首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
啤酒酵母是啤酒酿造的灵魂,可以直接影响啤酒品质。在啤酒酿造过程中,由于啤酒酵母被多次传代和保藏,造成优良菌种发酵性能衰退等问题,导致发酵不彻底,影响最后啤酒的风味质量。为此以8株Lager型啤酒酵母为出发菌株,通过平板分离纯化获得80株分离菌株,再经过三角瓶发酵初筛和复筛、发酵罐中试发酵实验最终获得了8株发酵性能优良的啤酒酵母。其中,6株酵母可应用于酿造双乙酰含量低于0.1 mg/L的啤酒;3株酵母发酵度高于70%,适合酿造干啤酒;1株酵母发酵度低于50%,适合酿造低醇啤酒。在风味方面:1株酵母酿造的啤酒醇酯比为3.3,啤酒酯香味较突出;另1株酵母酿造的啤酒醇酯比为4.5,啤酒高级醇含量较高。8株经过选育的啤酒酵母发酵特征明显,便于精酿啤酒厂实际应用。  相似文献   

2.
郑鹏飞  张丽杰  王栋  徐岩 《微生物学报》2022,62(10):3913-3931
【目的】提出一种合成微生物组的理性构建策略,用于构建郫县豆瓣蚕豆醅初始发酵的微生物组合菌剂。【方法】采取自下而上的合成微生物组理性构建策略,以相对丰度、频率和特征向量中心度作为核心微生物属的选择指标,分析确定蚕豆醅发酵核心微生物;设计模拟原位体系的全合成培养基,并利用该培养基快速、稳定地检测核心微生物包括产香性能在内的发酵特征。基于核心微生物的产香互补性能进行双菌组合发酵实验,结合核心微生物之间的生长相互作用,设计三菌组合发酵菌剂并验证其发酵性能。【结果】本研究确定并分离了郫县豆瓣蚕豆醅发酵过程中的 9种核心微生物。检测核心微生物产生的挥发性风味化合物,发现酵母菌类、乳酸菌类和其他类微生物之间存在产香互补关系。然后,结合微生物间的生长抑制关系设计了由乳酸片球菌、肉葡萄球菌及异变假丝酵母组成的三菌组合菌剂。与企业原位发酵样品相比,三菌组合菌剂产生的挥发性化合物数量达到原位样品的63.1%,化合物种类结构较为相似。与原位样品相比,组合菌剂样品氨基酸态氮浓度提升了21.8%。【结论】本研究提出了一种自下而上的合成微生物组理性构建策略,基于此策略设计了郫县豆瓣蚕豆醅发酵组合菌剂。使用该组合菌剂作为起始发酵剂发酵的郫县豆瓣蚕豆醅具有良好的风味谱和优异的氨基酸态氮水平。本研究在合成微生物组构建与发酵食品工艺改造方面具有较大的科学与应用价值。  相似文献   

3.
【背景】产香酵母可赋予葡萄酒独特的香气,因此,分离筛选优良产香酵母对酿造具有地域风味的特色葡萄酒具有重要意义。【目的】从中条山野生葡萄中筛选产香酵母,进行种群鉴定和生理生化特性研究,并将其应用于葡萄酒发酵过程,研究其对葡萄酒香气成分的影响。【方法】采用稀释涂布平板法从中条山野葡萄中分离筛选酵母菌,对其进行分子生物学鉴定。优选其中具有显著香气的产香酵母,与酿酒酵母F15进行混合发酵,采用气相色谱质谱联用(gas chromatograph-mass spectrometer,GC-MS)对香气成分进行分析,采用半定量法测定香气成分含量。【结果】共分离获得各种菌株13株,26S rRNA基因D1/D2区序列分析表明它们分布于IssatchenkiaTorulasporaPichiaSaccharomycesRhodotorula等5个不同属内。优选其中一株香气较为浓郁的酵母菌株Issatchenkia orientalis strain XS-6开展研究,结果发现该菌株最高耐受乙醇浓度为8%,最高耐受NaCl浓度为6%,最适生长温度为38℃。与酿酒酵母F15混菌发酵的葡萄酒中共检测出31种香气成分。香气物质总含量较单菌发酵增加19.8%,其中11种香气成分含量增加明显,尤其是具有玫瑰香气的苯乙醇。醇类与酯类物质含量较单菌发酵增加19.6%,并发现了香草酸乙酯(ethyl vanillate)、邻苯二甲酸二丁酯(dibutyl phthalate)等7种新的酯类物质。【结论】产香酵母XS-6对乙醇、NaCl、温度等具有良好的耐受性,而且与酿酒酵母F15混菌发酵对西拉葡萄酒香气成分具有明显的影响,可能在改善葡萄酒风味方面具有潜在的应用价值。  相似文献   

4.
唐洁  王海燕  徐岩 《微生物学通报》2012,39(7):0921-0930
[目的]通过酿酒酵母(Saccharomyces cerevisiae)和异常毕赤酵母(Pichia anomala)在麸皮汁培养基中的混菌发酵,以增加发酵液的风味酯含量并保证发酵效率.[方法]采用两种酵母混合接种、顺序接种混菌发酵方式,以酵母单独接种发酵作对照,测定酵母的发酵性能和发酵液中乙酸乙酯含量,并对发酵结束时风味物质进行半定量;利用无细胞系统,分析两种酵母之间的相互作用.[结果]采用顺序接种混菌发酵方式,避免S.cerevisiae 对P.anomala的生长竞争性抑制,使两种酵母均能获得较高的生物量;发酵结束时,乙醇浓度为20.17 g/L,比酿酒酵母单菌种发酵时降低了9.14%;但乙酸乙酯含量达到0.74 g/L,比异常毕赤酵母单菌种发酵时提高了80%;发酵液风味物质的测定结果表明,酿酒酵母与异常毕赤酵母的混合发酵能够形成更多的酯类物质,总酸和高级醇含量却相对较低,有效改善了发酵液的风味特性;在混菌发酵时,碳源是影响酿酒酵母繁殖的重要因素,但酵母的代谢物对异常毕赤酵母产生明显的抑制作用.[结论]混菌发酵,为丰富发酵产物的风味复杂性和增强风格的独特性提供了一条有效的途径.  相似文献   

5.
海藻糖产生菌的筛选及其发酵条件研究   总被引:3,自引:0,他引:3  
通过液体发酵筛选,从土壤中分离的241株菌株及保藏的95株菌株中得到15株海藻糖生产菌,对这些菌株进一步筛选得到产海藻糖最多的一株菌Bacillus sp。其发酵最适合条件为:以麦芽糖为碳源,发酵初始pH值7.0,接种量为6%,30℃条件下培养48h,另外该菌株在分别以葡萄糖和蔗糖为碳源的培养基中都能产生海藻糖。  相似文献   

6.
酵母产γ- 氨基丁酸发酵条件的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:研究酵母产γ-氨基丁酸的发酵条件,提高其产γ-氨基丁酸的能力。方法:以高产γ-氨基丁酸的酵母突变株为材料,通过单因素实验研究培养温度、摇床转速、接种量、种龄和培养时间等条件对菌株发酵生产γ-氨基丁酸的影响。结果:最适发酵条件为:培养温度30℃,摇床转速220 rpm,接种量4%,种龄为2d的种子菌,培养时间4d。在此发酵条件下,变异菌发酵液中γ-氨基丁酸含量高达2.588 g.L-1,较优化前提高了53%。结论:发酵条件的优化,提高了菌株产γ-氨基丁酸的能力。  相似文献   

7.
胡超  左斌  谢达平 《生物磁学》2011,(5):861-863
目的:研究酵母产γ-氨基丁酸的发酵条件,提高其产γ-氨基丁酸的能力。方法:以高产γ-氨基丁酸的酵母突变株为材料,通过单因素实验研究培养温度、摇床转速、接种量、种龄和培养时间等条件对菌株发酵生产γ-氨基丁酸的影响。结果:最适发酵条件为:培养温度30℃,摇床转速220 rpm,接种量4%,种龄为2d的种子菌,培养时间4d。在此发酵条件下,变异菌发酵液中γ-氨基丁酸含量高达2.588 g.L-1,较优化前提高了53%。结论:发酵条件的优化,提高了菌株产γ-氨基丁酸的能力。  相似文献   

8.
耐低温淀粉酶产生菌Y89微波诱变及发酵工艺   总被引:1,自引:0,他引:1  
为进一步提高耐低温淀粉酶产生菌的发酵生产水平,以前期筛选得到的1株耐低温兼性厌氧淀粉酶产生菌Y89为出发菌株,对其进行微波诱变处理,通过酶产量及遗传性能稳定检测筛选高活力突变株,并采取单因素优化法对菌株的培养基和培养条件进行优化。获得1株遗传稳定的高活力突变株Y89-11,淀粉酶产量达750.2 U/m L,是原出发菌株的1.94倍。采用单因素实验确定该突变株的最佳发酵条件:最适生长及产酶温度为16℃,最佳产酶时间60 h,最优碳源为可溶性淀粉,氮源为酵母膏,培养基中添加Ca2+可显著提高产酶量。经诱变选育出的突变株Y89-11与原菌株相比产酶量提高了94%,所产淀粉酶为中低温酶,最适反应温度30℃,耐低温效果较好,应用前景广阔。  相似文献   

9.
在酱油发酵过程中增香酵母的代谢产物能显著提高酱油产品的风味和品质.为了提高增香酵母菌在酱醪中的适应性,通过逐步提高氯化钠浓度的方法对酵母菌的耐盐度进行驯化培养.通过分析表明,经过5个批次的驯化,增香酵母菌的耐氯化钠浓度由180 g/L提高到240 g/L.对驯化后的三株耐不同氯化钠浓度的增香酵母菌株进行生物特性研究.结果表明,在200 g/L氯化钠浓度的培养基中,Candida etchellsii CICIM Y0600产游离氨基酸和酸解氨基酸总量分别达到2.01g/L和7.00 g/L.和其他不同氯化钠浓度条件下比较,其产有机酸种类没有变化,挥发性酯类物质含量最高,为0.80 g/L.耐盐度的提高使增香酵母菌更好地适应了在酱油发酵中的高盐度环境.  相似文献   

10.
原生质体紫外诱变提高生香酵母产酯能力的研究   总被引:4,自引:0,他引:4  
本文采用原生质紫外诱变方法对生香酵母进行诱变处理,并利用重氮染色法检测突变株的酯酶活性,成功地选育出两株高产酯生香酵母FU4和FU7,实验室发酵实验结果表明,FU4和FU7菌最大产酯量分别为出发菌株的1.6倍和1.5倍,且产物风味好,具有一定的应用价值。  相似文献   

11.
An integrated bioprocess (IBP) for production and recovery of de novo synthesized aroma compounds was carried out by interlinking a pervaporation membrane module with a producing bioreactor. The main aroma products of the fungus Ceratocystis moniliformis were ethyl acetate, propyl acetate, isobutyl acetate, isoamyl acetate, citronellol and geraniol. In situ product removal (ISPR) using pervaporation leads to decreased product concentrations in the bioreactor and increased microbial growth rates. As a result, by circumventing inhibiting product concentrations and thus intensifying aroma production, total yield of aroma compounds produced is higher in an IBP compared with batch cultivation. In addition, permeates obtained from pervaporation consist of highly enriched mixtures of produced flavors and fragrances.  相似文献   

12.
Rice beer, known locally as zutho was collected in the Kohima district in Nagaland, India, and subjected to analytical and microbiological characterization. Zutho was a whitish porridge-like slurry containing 5.0% (v/v) ethanol. Volatile esters and higher alcohols, such as ethyl acetate and 3-methylbutanol, were detected in this indigenous alcoholic beverage by gas chromatography. The pH and acidity of zutho were 3.6 and 5.1, respectively. Zutho had a fruity aroma and sour taste and its unique aroma had characteristics similar to those of Japanese sake and sprouted rice sake. A fermentation yeast isolated from zutho was identified as being a strain of Saccharomyces cerevisiae and was found to be suitable as the brewing yeast for ethanol fermentation.  相似文献   

13.
The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid concentration decreased by more than half. These changes in the wine and distillate composition had a pronounced effect on the solvent or chemical aroma (associated with ethyl acetate and iso-amyl acetate) and the herbaceous and heads-associated aromas of the final distillate and the solvent or chemical and fruity or flowery characters of the Chenin blanc wines. This study establishes the concept that the overexpression of acetyltransferase genes such as ATF1 could profoundly affect the flavor profiles of wines and distillates deficient in aroma, thereby paving the way for the production of products maintaining a fruitier character for longer periods after bottling.  相似文献   

14.
Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Delta atf2Delta double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes.  相似文献   

15.
The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use.  相似文献   

16.
Studies were carried out for the production of aroma compounds in solid-state fermentation using factorial design and response surface methodology (RSM) experiments. Five agro-industrial residues were evaluated as substrate for cultivating a strain of Kluyveromyces marxianus. The results proved the feasibility of using cassava bagasse and giant palm bran (Opuntia ficus indica) as substrates to produce fruity aroma compounds by the yeast culture. In order to test the influence of the process parameters on the culture to produce volatile compounds, two statistical experimental designs were performed. The parameters studied were initial substrate pH, addition of glucose, cultivation temperature, initial substrate moisture and inoculum size. Using a 2(5) factorial design, addition of glucose and initial pH of the substrate was found statistically significant for aroma compounds production on palm bran. Although this experimental design showed that addition of glucose did not have a significant role with cassava bagasse, 2(2) factorial design revealed that glucose addition was significant at higher concentrations. Head-space analysis of the culture by gas chromatography showed the production of nine and eleven compounds from palm bran and cassava bagasse, respectively, which included alcohols, esters and aldehyde. In both the cases, two compounds remained unidentified and ethyl acetate, ethanol and acetaldehyde were the major compounds produced. Esters produced were responsible for the fruity aroma in both the cases. With palm bran, ethanol was the compound produced in highest concentration, and with cassava bagasse (both supplemented with 10% glucose), ethyl acetate was produced at highest concentration, accumulating 418 and 1395μmoll(-1) head-spaceg(-1) substrate in 72h, respectively.  相似文献   

17.
The ATF1-encoded Saccharomyces cerevisiae yeast alcohol acetyl transferase I is responsible for the formation of several different volatile acetate esters during fermentations. A number of these volatile esters, e.g. ethyl acetate and isoamyl acetate, are amongst the most important aroma compounds in fermented beverages such as beer and wine. Manipulation of the expression levels of ATF1 in brewing yeast strains has a significant effect on the ester profile of beer. Northern blot analysis of ATF1 and its closely related homologue, Lg-ATF1, showed that these genes were rapidly induced by the addition of glucose to anaerobically grown carbon-starved cells. This induction was abolished in a protein kinase A (PKA)-attenuated strain, while a PKA-overactive strain showed stronger ATF1 expression, indicating that the Ras/cAMP/PKA signalling pathway is involved in this glucose induction. Furthermore, nitrogen was needed in the growth medium in order to maintain ATF1 expression. Long-term activation of ATF1 could also be obtained by the addition of the non-metabolisable amino acid homologue beta-L-alanine, showing that the effect of the nitrogen source did not depend on its metabolism. In addition to nutrient regulation, ATF1 and Lg-ATF1 expression levels were also affected by heat and ethanol stress. These findings help in the understanding of the effect of medium composition on volatile ester synthesis in industrial fermentations. In addition, the complex regulation provides new insights into the physiological role of Atf1p in yeast.  相似文献   

18.
The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid concentration decreased by more than half. These changes in the wine and distillate composition had a pronounced effect on the solvent or chemical aroma (associated with ethyl acetate and iso-amyl acetate) and the herbaceous and heads-associated aromas of the final distillate and the solvent or chemical and fruity or flowery characters of the Chenin blanc wines. This study establishes the concept that the overexpression of acetyltransferase genes such as ATF1 could profoundly affect the flavor profiles of wines and distillates deficient in aroma, thereby paving the way for the production of products maintaining a fruitier character for longer periods after bottling.  相似文献   

19.
Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Δ atf2Δ double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes.  相似文献   

20.
A sample of indigenous beer, boza was collected at Cairo, Egypt and analysed. Boza was an off-white porridge-like slurry containing 3.8% (v/v) ethanol. Volatile esters and higher alcohols such as ethyl acetate and isoamyl alcohol were detected in the boza by gas chromatography. The pH of the boza was 3.7. Organoleptically, this alcoholic beverage had an estery flavour and a sour taste. A fermentable yeast strain EG1 was isolated from the material wheat bread and identified, and was considered to resemble Candida krusei. The rice sake made with the yeast strain C. krusei EG1 at 30 °C contained 11.7% ethanol, 74.1 mg/l ethyl acetate and its pH value was 4.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号