptosporidium parvum is a significant cause of diarrheal disease in humans and economically important livestock species. There is no effective treatment available for this protozoan parasite. Mechanisms of intestinal colonization by C. parvum are not well understood, but it has been suggested that the parasite may utilize a lectin-like receptor. We used an infant mouse model to test whether high sugar concentrations in the intestine would affect in vivo colonization with C. parvum. We found that a single oral dose of sucrose, administered to mice at the time of, or 24 hr before, challenge with C. parvum significantly reduced infection. Significant reduction of infection was also seen in mice given isomaltose. Histologic examination of intestinal sections of mice treated with sucrose or isomaltose, but not other sugars, showed marked vacuolation of the small intestinal epithelium 1 day after treatment. Three days after treatment, tissue appeared normal. Thus, sucrose and, to a lesser extent, isomaltose reduced in vivo colonization with C. parvum and altered epithelial cell morphology in intestines of mice.  相似文献   

15.
16.
This study was undertaken to investigate the cryopreservation of Cryptosporidium parvum oocysts. Oocysts purified from mouse feces were suspended in distilled water, 10% glycerin, and 2.5% potassium dichromate. They were stored at -20 C and -80 C for 2, 7, and 30 days, respectively. In addition to the purified oocysts, the feces of C. parvum-infected mice were preserved under the same conditions described above. Purified and fecal oocysts were thawed at 4 C, and their viability was assessed by a nucleic acid stain, excystation test, tissue culture infectivity test, and infectivity to immunosuppressed adult mice. Oocysts purified from fecal material prior to cryopreservation lost most of their viability and all of their infectivity for tissue culture and mice. However, when oocysts were cryopreserved in feces, between 11.7 and 34.0% were judged to be viable and retained their infectivity for mice when stored at -20 C (but not -80 C) for 2, 7, and 30 days. Clearly, fecal material provides a cryoprotective environment for C. parvum oocysts stored at -20 C for at least 30 days.  相似文献   

17.
ABSTRACT. Oocysts of a Cryptosporidium isolate from guinea pigs were not infectious for adult mice, but were infectious for two of three newborn calves and for suckling mice. However, oocysts isolated from calves or mice infected with guinea pig Cryptosporidium were not infectious for guinea pigs. Four isolates of C. parvum from calves were incapable of infecting weanling guinea pigs. Microscopic examination of tissue from the colon and cecum of suckling guinea pigs inoculated with C. parvum revealed sparse infection of some pups. These host range studies and previously described differences in 125I-labeled oocyst surface protein profiles between Cryptosporidium sp. from guinea pigs and C. parvum suggest they are distinct species. We propose the name Cryptosporidium wrairi be retained. Studies with monoclonal antibodies indicate that C. wrairi and C. parvum are antigenically related.  相似文献   

18.
Cholangiocytes, the epithelial cells lining intrahepatic bile ducts, express multiple toll-like receptors (TLRs) and, thus, have the capacity to recognize and respond to microbial pathogens. In previous work, we demonstrated that TLR4, which is activated by gram-negative lipopolysaccharide (LPS), is upregulated in cholangiocytes in response to infection with Cryptosporidium parvum in vitro and contributes to nuclear factor-kappaB (NF-kB) activation. Here, using an in vivo model of biliary cryptosporidiosis, we addressed the functional role of TLR4 in C. parvum infection dynamics and hepatobiliary pathophysiology. We observed that C57BL mice clear the infection by 3 wk post-infection (PI). In contrast, parasites were detected in bile and stool in TLR4-deficient mice at 4 wk PI. The liver enzymes alanine transaminase (ALT) and aspartate transaminase (AST), and the proinflammatory cytokines tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-6 peaked at 1 to 2 wk PI and normalized by 4 wk in infected C57BL mice. C57BL mice also demonstrated increased cholangiocyte proliferation (PCNA staining) at 1 wk PI that was resolved by 2 wk PI. In contrast, TLR4-deficient mice showed persistently elevated serum ALT and AST, elevated hepatic IL-6 levels, and histological evidence of hepatocyte necrosis, increased inflammatory cell infiltration, and cholangiocyte proliferation through 4 wk PI. These data suggest that a TLR4-mediated response is required for efficient eradication of biliary C. parvum infection in vivo, and lack of this pattern-recognition receptor contributes to an altered inflammatory response and an increase in hepatobiliary pathology.  相似文献   

19.
Cryptosporidiosis, caused by the protozoan parasite Cryptosporidium parvum, causes self-limited diarrhea in normal hosts but can cause life-threatening diarrhea for immunosuppressed patients. There is an urgent need for new drugs to treat this chronic disease. Cryptosporidium parvum infection is associated with intestinal structural and pathophysiologic changes, including villi blunting and glucose malabsorption. Substance P (SP), a neuropeptide and pain transmitter, is associated with the gastrointestinal tract and is elevated in humans and macaques after experimental C. parvum challenge. To examine the relevance of SP in the pathogenesis of cryptosporidiosis, and to determine if SP receptor antagonism can be employed for treatment of cryptosporidiosis in immunosuppressed hosts, we used an immunosuppressed murine model (dexamethasone-immunosuppressed mice) that is frequently utilized for examining chemotherapeutic potential of drugs. Quantitative ELISA was used to measure intestinal SP levels in immunosuppressed mice with, and without, C. parvum infection. Intestinal physiological alterations, as studied by the Ussing chamber technique, plus weight change, fecal oocyst shedding, and villi measurements, were compared in infected mice with, and without, SP receptor antagonist (aprepitant) treatment. Immunosuppressed mice infected with C. parvum demonstrated increased SP levels as well as physiological alterations (glucose malabsorption), weight loss, fecal oocyst shedding, and structural alterations (increased intestinal villi blunting) compared to uninfected mice. Each of these defects was significantly inhibited by aprepitant treatment. These studies demonstrate the potential of SP receptor antagonism for treatment of pathogenesis of cryptosporidiosis in immunosuppressed hosts.  相似文献   

20.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ x cm-2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4',6'-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ x cm-2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ x cm-2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ x cm-2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号