首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most lineages in the African genus Protea consist of species with large unscented flowers pollinated principally by birds, and several of these lineages also show evidence of shifts to rodent pollination, associated with concealed yeasty-scented flowerheads. In this study we investigated the hypothesis that brightly coloured and fruity-scented flowerheads of four Protea species (P. caffra, P. simplex, P. dracomontana and P. welwitschii) represent a novel shift from bird to insect pollination in a grassland lineage in the genus. These species are visited by a wide range of insects, but cetoniine beetles were found to be the most important pollinators because of their abundance, size and relatively pure pollen loads. Three of the four putatively insect-pollinated Protea species have flowers presented at ground level, and experiments showed that cetoniine beetles preferred inflorescences at ground level to those artificially elevated to the height of shrubs and small trees. Relative to insects, birds were infrequent visitors to all of the study species. The nectar of all the study species contained xylose, as documented previously in bird- and rodent-pollinated Protea species, suggesting that this is a phylogenetically conserved trait. However, the very low concentration of nectar (ca. 8%), short nectar-stigma distance and the fruity scent of florets appear to be traits that are associated with specialisation for pollination by cetoniine beetles.  相似文献   

2.
Pollinator‐mediated interactions between plants can play an important role for the dynamics of plant communities. Pollination services depend on the abundance and the foraging behaviour of pollinators, which in turn respond to the availability and distribution of floral resources (notably nectar sugar). However, it is still insufficiently understood how the ‘sugar landscapes’ provided by flowering plant communities shape pollinator‐mediated interactions between multiple plant species and across different spatial scales. A better understanding of pollinator‐mediated interactions requires an integrative approach that quantifies different aspects of sugar landscapes and investigates their relative importance for pollinator behaviour and plant reproductive success. In this study, we quantified such sugar landscapes from individual‐based maps of Protea shrub communities in the Cape Floristic Region, South Africa. The 27 study sites of 4 ha each jointly comprise 127 993 individuals of 19 species. We analysed how rates of visitation by key bird pollinators and the seed set of plants respond to different aspects of sugar landscapes: the distribution of nectar sugar amounts, as well as their quality, taxonomic purity and phenology. We found that pollinator visitation rates strongly depended on phenological variation of site‐scale sugar amounts. The seed set of focal plants increased with nectar sugar amounts of conspecific neighbours and with site‐scale sugar amounts. Seed set increased particularly strongly if site‐scale sugar amounts were provided by plants that offer less sugar per inflorescence. These combined effects of the amount, quality, purity and phenological variation of nectar sugar show that nectar sugar is a common interaction currency that determines how multiple plant species interact via shared pollinators. The responses of pollinator‐mediated interactions to different aspects of this interaction currency alter conditions for species coexistence in Protea communities and may cause community‐level Allee effects that promote extinction cascades.  相似文献   

3.
Studies of nectar sugar composition in the Proteaceae, an ancient southern hemisphere plant family, have demonstrated that xylose comprises up to 39% of nectar sugar in two genera, Protea and Faurea, and may therefore represent a substantial fraction of the energy available to pollinators of these plants. Although insect and bird pollinators of Protea species are averse to xylose, mice (Aethomys namaquensis) will drink pure xylose, which is metabolized either by gut bacteria or by the mouse tissues. In the form of xylan polymers, the pentose sugar -xylose is a structural component of plant cell walls, and there is considerable biotechnological interest in xylose fermentation. Bacteria and yeasts convert -xylose to -xylulose and thence via the pentose phosphate pathway to fructose-6-phosphate, which is either oxidized or fermented to ethanol. Gut symbionts of rodent pollinators may be analogous to ruminal xylose-metabolizing bacteria. The presence of xylose in Protea and Faurea nectar remains puzzling in view of pollinator aversions: even for rodent pollinators, it is the least preferred nectar sugar. In the generalized pollination systems of the Proteaceae, a coevolutionary explanation for nectar xylose as an attractant for mammalian pollinators is probably less likely than one involving plant physiology, with xylose in phloem sap being secreted passively into the nectar.  相似文献   

4.
The responses of animal pollinators to the spatially heterogeneous distribution of floral resources are important for plant reproduction, especially in species‐rich plant communities. We explore how responses of pollinators to floral resources varied across multiple spatial scales and studied the responses of two nectarivorous bird species (Cape sugarbird Promerops cafer, orange‐breasted sunbird Anthobaphes violacea) to resource distributions provided by communities of co‐flowering Protea species (Proteaceae) in South African fynbos. We used highly resolved maps of about 125 000 Protea plants at 27 sites and estimated the seasonal dynamics of standing crop of nectar sugar for each plant to describe the spatiotemporal distribution of floral resources. We recorded avian population sizes and the rates of bird visits to > 1300 focal plants to assess the responses of nectarivorous birds to floral resources at different spatial scales. The population sizes of the two bird species responded positively to the amount of sugar resources at the site scale. Within sites, the effects of floral resources on pollinator visits to plants varied across scales and depended on the resources provided by individual plants. At large scales (radii > 25 m around focal plants), high sugar density decreased per‐plant visitation rates, i.e. plants competed for animal pollinators. At small scales (radii < 5 m around focal plants), we observed either competition or facilitation for pollinators between plants, depending on the sugar amount offered by individual focal plants. In plants with copious sugar, per‐plant visitation rates increased with increasing local sugar density, but visitation rates decreased in plants with little sugar. Our study underlines the importance of scale‐dependent responses of pollinators to floral resources and reveals that pollinators’ responses depend on the interplay between individual floral resources and local resource neighbourhood.  相似文献   

5.
6.
The bird pollination syndrome is characterized by red, unscented flowers with dilute nectar in long nectar tubes. However, the extent to which plants with such traits actually depend on birds for seed production is seldom determined experimentally, and traits such as colour and scent production are often assessed only subjectively. We documented bird pollination and quantified floral traits in the critically endangered Satyrium rhodanthum (Orchidaceae) from mistbelt grasslands in the summer‐rainfall region of South Africa. Direct observations and motion trigger camera footage revealed amethyst sunbirds as the only pollinators, despite the presence of other potential pollinators. Experimental exclusion of sunbirds significantly reduced pollination and fruit set to near zero. Pollination success in naturally pollinated plants was close to 100% in one year, and fruit set varied from 23 to 64% in other years. Pollen transfer efficiency was 5.8%, which is lower than in related insect‐pollinated species, probably due to a tendency of birds to wipe pollinaria from their beak. Flowers of S. rhodanthum only reflect light in the red range of the spectrum, and they produce only a few aliphatic and monoterpene scent compounds at comparatively low emission rates. Nectar volume and sugar concentration varied between 2.7 and 3.7 μL and 23.7 and 25.9%, respectively. We conclude that S. rhodanthum is highly specialized for pollination by sunbirds. Colour, scent and nectar characteristics differ from insect‐pollinated Satyrium species and are consistent with those expected for bird‐pollinated flowers, and may contribute to lack of visitation by other potential long‐tongued pollinators. Habitat loss probably underlies the critically endangered conservation status of S. rhodanthum, but the specialization for pollination by a single bird species means that reproduction in this orchid is vulnerable to losses in surrounding communities of plants that subsidize the energetic requirements of sunbirds. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 177 , 141–150.  相似文献   

7.
The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant–pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant–pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant–pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant–pollinator network.  相似文献   

8.
1. Pollinating insects provide important ecosystem services and are influenced by the intensity of grazing. Based on the Intermediate Disturbance Hypothesis (IDH), pollinator diversity is expected to peak at intermediate grazing intensities. However, this hump‐shaped relationship is rarely found. 2. The effect of grazing intensity was tested on flower cover, on the abundance and richness of bees, hoverflies and bee flies, and on pollination services to early‐flowering bee‐pollinated Asphodelus ramosus L. For that, we used data on 11 plant–pollinator phryganic communities from Lesvos Island (Greece) widely differing in grazing intensities. 3. Flower abundance and richness showed hump‐shaped relationships with grazing intensity. Grazing affected the abundance and richness of bees and hoverflies directly and also indirectly, through changes in the flower community. Grazing influenced directly the richness but not the abundance of bee flies. Overall, pollinator abundance and richness showed hump‐shaped relationships with grazing intensity, but variations in strength (hoverfly abundance) and direction (bee community) of the effect appeared along the season. Early in the season, grazing increased bee abundance but decreased richness, resulting in increased pollen limitation in A. ramosus. 4. The effects of grazing on pollinators vary with the intensity of the disturbance, generally supporting the IDH, and the timing of land‐use activities may influence pollination services. Management strategies should include moderate grazing levels to preserve overall diversity in this area, however, the conservation of particular early bee or bee‐pollinated species may benefit from reduced grazing in early spring.  相似文献   

9.
Fang Q  Chen YZ  Huang SQ 《Annals of botany》2012,109(2):379-384

Background and Aims

Winter-flowering plants outside the tropics may experience a shortage of pollinator service, given that insect activity is largely limited by low temperature. Birds can be alternative pollinators for these plants, but experimental evidence for the pollination role of birds in winter-flowering plants is scarce.

Methods

Pollinator visitation to the loquat, Eriobotrya japonica (Rosaceae), was observed across the flowering season from November to January for two years in central China. Self- and cross-hand pollination was conducted in the field to investigate self-compatibility and pollen limitation. In addition, inflorescences were covered by bird cages and nylon mesh nets to exclude birds and all animal pollinators, respectively, to investigate the pollination role of birds in seed production.

Results

Self-fertilization in the loquat yielded few seeds. In early winter insect visit frequency was relatively higher, while in late winter insect pollinators were absent and two passerine birds (Pycnonotus sinensis and Zosterops japonicus) became the major floral visitors. However, seed-set of open-pollinated flowers did not differ between early and late winter. Exclusion of bird visitation greatly reduced seed-set, indicating that passerine birds were important pollinators for the loquat in late winter. The whitish perigynous flowers reward passerines with relatively large volumes of dilute nectar. Our observation on the loquat and other Rosaceae species suggested that perigyny might be related to bird pollination but the association needs further study.

Conclusions

These findings suggest that floral traits and phenology would be favoured to attract bird pollinators in cold weather, in which insect activity is limited.  相似文献   

10.
The diversity and abundance of insect pollinators are declining. This decline reduces the potential ecosystem services of pollination for wild and cultivated plants. Specific agri-environment schemes (AES) are subsidised to support and conserve biodiversity in farmlands. In Belgium, the pollinator flower-strips AES, strips of flower-rich hay meadows, has been promoted as a potential scheme to increase pollinator abundance and diversity, even if their effectiveness has not been locally evaluated. The main objective of this research is to assess the capacity of pollinator-strip AES to provide flower-resources to diverse pollinators. During 2 years, we monthly measured the availability of flower resources (pollen and nectar) produced on four flower-strips surrounded by intensive farming in Belgium. We counted and identified insects that visited these flowers, and we constructed the plant–insect interactions networks. The pollinator-strip AES presented a mix of both sown and spontaneous plant species. The ten sown plant species were all present, even after 8 years of strip settings. Three of them, Centaurea jacea, Lotus corniculatus, and Daucus carota were mainly visited for nectar collection, and a spontaneous non-sown species, Trifolium repens, had a key role in providing high-quality pollen to insects. Most of the observed flower-visiting insects belonged to common species of Hymenoptera and Diptera. All are considered highly efficient pollinators. The Belgian pollinator flower-strips are effective AES that provide flower resources to pollinators, mainly during summer and support pollination services. Nevertheless, spring and autumn flower resources remain poor and could reduce the strips’ effectiveness for supporting long-term insect diversity.  相似文献   

11.
Opportunistic bird pollination has become more evident in studies that confirm distinct differences in floral adaptations that attract opportunistic, rather than specialist, bird pollinators. Pollination syndrome studies investigating the effectiveness of different pollinator guilds on reproduction seldom do so by measuring seed viability. We studied pollination in Aloe peglerae, a high altitude endemic succulent of the Magaliesberg mountain range, previously thought to be largely sunbird (specialist) pollinated. Using field observation and pollinator exclusion treatments, i.e. (i) open to all visitors, (ii) bird excluded, and (iii) all visitors excluded, we established that birds contributed significantly more to fruit (2.3–5.6 times) and seed (1.3–1.4 times) set than insect or self-pollination, respectively. Overall, pollination by opportunistic avian nectarivores amplified seed production per aloe ~7 and 10 times compared to insects and self-pollination, respectively. One of three opportunistic nectarivores, the Cape Rock-Thrush (Monticola rupestris), played a significant role in pollination, contributing ~60 % of all probes at inflorescences. The difference in reproductive output between insect visited and visitor excluded flowers was not significant and suggests possible self-pollination in A. peglerae which is particularly unusual in Aloe species. Breeding system experiments would help clarify this. In assessing the effectiveness of pollinator guild on seed viability, we found no differences in percentage seed viability, seed germination or seedling emergence between exclusion treatments. Seed viability and germination were low and variable; however, ~19 % seedling emergence was observed across the treatments. Practically, the net effect of bird pollination may result in 8–12 times more potential seedlings compared to insect and self-pollination respectively. These findings highlight the importance of pollination by opportunistic avian nectarivores in Aloe.  相似文献   

12.
  • Biotic interactions are said to be more specialized in the tropics, and this was also proposed for the pollination systems of columnar cacti from North America. However, this has not yet been tested for a wider set of cactus species. Here, we use the available information about pollination in the Cactaceae to explore the geographic patterns of this mutualistic interaction, and test if there is a latitudinal gradient in its degree of specialization.
  • We performed a bibliographic search of all publications on the pollination of cacti species and summarized the information to build a database. We used generalized linear models to evaluate if the degree of specialization in cacti pollination systems is affected by latitude, using two different measures: the number of pollinator guilds (functional specialization) and the number of pollinator species (ecological specialization).
  • Our database contained information about the pollination of 148 species. The most frequent pollinator guilds were bees, birds, moths and bats. There was no apparent effect of latitude on the number of guilds that pollinate a cactus species. However, latitude had a small but significant effect on the number of pollinator species that service a given cactus species.
  • Bees are found as pollinators of most cactus species, along a wide latitudinal gradient. Bat and bird pollination is more common in the tropics than in the extra-tropics. The available information suggests that cacti pollination systems are slightly more ecologically specialized in the tropics, but it does not support any trend with regard to functional specialization.
  相似文献   

13.
Biological communities are increasingly faced with novel urban habitats and their response may depend on a combination of biological and habitat traits. The response of pollinator species to urban habitats are of particular importance because all species involved in the pollination mutualism may be affected. Nectarivorous bird communities worldwide show varying tolerances to urban areas, but studies from Africa are lacking. We investigated nectarivorous bird communities in a medium‐sized South African city and asked which biological and garden traits best predict the community assembly of specialist and opportunistic nectarivorous birds. Information was collected on garden traits and the frequency of nine nectarivorous bird species for 193 gardens by means of a questionnaire. Information on biological traits of birds was obtained from published literature. Habitat generalism and tree nesting were identified as the most important biological traits influencing bird occurrence in gardens. A greater diversity of indigenous bird‐pollinated plants and the presence of sugar water feeders increased the numbers of nectar specialist birds and species richness of nectarivorous birds. While bird baths increased the species richness of nectar specialist birds, opportunistic birds’ urban adjustment was further facilitated by large vegetated areas in gardens and limited by the distance to the nearest natural habitat. In conclusion, though some biological traits and dispersal barriers seem to limit urban adjustment, a combination of natural and artificial nectar resource provisioning could facilitate this adjustment.  相似文献   

14.
15.
Pollinators and the pollination services they provide are critical for seed set and self‐sustainability of most flowering plants. Despite this, pollinators are rarely assessed in restored plant communities, where their services are largely assumed to re‐establish. Bird–pollinator richness, foraging, and interaction behavior were compared between natural and restored Banksia woodland sites in Western Australia to assess their re‐establishment in restored sites. These parameters were measured for natural communities of varying size and degree of fragmentation, and restored plant communities of high and low complexity for three years, in the summer and winter flowering of Banksia attenuata and B. menziesii, respectively. Bird visitor communities varied in composition, richness, foraging movement distances, and aggression among sites. Bird richness and abundance were lowest in fragmented remnants. Differences in the composition were associated with the size and degree of fragmentation in natural sites, but this did not differ between seasons. Restored sites and their adjacent natural sites had similar species composition, suggesting proximity supports pollinator re‐establishment. Pollinator foraging movements were influenced by the territorial behavior of different species. Using a network analysis approach, we found foraging behavior varied, with more frequent aggressive chases observed in restored sites, resulting in more movements out of the survey areas, than observed in natural sites. Aggressors were larger‐bodied Western Wattlebirds (Anthochaera chrysoptera) and New Holland Honeyeaters (Phylidonyris novaehollandiae) that dominated nectar resources, particularly in winter. Restored sites had re‐established pollination services, albeit with clear differences, as the degree of variability in the composition and behavior of bird pollinators for Banksias in the natural sites created a broad completion target against which restored sites were assessed. The abundance, diversity, and behavior of pollinator services to remnant and restored Banksia woodland sites were impacted by the size and degree of fragmentation, which in turn influenced bird–pollinator composition, and were further influenced by seasonal changes between summer and winter. Consideration of the spatial and temporal landscape context of restored sites, along with plant community diversity, is needed to ensure the maintenance of the effective movement of pollinators between natural remnant woodlands and restored sites.  相似文献   

16.
Most flowering plants depend on animal pollination. Several animal groups, including many birds, have specialized in exploiting floral nectar, while simultaneously pollinating the flowers they visit. These specialized pollinators are present in all continents except Europe and Antarctica, and thus, insects are often considered the only ecologically relevant pollinators in Europe. Nevertheless, generalist birds are also known to visit flowers, and several reports of flower visitation by birds in this continent prompted us to review available information in order to estimate its prevalence. We retrieved reports of flower–bird interactions from 62 publications. Forty‐six bird species visited the flowers of 95 plant species, 26 of these being exotic to Europe, yielding a total of 243 specific interactions. The ecological importance of bird–flower visitation in Europe is still unknown, particularly in terms of plant reproductive output, but effective pollination has been confirmed for several native and exotic plant species. We suggest nectar and pollen to be important food resources for several bird species, especially tits Cyanistes and Sylvia and Phylloscopus warblers during winter and spring. The prevalence of bird flower‐visitation, and thus potential bird pollination, is slightly more common in the Mediterranean basin, which is a stopover to many migrant bird species, which might actually increase their effectiveness as pollinators by promoting long‐distance pollen flow. We argue that research on bird pollination in Europe deserves further attention to explore its ecological and evolutionary relevance.  相似文献   

17.
The interplay between insect and plant traits outlines the patterns of pollen transfer and the subsequent plant reproductive fitness. We studied the factors that affect the pollination efficiency of a pollinator community of Dictamnus albus L. by evaluating insect behaviour and morphological characteristics in relation to flowering phenology. In order to extrapolate the pollinator importance of single taxa and of the whole pollinator guild, we calculated an index distinguishing between potential (PPI) and realized (RPI) pollinator importance. Although the pollinator species spectrum appeared rather constant, we found high intra‐ and inter‐annual variability of pollinator frequency and importance within the insect community. Flower visitation rate strictly depended on insect abundance and on the overlap between their flying period and flower blooming. All the pollinators visited flowers from the bottom to the top of the racemes, excluding intra‐plant geitonogamous pollination, and most of them showed high pollen fidelity. Only medium large‐sized bees could contact the upward bending stiles while feeding on nectar, highlighting a specialisation of the plant towards bigger pollinators. Moreover, we found evidence of functional specialisation, since all pollinators were restricted to a single taxonomic group (order: Hymenoptera; superfamily: Apoidea). Both the PPI and RPI indices indicate Habropoda tarsata as the most important pollinator of D. albus. Following hand cross‐pollination experiments we revealed the presence of pollination limitation in 1 of the 3 years of field study. We discuss this result in relation to flowering abundance and to possible mismatches of phenological periods between plants and insects.  相似文献   

18.
Hargreaves AL  Johnson SD  Nol E 《Oecologia》2004,140(2):295-301
We investigated whether the ornithophilous floral syndrome exhibited in an African sugarbush, Protea roupelliae (Proteaceae), reflects ecological specialization for bird-pollination. A breeding system experiment established that the species is self-compatible, but dependent on visits by pollinators for seed set. The cup-shaped inflorescences were visited by a wide range of insect and bird species; however inflorescences from which birds, but not insects, were excluded by wire cages set few seeds relative to open-pollinated controls. One species, the malachite sunbird (Nectarinia famosa), accounted for more than 80% of all birds captured in P. roupelliae stands and carried the largest protea pollen loads. A single visit by this sunbird species was enough to increase seed set considerably over unvisited, bagged inflorescences. Our results show that P. roupelliae is largely dependent on birds for pollination, and thus confirm the utility of floral syndromes for generating hypotheses about the ecology of pollination systems.  相似文献   

19.
Agricultural intensification and loss of semi-natural grassland have contributed to biodiversity decline, including pollinator species, in pastures around the world. To reverse the decline, agri-environmental schemes have been implemented, varying widely in effectiveness. In addition, many countries, including the Netherlands, have established nature reserves in which semi-natural grasslands are restored and are often managed for specific groups of species, e.g. meadow birds or plants. The effects of such measures on insect biodiversity are not well known but recent reports on the dramatic decline of insect biomass in nature reserves have put even more attention to the impact of land use and management on biodiversity. This study compares pollinator abundance and species richness in three common semi-natural grassland management types in the Netherlands: (1) hay meadows, (2) herb-rich grasslands and (3) meadow bird grasslands. Pollinator abundance and species richness were assessed in eleven study areas, each with all three management types present. Standardized transects, insect sampling within a standard 20 min time frame and plot-based flower surveys were used in spring and summer to assess the relationships between management regime, floral abundance and diversity and pollinator communities. The results show that meadow bird grasslands have lower pollinator abundance and diversity and a less unique pollinator assemblage than both other types. Moreover, flower abundance has a positive effect on pollinator abundance and flower diversity has a positive effect on pollinator species richness. These results indicate that meadow-bird grasslands are a comparatively unfavourable habitat for bees, hoverflies and butterflies, which may be explained by a lack of flowers as well as unsuitable mowing practices. Measures benefitting both insectivorous birds and flower-visiting insects, such as rotational mowing, could remediate this imbalance.  相似文献   

20.
Understanding the relative contributions of wild and managed pollinators, and the functional contributions made by a diverse pollinator community, is essential to the maintenance of yields in the 75% of our crops that benefit from insect pollination. We describe a field study and pollinator exclusion experiments conducted on two soft-fruit crops in a system with both wild and managed pollinators. We test whether fruit quality and quantity is limited by pollination, and whether different pollinating insects respond differently to varying weather conditions. Both strawberries and raspberries produced fewer marketable fruits when insects were excluded, demonstrating dependence on insect pollinators. Raspberries had a short flowering season which coincided with peak abundance of bees, and attracted many bees per flower. In contrast, strawberries had a much longer flowering season and appeared to be much less attractive to pollinators, so that ensuring adequate pollination is likely to be more challenging. The proportion of high-quality strawberries was positively related to pollinator abundance, suggesting that yield was limited by inadequate pollination on some farms. The relative abundance of different pollinator taxa visiting strawberries changed markedly through the season, demonstrating seasonal complementarity. Insect visitors responded differently to changing weather conditions suggesting that diversity can reduce the risk of pollination service shortfalls. For example, flies visited the crop flowers in poor weather and at the end of the flowering season when other pollinators were scarce, and so may provide a unique functional contribution. Understanding how differences between pollinator groups can enhance pollination services to crops strengthens the case for multiple species management. We provide evidence for the link between increased diversity and function in real crop systems, highlighting the risks of replacing all pollinators with managed alternatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号