首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
肠道菌群作为动物体内重要的组成部分,能够直接参与机体的免疫调控作用,促进机体免疫系统发育,维持正常免疫功能。同时,免疫系统对肠道菌群又有调控和制约作用。本文主要综述了肠道菌群的组成以及影响肠道菌群变化的因素,系统阐述了肠道菌群与疾病相互作用的机制,总结了肠道菌群在宿主感染与免疫应答中的作用,为开展肠道菌群参与机体免疫应答的机制方面的研究提供新的思路。  相似文献   

2.
昆虫肠道中栖息着真菌、病毒、细菌、原生动物和古菌等种类繁多、数量庞大的微生物,总称为肠道微生物群。其中,细菌是最主要的类群,统称为肠道菌群。一方面,肠道菌群广泛参与了宿主昆虫的生长发育、免疫防御与器官稳态维持、抗药性的产生、逆境抗性和社会行为等众多关键生理过程。另一方面,昆虫的肠道免疫系统中有一套精细的调控机制来维持宿主与其肠道菌群之间的共生关系。高通量测序技术与组学技术的发展和应用极大地促进了对昆虫体内微生物群的结构与功能的认识和理解,并明显提高了人类对昆虫微生物资源的利用能力。本文综合介绍了关于昆虫肠道菌群的组成、功能及其与宿主互作机理等方面的研究现状,并在此基础上对昆虫耐受与调控其肠道菌群稳态的机理研究及其相关的应用前景进行了展望。  相似文献   

3.
西方化的高脂饮食方式造成了越来越多的肥胖人群。高脂饮食在一定程度上可以改变肠道菌群的结构组成和功能,促进宿主对食物营养的吸收,从而增加体重形成肥胖。高脂饮食诱导的肥胖者肠道菌群的改变会导致宿主能量吸收增加,肠道通透性和炎症增加,而有减肥功能的短链脂肪酸合成能力下降。最近研究发现肠道菌群也可以通过影响中枢神经系统,尤其是下丘脑相关基因的表达来控制食欲,从而调控肥胖的形成。本文系统介绍了最近几年高脂饮食诱导肥胖的研究,总结了一些与肥胖形成有密切关系的肠道菌群以及其在肥胖形成中的作用机制,为进一步研究肠道菌群与肥胖之间的调控作用奠定了基础。最后总结了肠道菌群可以作为一个预防和治疗肥胖的有效靶点,可以通过在食物中添加有益菌或者通过菌群移植来治疗肥胖。  相似文献   

4.
人体肠道作为一种营养丰富的天然环境有多达100兆个微生物,其中绝大多数存于结肠内,密度接近1011~1012/m L。人类肠道内的微生物多样性是微生物菌落和宿主共同进化的结果,自然选择和进化使肠道菌群与宿主处于一种动态平衡且稳定的关系。文章综述了肠道菌群对宿主可能产生的影响以及引起肠道菌群发生改变的某些因素,肠道微生物影响宿主的代谢、营养吸收、免疫功能以及神经功能调节,而饮食及其他条件又能引起肠道菌群的改变。深入分析肠道菌群的具体结构、探索不同微生物在宿主体内究竟发挥着怎样的作用以及如何充分利用微生物的不同特性改善人类健康应成为今后研究的重点方向。  相似文献   

5.
机体长期处于应激状态下,导致焦虑和抑郁等精神疾病的发病率不断上升,严重威胁着人类健康和社会发展。许多研究表明应激会导致肠道菌群的紊乱,影响神经通路发生精神性疾病、使细菌移位产生免疫炎症。天然多酚类化合物具有多种生物活性,但绝大部分难以直接进入体内,而是在肠道中被肠道菌群降解。多酚可以调整机体应激反应状态下被扰乱的肠道菌群的组成和结构,使之恢复动态平衡,进而改善机体各种应激因素所致的焦虑和抑郁等症状。  相似文献   

6.
慕春龙  朱伟云 《微生物学报》2013,53(10):1018-1024
摘要:肠道内环境是宿主和肠道微生物菌群互作的结果,肠道菌群一方面通过抗原物质调节肠道组织的免疫稳定,另一方面,肠道菌群参与糖、脂、蛋白质代谢,产生的代谢产物能够调控细菌营养代谢、群体结构和肠道组织的营养吸收等。microRNA是宿主细胞内调控基因表达的重要因子,肠道微生物菌群不仅调控宿主mRNA的转录,同时也影响某些基因的转录后修饰。研究表明,肠道菌群通过与宿主肠道组织互作,调节肠上皮组织内某些参与炎症应答和屏障功能的microRNA 的表达。本文介绍了肠道微生物与宿主互作的基本内容,对microRNA在肠道微生物与宿主互作和肠道健康中的调节进行综述。  相似文献   

7.
近年来,越来越多的研究表明肠道菌群在心血管疾病、2型糖尿病、肥胖等疾病的发病过程中起着主要作用,肠道菌群组成改变以及肠道菌群代谢物水平改变是导致疾病发生发展的重要因素,人们对肠道菌群与宿主之间的相互作用产生极大兴趣。本文系统总结了肠道菌群组成结构改变及肠道菌群代谢物改变与动脉粥样硬化、高血压、心肌梗死、心力衰竭等心血管疾病的相关性,阐明了肠道菌群可能是促进心血管疾病发病的原因之一。因此,通过改变饮食结构和使用抗生素、益生菌制剂及肠道菌群代谢物氧化三甲胺(TMAO)小分子抑制剂,来调控肠道菌群组成及代谢物水平有望作为心血管疾病治疗的新靶点。  相似文献   

8.
【背景】肠道菌群在对虾的生理活动中起关键作用。日本囊对虾是我国海水养殖虾类中的主要品种之一,迄今为止有关其肠道菌群结构与功能的研究还鲜有报道。【目的】利用高通量测序技术探究日本囊对虾肠道菌群的组成结构与功能作用,揭示虾体肠道菌群与外源菌群结构间的相关性。【方法】60 d的养殖周期结束后,分别采集日本囊对虾肠道样品(归为虾肠组,n=3)、养殖水体样品(归为水体组,n=3)和对虾饲料样品(归为饲料组,n=3),提取各样品总DNA进行16SrRNA基因扩增子测序,基于生物信息学方法分析与比较样品间的菌群结构特征,并使用PICRUSt软件预测日本囊对虾肠道菌群功能。【结果】3组样品测序共获得822 713条有效序列,抽平处理后可聚类为3 416个OTU。虾肠组样品中有28.49%、59.30%的OTU可以依次在水体组、饲料组样品中检测到。门水平上,虾肠组样品中的优势菌门为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)和梭杆菌门(Fusobacteria)。水体组、饲料组与虾肠组样品中的优势菌门结构不尽相同,但均由变形菌门和拟杆菌门组成。属水平上,虾肠组样品中的优势菌属包括弧菌属(Vibrio)、另类弧菌属(Aliivibrio)、假交替单胞菌属(Pseudoalteromonas)、假黄棕杆菌属(Pseudofulvibacter)、科尔韦尔氏菌属(Colwellia)、小纺锤状菌属(Fusibacter)、发光杆菌属(Photobacterium)、脱硫弧菌属(Desulfovibrio)、嗜冷杆菌属(Psychrobacter)以及弓形杆菌属(Arcobacter)。水体组和饲料组中检出的核心菌属结构与虾肠组相比有明显差异,其中海命菌属(Marivita)和假单胞菌属(Pseudomonas)分别为养殖水体及对虾饲料样品中的最优势菌属。PICRUSt预测结果显示,日本囊对虾肠道菌群的基因功能主要与新陈代谢类功能有关,包含氨基酸代谢、碳水化合物代谢与能量代谢等。【结论】日本囊对虾肠道菌群与其他种类对虾肠道菌群的结构间存在共性,其形成在一定程度上受到了外源菌群的干预,并在虾体的日常代谢活动中发挥了一定的作用。  相似文献   

9.
利用16S rRNA高通量测序对比研究了健康对虾和感染肝肠胞虫的发病对虾肠道及肝胰腺菌群的组成、多样性、微生物介导的功能和种间互作间的差异性。结果表明,健康对虾的肠道和肝胰腺细菌群落的多样性高于发病对虾。在属水平上,健康对虾和发病对虾的肠道及肝胰腺中的优势细菌组成及丰度存在明显不同,其中健康对虾肠道中的优势菌属主要为埃希杆菌-志贺菌属(Escherichia-Shigella)和海绵菌属(Spongiimonas),而发病对虾肠道中的优势菌属则为希瓦式菌属(Shewanella)、巨球型菌属(Megasphaera)和克雷伯氏菌属(Klebsiella);健康对虾肝胰腺中的优势菌属主要为假单胞菌属(Pseudomonas)和汉氏盐单胞菌(Halomonas),而发病对虾肝胰腺中的优势菌属则为贪铜菌属(Cupriavidus)。Tax4Fun2预测显示,健康对虾肠道和肝胰腺菌群的主要功能分别与发病对虾肠道和肝胰腺菌群的主要功能有明显差异。研究有助于了解肝肠胞虫对凡纳滨对虾肠道及肝胰腺细菌群落的影响,并为凡纳滨对虾的健康管理和养殖提供依据。  相似文献   

10.
稳定的肠道微生物内环境是肠道微生物与肠道免疫反应相互作用的结果。在不断的进食过程中,昆虫肠道微生物种类和数量不断发生变化,肠道微生物与肠道上皮细胞之间形成了复杂的、动态的平衡机制。昆虫肠道上皮细胞可以感知有益和有害条件并利用免疫调控通路来实现微生物种群稳态的动态调节,例如双重氧化酶-活性氧(dual oxidase-reactive oxygen species, Duox-ROS)系统和免疫缺陷(immunodeficiency, Imd)信号通路可以感知肠道微生物数量变化并参与到肠道微生物稳态调节过程。除此之外,肠道微生物群也会通过群体感应(quorum sensing, QS)释放相应的效应因子来调节菌群行为,间接性起到稳态调节的作用。因此,本文综述了昆虫肠道中物理防御、免疫信号通路以及肠道微生物通过QS在昆虫肠道微生物稳态维持中的作用,加深对肠道组织与肠道微生物互作关系的认识。未来将继续对更多种类昆虫体内微生物的稳态调控机制及调控机制间的作用关系进行研究,并基于调控机制设计开发改变肠道微生物稳态的新型农药,为实现有效害虫防治提供新的靶标和思路。  相似文献   

11.
The host‐associated microbiota is increasingly recognized to facilitate host fitness, but the understanding of the underlying ecological processes that govern the host–bacterial colonization over development and, particularly, under disease remains scarce. Here, we tracked the gut microbiota of shrimp over developmental stages and in response to disease. The stage‐specific gut microbiotas contributed parallel changes to the predicted functions, while shrimp disease decoupled this intimate association. After ruling out the age‐discriminatory taxa, we identified key features indicative of shrimp health status. Structural equation modelling revealed that variations in rearing water led to significant changes in bacterioplankton communities, which subsequently affected the shrimp gut microbiota. However, shrimp gut microbiotas are not directly mirrored by the changes in rearing bacterioplankton communities. A neutral model analysis showed that the stochastic processes that govern gut microbiota tended to become more important as healthy shrimp aged, with 37.5% stochasticity in larvae linearly increasing to 60.4% in adults. However, this defined trend was skewed when disease occurred. This departure was attributed to the uncontrolled growth of two candidate pathogens (over‐represented taxa). The co‐occurrence patterns provided novel clues on how the gut commensals interact with candidate pathogens in sustaining shrimp health. Collectively, these findings offer updated insight into the ecological processes that govern the host–bacterial colonization in shrimp and provide a pathological understanding of polymicrobial infections.  相似文献   

12.
Aquatic animals encounter suites of novel planktonic microbes during their development. Although hosts have been shown to exert strong selection on their gut microbiota from surrounding environment, to what extent and the generality that the gut microbiota and the underlying ecological processes are affected by biotic and abiotic variations are largely unclear. Here, these concerns were explored by coupling spatiotemporal data on gut and rearing water bacterial communities with environmental variables over shrimp life stages at spatially distant locations. Shrimp gut microbiotas significantly changed mirroring their development, as evidenced by gut bacterial signatures of shrimp life stage contributing 95.5% stratification accuracy. Shrimp sourced little (2.6%–15.8%) of their gut microbiota from their rearing water. This microbial resistance was reflected by weak compositional differences between shrimp farming spatially distinct locations where species pools were distinct. Consistently, the assembly of shrimp gut microbiota was not adequately explained by the rearing water variables and bacterial community, but rather by host-age-associated biotic features. The successions of shrimp gut microbiota were droved by replacement (βsim), rather than by nestedness (βnes), while those of bacterioplankton communities were equally governed by replacement and nestedness. Our study highlights how shrimp gut bacterial community assembly is coupled to their development, rearing species pool, and that the successional pattern of host-associated communities is differed from that of free-living bacteria.  相似文献   

13.
14.
15.
Some aquatic invertebrates such as shrimp contain low albeit stable numbers of bacteria in the circulating hemolymph. The proliferation of this hemolymph microbiota in such a nutrient-rich environment is tightly controlled in healthy animals, but the mechanisms responsible had remained elusive. In the present study, we report a C-type lectin (MjHeCL) from the kuruma shrimp (Marsupenaeus japonicus) that participates in restraining the hemolymph microbiota. Although the expression of MjHeCL did not seem to be modulated by bacterial challenge, the down-regulation of its expression by RNA interference led to proliferation of the hemolymph microbiota, ultimately resulting in shrimp death. This phenotype was rescued by the injection of recombinant MjHeCL, which restored the healthy status of the knockdown shrimp. A mechanistic analysis revealed that MjHeCL inhibited bacterial proliferation by modulating the expression of antimicrobial peptides. The key function of MjHeCL in the shrimp immune homeostasis might be related to its broader recognition spectrum of the hemolymph microbiota components than other lectins. Our study demonstrates the role of MjHeCL in maintaining the healthy status of shrimp and provides new insight into the biological significance of C-type lectins, a diversified and abundant lectin family in invertebrate species.  相似文献   

16.
The gut microbiota plays a key role in the maintenance of healthy gut function as well as many other aspects of health. High-throughput sequence analyses have revealed the composition of the gut microbiota, showing that there is a core signature to the human gut microbiota, as well as variation in its composition between people. The gut microbiota of animals is also being investigated. We are interested in the relationship between bacterial taxa of the human gut microbiota and those in the gut microbiota of domestic and semi-wild animals. While it is clear that some human gut bacterial pathogens come from animals (showing that human – animal transmission occurs), the extent to which the usually non-pathogenic commensal taxa are shared between humans and animals has not been explored. To investigate this we compared the distal gut microbiota of humans, cattle and semi-captive chimpanzees in communities that are geographically sympatric in Uganda. The gut microbiotas of these three host species could be distinguished by the different proportions of bacterial taxa present. We defined multiple operational taxonomic units (OTUs) by sequence similarity and found evidence that some OTUs were common between human, cattle and chimpanzees, with the largest number of shared OTUs occurring between chimpanzees and humans, as might be expected with their close physiological similarity. These results show the potential for the sharing of usually commensal bacterial taxa between humans and other animals. This suggests that further investigation of this phenomenon is needed to fully understand how it drives the composition of human and animal gut microbiotas.  相似文献   

17.
The gut microbiota profoundly affects the biology of its host. The composition of the microbiota is dynamic and is affected by both host genetic and many environmental effects. The gut microbiota of laboratory mice has been studied extensively, which has uncovered many of the effects that the microbiota can have. This work has also shown that the environments of different research institutions can affect the mouse microbiota. There has been relatively limited study of the microbiota of wild mice, but this has shown that it typically differs from that of laboratory mice (and that maintaining wild caught mice in the laboratory can quite quickly alter the microbiota). There is also inter-individual variation in the microbiota of wild mice, with this principally explained by geographical location. In this study we have characterised the gut (both the caecum and rectum) microbiota of wild caught Mus musculus domesticus at three UK sites and have investigated how the microbiota varies depending on host location and host characteristics. We find that the microbiota of these mice are generally consistent with those described from other wild mice. The rectal and caecal microbiotas of individual mice are generally more similar to each other, than they are to the microbiota of other individuals. We found significant differences in the diversity of the microbiotas among mice from different sample sites. There were significant correlations of microbiota diversity and body weight, a measure of age, body-mass index, serum concentration of leptin, and virus, nematode and mite infection.  相似文献   

18.
Colitis results from breakdown of homeostasis between intestinal microbiota and the mucosal immune system, with both environmental and genetic influencing factors. Flagellin receptor TLR5-deficient mice (T5KO) display elevated intestinal proinflammatory gene expression and colitis with incomplete penetrance, providing a genetically sensitized system to study the contribution of microbiota to driving colitis. Both colitic and noncolitic T5KO exhibited transiently unstable microbiotas, with lasting differences in colitic T5KO, while their noncolitic siblings stabilized their microbiotas to resemble wild-type mice. Transient high levels of proteobacteria, especially enterobacteria species including E.?coli, observed in close proximity to the gut epithelium were a striking feature of colitic microbiota. A Crohn's disease-associated E.?coli strain induced chronic colitis in T5KO, which persisted well after the exogenously introduced bacterial species had been eliminated. Thus, an innate immune deficiency can result in unstable gut microbiota associated with low-grade inflammation, and harboring proteobacteria can drive and/or instigate chronic colitis.  相似文献   

19.
The aim of this study was to determine the relationship between the composition and function of gut microbiota. Here, we compared the bacterial compositions and fermentation metabolites of human and chicken gut microbiotas. Results generated by quantitative PCR (qPCR) and 454 pyrosequencing of the 16S rRNA gene V3 region showed the compositions of human and chicken microbiotas to be markedly different, with chicken cecal microbiotas displaying more diversity than human fecal microbiotas. The nutrient requirements of each microbiota growing under batch and chemostat conditions were analyzed. The results showed that chicken cecal microbiotas required simple sugars and peptides to maintain balanced growth in vitro but that human fecal microbiotas preferred polysaccharides and proteins. Chicken microbiotas also produced higher concentrations of volatile fatty acids than did human microbiotas. Our data suggest that the availability of different fermentable substrates in the chicken cecum, which exist due to the unique anatomical structure of the cecum, may provide an environment favorable to the nourishment of microbiotas suited to the production of the higher-energy metabolites required by the bird. Therefore, gut structure, nutrition, immunity, and life-style all contribute to the selection of an exclusive bacterial community that produces types of metabolites beneficial to the host.  相似文献   

20.
The human body houses a variety of microbial ecosystems, such as the microbiotas on the skin, in the oral cavity and in the digestive tract. The gut microbiota is one such ecosystem that contains trillions of bacteria, and it is well established that it can significantly influence host health and diseases. With the advancement in bioinformatics tools, numerous comparative studies based on 16S ribosomal RNA (rRNA) gene sequences, metabolomics, pathological and epidemical analyses have revealed the correlative relationship between the abundance of certain taxa and disease states or amount of certain causative bioactive compounds. However, the 16S rRNA-based taxonomic analyses using next-generation sequencing (NGS) technology essentially detect only the majority species. Although the entire gut microbiome consists of 1013 microbial cells, NGS read counts are given in multiples of 106, making it difficult to determine the diversity of the entire microbiota. Some recent studies have reported instances where certain minority species play a critical role in creating locally stable conditions for other species by stabilizing the fundamental microbiota, despite their low abundance. These minority species act as ‘keystone species’, which is a species whose effect on the community is disproportionately large compared to its relative abundance. One of the attributes of keystone species within the gut microbiota is its extensive enzymatic capacity for substrates that are rare or difficult to degrade for other species, such as dietary fibres or host-derived complex glycans, like human milk oligosaccharides (HMOs). In this paper, we propose that more emphasis should be placed on minority taxa and their possible role as keystone species in gut microbiota studies by referring to our recent studies on HMO-mediated microbiota formation in the infant gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号