首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Energetics, body size, and the limits to endothermy   总被引:1,自引:0,他引:1  
The scaling rate of metabolism with respect to body mass is analysed. Scaling of heat production implies that scaling also exists between temperature regulation and body mass. Most vertebrates follow a Kleiber relation down to a "critical mass, below which the scaling of metabolism must be changed to ensure the maintenance of endothermy. Such an adjustment is found interspecifically in birds and mammals, and is found intraspecifically in mammals during post-natal growth. If the Kleiber scaling relation is maintained below the critical mass, mammals and birds shiR from endothermic temperature regulation (above critical mass) to endothermy with obligatory torpor (below critical mass). If the Kleiber relation is followed to masses far below the critical mass, ectothermy results. Critical mass varies inversely with the level of energy expenditure, which therefore accounts for the fact that most mammals and birds are endotherms and most reptiles and fish are ectotherms. The same relationship permits the facultative endothermy found in some insects and plants.
The scaling relations existing among rate of metabolism, endothermy, and body mass can be written as a modification of the Kleiber relation. This analysis suggests that any organism, irrespective of phylogenetic position, can be endothermic at any body size, if its rate of metabolism is high enough, or can be endothermic with any rate of metabolism, if it is large enough. Consequently, it is difficult to distinguish minimal endothermy from inertial homoiothermy in animals having a large mass. The boundary conditions for effective endothermy are similar to the relationship described between metabolism and mass in the evolution of endothermy through a decrease in mass in the phylogeny of mammals. Even though endothermy may evolve with an increase in mass, its perfection may always require an evolutionary decrease in mass.  相似文献   

2.
For many animals, notably herbivores, plants are often an inadequate food source given the low content of protein and high content of C-rich material. This conception is mainly based on studies on ectotherms. The validity of this conception for endotherms is unclear given their much higher carbon requirements for maintenance energy metabolism than ectotherms. Applying stoichiometric principles, we hypothesized that endotherms can cope with diets with much higher (metabolizable) carbon to nitrogen ratios than ectotherms. Using empirical data on birds, eutherian mammals, marsupials and reptiles, we compiled and compared measurements and allometric equations for energy metabolism as well as nitrogen requirements. Our analysis supports our hypothesis that plants, and especially their leaves, are generally sufficiently rich in nitrogen to fulfil protein demands in endotherms, at least during maintenance conditions, but less so in ectotherms. This has important implications with respect to community functioning and the evolution of endothermy.  相似文献   

3.
Nectar-feeding birds are among the smallest birds and the largestpollinators. Energetic costs of maintenance, temperature regulation,foraging and reproduction increase in direct proportion to bodymass raised to fractional exponents, which may vary from 0.5to 1.0; overall costs probably vary with an exponent of 0.75.Avian nectarivores acquire most of their energy from flowernectar; in so doing they compete with other nectar feeders andpollinate plants. Larger pollinators are more reliable and movepollen greater distances, but to attract them plants must secretemore nectar and protect it from utilization by smaller animals.Minimum body size of avian nectarivores (2g) appears to reflectboth competition with insects and the limited capacity of thesmallest birds to acquire and store energy relative to the demandsof fasting, temperature regulation, and reproduction. Hummingbirdshave attained significantly smaller size than other nectar feedingbirds because lower metabolic rates and use of hypothermic torporreduce their energy expenditure relative to income. Maximumbody size of avian nectarivores (approximately 80g) apparentlyreflects the upper limit of plant energy expenditure for reliable,long distance pollination. Between these limits, size variationreflects divergence to reduce interspecific competition andcoevolution with plants to promote specificity  相似文献   

4.
Recent palaeontological data and novel physiological hypotheses now allow a timescaled reconstruction of the evolution of endothermy in birds and mammals. A three‐phase iterative model describing how endothermy evolved from Permian ectothermic ancestors is presented. In Phase One I propose that the elevation of endothermy – increased metabolism and body temperature (Tb) – complemented large‐body‐size homeothermy during the Permian and Triassic in response to the fitness benefits of enhanced embryo development (parental care) and the activity demands of conquering dry land. I propose that Phase Two commenced in the Late Triassic and Jurassic and was marked by extreme body‐size miniaturization, the evolution of enhanced body insulation (fur and feathers), increased brain size, thermoregulatory control, and increased ecomorphological diversity. I suggest that Phase Three occurred during the Cretaceous and Cenozoic and involved endothermic pulses associated with the evolution of muscle‐powered flapping flight in birds, terrestrial cursoriality in mammals, and climate adaptation in response to Late Cenozoic cooling in both birds and mammals. Although the triphasic model argues for an iterative evolution of endothermy in pulses throughout the Mesozoic and Cenozoic, it is also argued that endothermy was potentially abandoned at any time that a bird or mammal did not rely upon its thermal benefits for parental care or breeding success. The abandonment would have taken the form of either hibernation or daily torpor as observed in extant endotherms. Thus torpor and hibernation are argued to be as ancient as the origins of endothermy itself, a plesiomorphic characteristic observed today in many small birds and mammals.  相似文献   

5.
Endothermic thermoregulation in small, altricial mammals and birds develops at about one third to half of adult size. The small size and consequently high heat loss in these young should result in more pronounced energetic challenges than in adults. Thus, employing torpor (a controlled reduction of metabolic rate and body temperature) during development would allow them to save energy. Although torpor during development in endotherms is likely to occur in many species, it has been documented in only a few. In small, altricial birds (4 orders) and marsupials (1 order), which are poikilothermic at hatching/birth, the development of competent endothermic thermoregulation during cold exposure appears to be concurrent with the capability to display torpor (i.e. poikilothermy is followed by heterothermy), supporting the view that torpor is phylogenetically old and likely plesiomorphic. In contrast, in small, altricial placental mammals (2 orders), poikilothermy at birth is followed first by a homeothermic phase after endothermic thermoregulation is established; the ability to employ torpor develops later (i.e. poikilothermy-homeothermy-heterothermy). This suggests that in placentals torpor is a derived trait that evolved secondarily after a homeothermic phase in certain taxa perhaps as a response to energetic challenges. As mammals and birds arose from different reptilian lineages, endothermy likely evolved separately in the two classes, and given that the developmental sequence of torpor differs between marsupials and placentals, torpor seems to have evolved at least thrice.  相似文献   

6.

Aim

Whether intraspecific spatial patterns in body size are generalizable across species remains contentious, as well as the mechanisms underlying these patterns. Here we test several hypotheses explaining within-species body size variation in terrestrial vertebrates including the heat balance, seasonality, resource availability and water conservation hypotheses for ectotherms, and the heat conservation, heat dissipation, starvation resistance and resource availability hypotheses for endotherms.

Location

Global.

Time period

1970–2016.

Major taxa studied

Amphibians, reptiles, birds and mammals.

Methods

We collected 235,905 body size records for 2,229 species (amphibians = 36; reptiles = 81; birds = 1,545; mammals = 567) and performed a phylogenetic meta-analysis of intraspecific correlations between body size and environmental variables. We further tested whether correlations differ between migratory and non-migratory bird and mammal species, and between thermoregulating and thermoconforming ectotherms.

Results

For bird species, smaller intraspecific body size was associated with higher mean and maximum temperatures and lower resource seasonality. Size–environment relationships followed a similar pattern in resident and migratory birds, but the effect of resource availability on body size was slightly positive only for non-migratory birds. For mammals, we found that intraspecific body size was smaller with lower resource availability and seasonality, with this pattern being more evident in sedentary than migratory species. No clear size–environment relationships were found for reptiles and amphibians.

Main conclusions

Within-species body size variation across endotherms is explained by disparate underlying mechanisms for birds and mammals. Heat conservation (Bergmann's rule) and heat dissipation are the dominant processes explaining biogeographic intraspecific body size variation in birds, whereas in mammals, body size clines are mostly explained by the starvation resistance and resource availability hypotheses. Our findings contribute to a better understanding of the mechanisms behind species adaptations to the environment across their geographic distributions.  相似文献   

7.
Endothermy has evolved at least twice, in the precursors to modern mammals and birds. The most widely accepted explanation for the evolution of endothermy has been selection for enhanced aerobic capacity. We review this hypothesis in the light of advances in our understanding of ATP generation by mitochondria and muscle performance. Together with the development of isotope‐based techniques for the measurement of metabolic rate in free‐ranging vertebrates these have confirmed the importance of aerobic scope in the evolution of endothermy: absolute aerobic scope, ATP generation by mitochondria and muscle power output are all strongly temperature‐dependent, indicating that there would have been significant improvement in whole‐organism locomotor ability with a warmer body. New data on mitochondrial ATP generation and proton leak suggest that the thermal physiology of mitochondria may differ between organisms of contrasting ecology and thermal flexibility. Together with recent biophysical modelling, this strengthens the long‐held view that endothermy originated in smaller, active eurythermal ectotherms living in a cool but variable thermal environment. We propose that rather than being a secondary consequence of the evolution of an enhanced aerobic scope, a warmer body was the means by which that enhanced aerobic scope was achieved. This modified hypothesis requires that the rise in metabolic rate and the insulation necessary to retain metabolic heat arose early in the lineages leading to birds and mammals. Large dinosaurs were warm, but were not endotherms, and the metabolic status of pterosaurs remains unresolved.  相似文献   

8.
Combined studies of the communities and interaction networks of bird and insect pollinators are rare, especially along environmental gradients. Here, we determined how disturbance by fire and variation in sugar resources shape pollinator communities and interactions between plants and their pollinating insects and birds. We recorded insect and bird visits to 21 Protea species across 21 study sites and for 2 years in Fynbos ecosystems in the Western Cape, South Africa. We recorded morphological traits of all pollinator species (41 insect and nine bird species). For each site, we obtained estimates of the time since the last fire (range: 2–25 calendar years) and the Protea nectar sugar amount per hectare (range: 74–62 000 g/ha). We tested how post-fire age and sugar amount influence the total interaction frequency, species richness and functional diversity of pollinator communities, as well as pollinator specialization (the effective number of plant partners) and potential pollination services (pollination service index) of insects and birds. We found little variation in the total interaction frequency, species richness and functional diversity of insect and bird pollinator communities, but insect species richness increased with post-fire age. Pollinator specialization and potential pollination services of insects and birds varied differently along the environmental gradients. Bird pollinators visited fewer Protea species at sites with high sugar amount, while there was no such trend for insects. Potential pollination services of insect pollinators to Protea species decreased with increasing post-fire age and resource amounts, whereas potential pollination services of birds remained constant along the environmental gradients. Despite little changes in pollinator communities, our analyses reveal that insect and bird pollinators differ in their specialization on Protea species and show distinct responses to disturbance and resource gradients. Our comparative study of bird and insect pollinators demonstrates that birds may be able to provide more stable pollination services than insects.  相似文献   

9.
Large-scale climate oscillations in earth's history have influenced the directions of evolution, last but not least, through mass extinction events. This analysis tries to identify some unifying forces behind the course of evolution that favored an increase in organismic complexity and performance, paralleled by an increase in energy turnover, and finally led to endothermy. The analysis builds on the recent concept of oxygen-limited thermal tolerance and on the hypothesis that unifying principles exist in the temperature-dependent biochemical design of the eukaryotic cell in animals. The comparison of extant water-breathing and air-breathing animal species from various climates provides a cause-and-effect understanding of the trade-offs and constraints in thermal adaptation and their energetic consequences. It is hypothesized that the high costs of functional adaptation to fluctuating temperatures, especially in the cold (cold eurythermy), cause an increase in energy turnover and, at the same time, mobility and agility. These costs are associated with elevated mitochondrial capacities at minimized levels of activation enthalpies for proton leakage. Cold eurythermy is seen as a precondition for the survival of evolutionary crises elicited by repeated cooling events during extreme climate fluctuations. The costs of cold eurythermy appear as the single most important reason why metazoan evolution led to life forms with high energy turnover. They also explain why dinosaurs were able to live in subpolar climates. Finally, they give insight into the pathways, benefits, and trade-offs involved in the evolution of constant, elevated body temperature maintained by endothermy. Eurythermy, which encompasses cold tolerance, is thus hypothesized to be the "missing link" between ectothermy and endothermy. Body temperatures between 32 degrees and 42 degrees C in mammals and birds then result from trade-offs between the limiting capacities of ventilation and circulation and the evolutionary trend to maximize performance at the warm end of the thermal tolerance window.  相似文献   

10.
Many elements of mammalian and avian thermoregulatory mechanisms are present in reptiles, and the changes involved in the transition to endothermy are more quantitative than qualitative. Drawing on our experience with reptiles and echidnas, we comment on that transition and on current theories about how it occurred. The theories divide into two categories, depending on whether selection pressures operated directly or indirectly on mechanisms producing heat. Both categories of theories focus on explaining the evolution of homeothermic endothermy but ignore heterothermy. However, noting that hibernation and torpor are almost certainly plesiomorphic (=ancestral, primitive), and that heterothermy is very common among endotherms, we propose that homeothermic endothermy evolved via heterothermy, with the earliest protoendotherms being facultatively endothermic and retaining their ectothermic capacity for "constitutional eurythermy." Thus, unlike current models for the evolution of endothermy that assume that hibernation and torpor are specialisations arising from homeothermic ancestry, and therefore irrelevant, we consider that they are central. We note the sophistication of thermoregulatory behavior and control in reptiles, including precise control over conductance, and argue that brooding endothermy seen in some otherwise ectothermic Boidae suggests an incipient capacity for facultative endothermy in reptiles. We suggest that the earliest insulation in protoendotherms may have been internal, arising from redistribution of the fat bodies that are typical of reptiles. We note that short-beaked echidnas provide a useful living model of what an (advanced) protoendotherm may have been like. Echidnas have the advantages of endothermy, including the capacity for homeothermic endothermy during incubation, but are very relaxed in their thermoregulatory precision and minimise energetic costs by using ectothermy facultatively when entering short- or long-term torpor. They also have a substantial layer of internal dorsal insulation. We favor theories about the evolution of endothermy that invoke direct selection for the benefits conferred by warmth, such as expanding daily activity into the night, higher capacities for sustained activity, higher digestion rates, climatic range expansion, and, not unrelated, control over incubation temperature and the benefits for parental care. We present an indicative, stepwise schema in which observed patterns of body temperature are a consequence of selection pressures, the underlying mechanisms, and energy optimization, and in which homeothermy results when it is energetically desirable rather than as the logical endpoint.  相似文献   

11.
12.
Biophysical Ecology and Heat Exchange in Insects   总被引:2,自引:1,他引:1  
When used with observations of behavior and physiology of animalsin known microclimates, a biophysical approach is a powerfultool for predicting body temperatures of insects. For ectothermicinsects, solution of the energy budget equation and use of operativetemperature models have been used to determine the range oftemperatures which an insect can exhibit in a given environment.Knowledge of body temperature has allowed predictions of whenimportant behaviors arepossible in the field, thereby directlyrelating biophysical models to fitness parameters of animals.A proper understanding of the physiological mechanism(s) controllingheat exchange is prerequisite to application and interpretationof information obtained using biophysical techniques. For endothermicinsects, physiological regulation of heat exchange forces amore complicated analysis. Evaluation of thoracic heat exchangealone (aside from indicating whether insects are regulatingTth) is of little utility for either quantifying total heatexchange, or evaluating thermoregulatory mechanisms withoutfurther information. Further studies of biophysics and physiologyof endothermic insects during flight are needed to correct thesedeficiencies. Application of biophysical techniques has allowedpredictions of behavior of flying insects based onprinciplesof heat exchange which cannot be examined directly. Analysesof endothermy of restinghoneybee swarms and hives indicate thatthese "superorganisms" regulate temperature rather preciselyover a remarkable range of environmental temperature using mechanismsequivalent to thoseused by resting endothermic vertebrates.  相似文献   

13.
Infrared thermography (IRT) is a technique that determines surface temperature based on physical laws of radiative transfer. Thermal imaging cameras have been used since the 1960s to determine the surface temperature patterns of a wide range of birds and mammals and how species regulate their surface temperature in response to different environmental conditions. As a large proportion of metabolic energy is transferred from the body to the environment as heat, biophysical models have been formulated to determine metabolic heat loss. These models are based on heat transfer equations for radiation, convection, conduction and evaporation and therefore surface temperature recorded by IRT can be used to calculate heat loss from different body regions. This approach has successfully demonstrated that in birds and mammals heat loss is regulated from poorly insulated regions of the body which are seen to be thermal windows for the dissipation of body heat. Rather than absolute measurement of metabolic heat loss, IRT and biophysical models have been most useful in estimating the relative heat loss from different body regions. Further calibration studies will improve the accuracy of models but the strength of this approach is that it is a non-invasive method of measuring the relative energy cost of an animal in response to different environments, behaviours and physiological states. It is likely that the increasing availability and portability of thermal imaging systems will lead to many new insights into the thermal physiology of endotherms.  相似文献   

14.
Flowers attract insects and so are commonly exploited as foraging sites by sit-and-wait predators. Such predators can be costly to their host plant by consuming pollinators. However, sit-and-wait predators are often prey generalists that also consume plant antagonists such as herbivores, nectar robbers and granivores, so may also provide benefits to their host plant. Here we present a simple, but general, model that provides novel predictions about how costs and benefits interact in different ecological circumstances. The model predicts that the ecological conditions in which flower-dwelling predators are found can generate either net benefits to their host plants, net costs to their host plants, or can have no effect on the fitness of their host plants. The net effect is influenced by the relative densities of mutualists and antagonists. The flower-dwelling predator has a strong positive effect on the plant if both the pollinators and the granivores are at high density. Further, the range of density combinations that yield a positive net outcome for the plant increases if the performance of pollinators is negatively density dependent, if the predator is only moderately effective at influencing flower visitor rates by its potential prey, and if pollinators are very effective. If plants of a given species find themselves consistently in conditions where they benefit from the presence of a predator then we predict that natural selection could favour the evolution of plant traits that increase the likelihood of predator recruitment and retention, especially where plants are served by highly effective pollinators.  相似文献   

15.
Avian and mammalian endothermy results from elevated rates of resting, or routine, metabolism and enables these animals to maintain high and stable body temperatures in the face of variable ambient temperatures. Endothermy is also associated with enhanced stamina and elevated capacity for aerobic metabolism during periods of prolonged activity. These attributes of birds and mammals have greatly contributed to their widespread distribution and ecological success. Unfortunately, since few anatomical/physiological attributes linked to endothermy are preserved in fossils, the origin of endothermy among the ancestors of mammals and birds has long remained obscure. Two recent approaches provide new insight into the metabolic physiology of extinct forms. One addresses chronic (resting) metabolic rates and emphasizes the presence of nasal respiratory turbinates in virtually all extant endotherms. These structures are associated with recovery of respiratory heat and moisture in animals with high resting metabolic rates. The fossil record of nonmammalian synapsids suggests that at least two Late Permian lineages possessed incipient respiratory turbinates. In contrast, these structures appear to have been absent in dinosaurs and nonornithurine birds. Instead, nasal morphology suggests that in the avian lineage, respiratory turbinates first appeared in Cretaceous ornithurines. The other approach addresses the capacity for maximal aerobic activity and examines lung structure and ventilatory mechanisms. There is no positive evidence to support the reconstruction of a derived, avian-like parabronchial lung/air sac system in dinosaurs or nonornithurine birds. Dinosaur lungs were likely heterogenous, multicameral septate lungs with conventional, tidal ventilation, although evidence from some theropods suggests that at least this group may have had a hepatic piston mechanism of supplementary lung ventilation. This suggests that dinosaurs and nonornithurine birds generally lacked the capacity for high, avian-like levels of sustained activity, although the aerobic capacity of theropods may have exceeded that of extant ectotherms. The avian parabronchial lung/air sac system appears to be an attribute limited to ornithurine birds.  相似文献   

16.
Native birds may have been underestimated as pollinators of the New Zealand flora due to their early decline in abundance and diversity on the mainland. This paper reconsiders the relative importance of birds and insects as pollinators to eight native flowering plants, representing a range of pollination syndromes, on two offshore island refuges. Experimental manipulations were made on five of these plant species to assess the relative effectiveness of bird and insect visitors as pollinators. In addition, foraging behaviour and the respective morphologies of flowers and visitors were measured at all eight plants to identify the main pollinators. The experimental measures showed that percentage fruit set was significantly higher in flowers exposed to birds than flowers from which birds were excluded in all manipulated plants. The observational measures revealed that for six of the flowering species (Sophora microphylla, Vitex lucens, Pittosporum crassifolium, Pittosporum umbellatum, Pseudopanax arboreus and Dysoxylum spectabile) the endemic honeyeaters were most likely to meet the conditions necessary for successful pollination. For the remaining two species (Metrosideros excelsa and Geniostoma ligus trifolium) the contribution by honeyeaters and insects to pollination was equivalent. The results suggest that the role of the endemic honeyeaters in pollination of the New Zealand flora, and the subsequent regeneration of native forest ecosystems, should be important considerations in ecosystem management.  相似文献   

17.
  • Most angiosperms rely on animal pollination for reproduction, but the dependence on specific pollinator groups varies greatly between species and localities. Notably, such dependence may be influenced by both floral traits and environmental conditions. Despite its importance, their joint contribution has rarely been studied at the assemblage level.
  • At two elevations on the Caribbean island of Dominica, we measured the floral traits and the relative contributions of insects versus hummingbirds as pollinators of plants in the Rubiaceae family. Pollinator importance was measured as visitation rate (VR) and single visit pollen deposition (SVD), which were combined to assess overall pollinator effectiveness (PE).
  • In the wet and cool Dominican highland, we found that hummingbirds were relatively more frequent and effective pollinators than insects, whereas insects and hummingbirds were equally frequent and effective pollinators at the warmer and less rainy midelevation. Furthermore, floral traits correlated independently of environment with the relative importance of pollinators, hummingbirds being more important in plant species having flowers with long and wide corollas producing higher volumes of dilute nectar.
  • Our findings show that both environmental conditions and floral traits influence whether insects or hummingbirds are the most important pollinators of plants in the Rubiaceae family, highlighting the complexity of plant–pollinator systems.
  相似文献   

18.
Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade‐off with the need to engage in heat‐dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature‐dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will have negative implications for the fitness of these arid‐zone birds.  相似文献   

19.

Background

One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals.

Methodology/Principal Findings

Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary.

Conclusions/Significance

Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira), but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced “avian” lung structure and high locomotor costs.  相似文献   

20.
New Holland honeyeaters collect nectar, manna or honeydew for energy and hawk small flying insects for protein. The insects taken were usually Diptera and Hymenoptera weighing 0.7 mg dry weight or less. Net rates of energy gain from hawking small flying insects were usually less than 20 J min?1 and sometimes negative and insufficient to meet the bird's daily energy requirements. Those from feeding on nectar, manna or honeydew were usually above 40J min?1 and often above 400J min?1 at dawn and the birds depended on these carbohydrates for energy. Nectar, manna and honeydew contained negligible amounts of protein, and the birds used small flying insects as sources of protein, and presumably other nutrients. Given that carbohydrate resources supply better rates of energy gain than insects. New Holland honeyeaters should collect their energy requirements from carbohydrates and only collect sufficient insects to satisfy their protein requirements. Estimates of the food intakes of both non-breeding and breedig birds showed that they did this. Non-breeding New Holland honeyeaters collected from 72 to 125 (mean 92) kJ of carbohydrates per day and 17 to 58 (mean 31) mg of protein per day. These meet the daily energy (75 kJ) and protein (20 mg) requirements of the birds. Breedig birds collected more carbohydrates and more insects, but in proportion to their increased energy and protein requirements respectively. New Holland honeyeaters are probably limited by their ability to meet their energy requirements from nectar, manna or honeydew and not by insects. Non-breeding birds collected their protein requirements in about 10 min of insect-feeding, but spent from 33 to 90% of the day collecting carbohydrates to meet their energy requirements. The maintenance requirement of 20 mg of protein per day for New Holland honeyeaters is about 25% of that estimated from standard equations for a bird of the same size. This low level may have evolved in response to low energy availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号