首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lin28a has been found to enhance glucose uptake and insulin sensitivity. Lin28a alleviates cardiac dysfunction under various pathological conditions. However, the effects and underlying mechanisms of Lin28a on diabetic cardiomyopathy (DCM) are not well-understood. The aim of this study was to determine whether Lin28a protects against DCM and the potential mechanisms. Two to three days old mouse neonatal primary cardiomyocytes were randomized for treatment with adenoviruses harboring Lin28a and mammalian sterile 20-like kinase 1 (Mst1) short hairpin RNA, 48 hr before culturing in normal or high glucose medium. Cardiomyocyte apoptosis, autophagy, mitochondrial morphology, adenosine triphosphate content, and cytokine levels in the high glucose or normal conditions were observed between all groups. Either Lin28a overexpression or Mst1 knockdown alleviated mitochondrial ultrastructure impairment, decreased cytokine levels, inhibited apoptosis, and enhanced autophagy in primary neonatal mouse cardiomyocytes treated with high glucose. Importantly, the protective effects of Lin28a and Mst1 disappeared after treatment with 3-methyladenine, an autophagy inhibitor. Interestingly, in Mst1 knockdown cardiomyocytes, Lin28a overexpression failed to further enhance autophagy and alleviate high glucose-induced cardiomyocyte injury, which implies the protective roles of Lin28a counteracting high glucose-induced cardiomyocyte injury are dependent on Mst1 inhibition. Furthermore, co-immunoprecipitation and immunofluorescence double staining suggested that there were no direct interactions between Mst1 and Lin28a. Lin28a increased the expression of Akt, which inhibited the activation of Mst1-mediated apoptotic pathways.  相似文献   

2.
We report herein the synthesis and structure-activity relationships (SAR) of a series of pyridazine derivatives with the activation of glucose transporter type 4 (GLUT4) translocation. Through a cell-based phenotype screening in L6-GLUT4-myc myoblasts and functional glucose uptake assays, lead compound 1a was identified as a functional small molecule. After further derivatization, the thienopyridazine scaffold as the central ring (B-part) was revealed to have potent GLUT4 translocation activities. Consequently, we obtained promising compound 26b, which showed a significant blood glucose lowering effect in the severe diabetic mice model (10-week aged db/db mice) after oral dosing even at 10 mg/kg, implying that our pyridazine derivatives have potential to become novel therapeutic agents for diabetes mellitus.  相似文献   

3.
It has long been believed that an intake of cinnamon (Cinnamomum zeylanicum) alleviates diabetic pathological conditions. However, it is still controversial whether the beneficial effect is insulin-dependent or insulin-mimetic. This study was aimed at determining the insulin-independent effect of cinnamon. Streptozotocin-induced diabetic rats were divided into four groups and orally administered with an aqueous cinnamon extract (CE) for 22 d. The diabetic rats that had taken CE at a dose of more than 30 mg/kg/d were rescued from their hyperglycemia and nephropathy, and these rats were found to have upregulation of uncoupling protein-1 (UCP-1) and glucose transporter 4 (GLUT4) in their brown adipose tissues as well as in their muscles. This was verified by using 3T3-L1 adipocytes in which CE upregulates GLUT4 translocation and increases the glucose uptake. CE exhibited its anti-diabetic effect independently from insulin by at least two mechanisms: i) upregulation of mitochondrial UCP-1, and ii) enhanced translocation of GLUT4 in the muscle and adipose tissues.  相似文献   

4.
Tumor cells rely on elevated glucose consumption and metabolism for survival and proliferation. Glucose transporters mediating glucose entry are key proximal rate-limiting checkpoints. Unlike GLUT1 that is highly expressed in cancer and more ubiquitously expressed in normal tissues, GLUT4 exhibits more limited normal expression profiles. We have previously determined that insulin-responsive GLUT4 is constitutively localized on the plasma membrane of myeloma cells. Consequently, suppression of GLUT4 or inhibition of glucose transport with the HIV protease inhibitor ritonavir elicited growth arrest and/or apoptosis in multiple myeloma. GLUT4 inhibition also caused sensitization to metformin in multiple myeloma and chronic lymphocytic leukemia and a number of solid tumors suggesting the broader therapeutic utility of targeting GLUT4. This study sought to identify selective inhibitors of GLUT4 to develop a more potent cancer chemotherapeutic with fewer potential off-target effects. Recently, the crystal structure of GLUT1 in an inward open conformation was reported. Although this is an important achievement, a full understanding of the structural biology of facilitative glucose transport remains elusive. To date, there is no three-dimensional structure for GLUT4. We have generated a homology model for GLUT4 that we utilized to screen for drug-like compounds from a library of 18 million compounds. Despite 68% homology between GLUT1 and GLUT4, our virtual screen identified two potent compounds that were shown to target GLUT4 preferentially over GLUT1 and block glucose transport. Our results strongly bolster the utility of developing GLUT4-selective inhibitors as anti-cancer therapeutics.  相似文献   

5.
Mitochondrial dysfunction contributes to heart failure induced mortality in approximately 80% of diabetic patients. Mitophagy degrades defective mitochondria and maintains a healthy mitochondrial population, which is essential for cardiomyocyte survival in diabetic stress. Herein, we determined whether Mst1 regulated mitophagy and investigated the downstream signaling pathway in the development of diabetic cardiomyopathy (DCM). Mst1 deficiency promoted elimination of dysfunctional mitochondria in diabetic cardiomyopathy without affecting mitochondrial biogenesis. Enhanced mitophagy was observed in Mst1 interfering cardiomyocytes subjected to high glucose treatment using 3-Methyladenine and Chloroquine. Consistent with these results, in vivo and in vitro loss of function experiments indicated that Mst1 participated in the development of DCM by inhibiting Parkin-dependent mitophagy. Mst1 deficiency alleviated the detrimental phenotype of DCM. Interestingly, the protective effects of Mst1 knockout on DCM were compromised in diabetic Parkin−/− mice. Mechanistically, Mst1 knockdown significantly enhanced Parkin expression and translocation to the mitochondria, as evidenced by immunofluorescence study and Western blot analysis. Furthermore, Sirt3 deletion abolished the detrimental effects of Mst1 on DCM. Collectively, Mst1 inhibits Sirt3 expression thus participates in the development of DCM by inhibiting cardiomyocyte mitophagy. The mechanism is associated with Parkin inhibition.  相似文献   

6.
7.
While α1-adrenergic receptors (ARs) have been previously shown to limit ischemic cardiac damage, the mechanisms remain unclear. Most previous studies utilized low oxygen conditions in addition to ischemic buffers with glucose deficiencies, but we discovered profound differences if the two conditions are separated. We assessed both mouse neonatal and adult myocytes and HL-1 cells in a series of assays assessing ischemic damage under hypoxic or low glucose conditions. We found that α1-AR stimulation protected against increased lactate dehydrogenase release or Annexin V+ apoptosis under conditions that were due to low glucose concentration not to hypoxia. The α1-AR antagonist prazosin or nonselective protein kinase C (PKC) inhibitors blocked the protective effect. α1-AR stimulation increased 3H-deoxyglucose uptake that was blocked with either an inhibitor to glucose transporter 1 or 4 (GLUT1 or GLUT4) or small interfering RNA (siRNA) against PKCδ. GLUT1/4 inhibition also blocked α1-AR-mediated protection from apoptosis. The PKC inhibitor rottlerin or siRNA against PKCδ blocked α1-AR stimulated GLUT1 or GLUT4 plasma membrane translocation. α1-AR stimulation increased plasma membrane concentration of either GLUT1 or GLUT4 in a time-dependent fashion. Transgenic mice overexpressing the α1A-AR but not α1B-AR mice displayed increased glucose uptake and increased GLUT1 and GLUT4 plasma membrane translocation in the adult heart while α1A-AR but not α1B-AR knockout mice displayed lowered glucose uptake and GLUT translocation. Our results suggest that α1-AR activation is anti-apoptotic and protective during cardiac ischemia due to glucose deprivation and not hypoxia by enhancing glucose uptake into the heart via PKCδ-mediated GLUT translocation that may be specific to the α1A-AR subtype.  相似文献   

8.
In adipose and muscle cells, insulin stimulates the exocytic translocation of vesicles containing GLUT4, a glucose transporter, and insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. A substrate of IRAP is vasopressin, which controls water homeostasis. The physiological importance of IRAP translocation to inactivate vasopressin remains uncertain. We previously showed that in skeletal muscle, insulin stimulates proteolytic processing of the GLUT4 retention protein, TUG, to promote GLUT4 translocation and glucose uptake. Here we show that TUG proteolysis also controls IRAP targeting and regulates vasopressin action in vivo. Transgenic mice with constitutive TUG proteolysis in muscle consumed much more water than wild-type control mice. The transgenic mice lost more body weight during water restriction, and the abundance of renal AQP2 water channels was reduced, implying that vasopressin activity is decreased. To compensate for accelerated vasopressin degradation, vasopressin secretion was increased, as assessed by the cosecreted protein copeptin. IRAP abundance was increased in T-tubule fractions of fasting transgenic mice, when compared with controls. Recombinant IRAP bound to TUG, and this interaction was mapped to a short peptide in IRAP that was previously shown to be critical for GLUT4 intracellular retention. In cultured 3T3-L1 adipocytes, IRAP was present in TUG-bound membranes and was released by insulin stimulation. Together with previous results, these data support a model in which TUG controls vesicle translocation by interacting with IRAP as well as GLUT4. Furthermore, the effect of IRAP to reduce vasopressin activity is a physiologically important consequence of vesicle translocation, which is coordinated with the stimulation of glucose uptake.  相似文献   

9.
In the brain, glucose is transported by GLUT1 across the blood-brain barrier and into astrocytes, and by GLUT3 into neurons. In the present study, the expression of GLUT1 and GLUT3 mRNA and protein was determined in adult neural stem cells cultured from the subventricular zone of rats. Both mRNAs and proteins were coexpressed, GLUT1 protein being 5-fold higher than GLUT3. Stress induced by hypoxia and/or hyperglycemia increased the expression of GLUT1 and GLUT3 mRNA and of GLUT3 protein. It is concluded that adult neural stem cells can transport glucose by GLUT1 and GLUT3 and can regulate their glucose transporter densities.  相似文献   

10.
Developing rat brain undergoes a series of functional and anatomic changes which affect its rate of cerebral glucose utilization (CGU). These changes include increases in the levels of the glucose transporter proteins, GLUT1 and GLUT3, in the blood-brain barrier as well as in the neurons and glia. 55 kDa GLUT1 is concentrated in endothelial cells of the blood-brain barrier, whereas GLUT3 is the predominant neuronal transporter. 45 kDa GLUT1 is in non-vascular brain, probably glia. Studies of glucose utilization with the 2-14C-deoxyglucose method of Sokoloffet al., (1977), rely on glucose transport rate constants, k1 and k2, which have been determined in the adult rat brain. The determination of these constants directly in immature brain, in association with the measurement of GLUT1, GLUT3 and cerebral glucose utilization suggests that the observed increases in the rate constants for the transport of glucose into (k1) and out of (k2) brain correspond to the increases in 55 kDa GLUT1 in the blood-brain barrier. The maturational increases in cerebral glucose utilization, however, more closely relate to the pattern of expression of non-vascular GLUT1 (45 kDa), and more specifically GLUT3, suggesting that the cellular expression of the glucose transporter proteins is rate limiting for cerebral glucose utilization during early postnatal development in the rat.  相似文献   

11.
This review focuses on the effects of varying levels of GLUT4, the insulin-sensitive glucose transporter, on insulin sensitivity and whole body glucose homeostasis. Three mouse models are discussed including MLC-GLUT4 mice which overexpress GLUT4 specifically in skeletal muscle, GLUT4 null mice which express no GLUT4, and the MLC-GLUT4 null mice which express GLUT4 only in skeletal muscle. Overexpressing GLUT4 specifically in the skeletal muscle results in increased insulin sensitivity in the MLC-GLUT4 mice. In contrast, the GLUT4 null mice exhibit insulin intolerance accompanied by abnormalities in glucose and lipid metabolism. Restoring GLUT4 expression in skeletal muscle in the MLC-GLUT4 null mice results in normal glucose metabolism but continued abnormal lipid metabolism. The results of experiments using these mouse models demonstrates that modifying the expression of GLUT4 profoundly affects whole body insulin action and consequently glucose and lipid metabolism.  相似文献   

12.
The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers.  相似文献   

13.
Mitophagy eliminates dysfunctional mitochondria and thus plays a cardinal role in diabetic cardiomyopathy (DCM). We observed the favourable effects of melatonin on cardiomyocyte mitophagy in mice with DCM and elucidated their underlying mechanisms. Electron microscopy and flow cytometric analysis revealed that melatonin reduced the number of impaired mitochondria in the diabetic heart. Other than decreasing mitochondrial biogenesis, melatonin increased the clearance of dysfunctional mitochondria in mice with DCM. Melatonin increased LC3 II expression as well as the colocalization of mitochondria and lysosomes in HG‐treated cardiomyocytes and the number of typical autophagosomes engulfing mitochondria in the DCM heart. These results indicated that melatonin promoted mitophagy. When probing the mechanism, increased Parkin translocation to the mitochondria may be responsible for the up‐regulated mitophagy exerted by melatonin. Parkin knockout counteracted the beneficial effects of melatonin on the cardiac mitochondrial morphology and bioenergetic disorders, thus abolishing the substantial effects of melatonin on cardiac remodelling with DCM. Furthermore, melatonin inhibited Mammalian sterile 20‐like kinase 1 (Mst1) phosphorylation, thus enhancing Parkin‐mediated mitophagy, which contributed to mitochondrial quality control. In summary, this study confirms that melatonin rescues the impaired mitophagy activity of DCM. The underlying mechanism may be attributed to activation of Parkin translocation via inhibition of Mst1.  相似文献   

14.
Vanadium increases GLUT4 in diabetic rat skeletal muscle   总被引:10,自引:0,他引:10  
The effect of vanadium in lowering blood glucose in diabetic animals is well established; however, the exact mechanism of action of vanadium still eludes us. There are several reports from in vitro studies indicating that vanadium increases enzyme activity in insulin signalling pathways, however these findings have not been duplicated in vivo. Glucose transporters (GLUT) have a major role to play in any glucoregulatory effects. Insulin dependent GLUT4 is a major glucose transporter present in skeletal muscle, adipocytes and heart. In the present study we found that the plasma glucose in streptozotocin (STZ) diabetic animals was restored to normal following treatment with a single dose of BMOV, an organic vanadium compound, given by oral gavage (0.6 mmol/kg), similar to the response with chronic BMOV treatment. The response to BMOV by oral gavage was rapid and the animals were normoglycemic within 24 h of treatment and still demonstrated a significant effect even after 72 h. Using a specific antibody against GLUT4 we found an overall reduction in the GLUT4 in the total membrane fraction in skeletal muscle of diabetic animals. However, with a single dose of BMOV the GLUT4 level was restored to normal. This is the first report that establishes a direct effect of vanadium on the regulation of GLUT4 expression in diabetic animals in vivo, and may at least partially explain the glucoregulatory effects of vanadium.  相似文献   

15.
Allopurinol (ALP) attenuates oxidative stress and diabetic cardiomyopathy (DCM), but the mechanism is unclear. Activation of nuclear factor erythroid 2‐related factor 2 (Nrf2) following the disassociation with its repressor Keap1 under oxidative stress can maintain inner redox homeostasis and attenuate DCM with concomitant attenuation of autophagy. We postulated that ALP treatment may activate Nrf2 to mitigate autophagy over‐activation and consequently attenuate DCM. Streptozotocin‐induced type 1 diabetic rats were untreated or treated with ALP (100 mg/kg/d) for 4 weeks and terminated after heart function measurements by echocardiography and pressure‐volume conductance system. Cardiomyocyte H9C2 cells infected with Nrf2 siRNA or not were incubated with high glucose (HG, 25 mmol/L) concomitantly with ALP treatment. Cell viability, lactate dehydrogenase, 15‐F2t‐Isoprostane and superoxide dismutase (SOD) were measured with colorimetric enzyme‐linked immunosorbent assays. ROS, apoptosis, was assessed by dihydroethidium staining and TUNEL, respectively. The Western blot and qRT‐PCR were used to assess protein and mRNA variations. Diabetic rats showed significant reductions in heart rate (HR), left ventricular eject fraction (LVEF), stroke work (SW) and cardiac output (CO), left ventricular end‐systolic volume (LVVs) as compared to non‐diabetic control and ALP improved or normalized HR, LVEF, SW, CO and LVVs in diabetic rats (all P < .05). Hearts of diabetic rats displayed excessive oxidative stress manifested as increased levels of 15‐F2t‐Isoprostane and superoxide anion production, increased apoptotic cell death and cardiomyocytes autophagy that were concomitant with reduced expressions of Nrf2, heme oxygenase‐1 (HO‐1) and Keap1. ALP reverted all the above‐mentioned diabetes‐induced biochemical changes except that it did not affect the levels of Keap1. In vitro, ALP increased Nrf2 and reduced the hyperglycaemia‐induced increases of H9C2 cardiomyocyte hypertrophy, oxidative stress, apoptosis and autophagy, and enhanced cellular viability. Nrf2 gene silence cancelled these protective effects of ALP in H9C2 cells. Activation of Nrf2 subsequent to the suppression of Keap1 and the mitigation of autophagy over‐activation may represent major mechanisms whereby ALP attenuates DCM.  相似文献   

16.
Background information. Insulin‐stimulated glucose uptake into skeletal muscle is crucial for glucose homoeostasis, and depends on the recruitment of GLUT4 (glucose transporter 4) to the plasma membrane. Mechanisms underlying insulin‐dependent GLUT4 translocation, particularly the role of Rho family GTPases, remain controversial. Results. In the present study, we show that constitutively active Rac1, but not other Rho family GTPases tested, induced GLUT4 translocation in the absence of insulin, suggesting that Rac1 activation is sufficient for GLUT4 translocation in muscle cells. Rac1 activation occurred in dorsal membrane ruffles of insulin‐stimulated cells as revealed by a novel method to visualize activated Rac1 in situ. We further identified FLJ00068 as a GEF (guanine‐nucleotide‐exchange factor) responsible for this Rac1 activation. Indeed, constitutively active FLJ00068 caused Rac1 activation in dorsal membrane ruffles and GLUT4 translocation without insulin stimulation. Down‐regulation of Rac1 or FLJ00068 by RNA interference, on the other hand, abrogated insulin‐induced GLUT4 translocation. Basal, but not insulin‐stimulated, activity of the serine/threonine kinase Akt was required for the induction of GLUT4 translocation by constitutively active Rac1 or FLJ00068. Conclusion. Collectively, Rac1 activation specifically in membrane ruffles by the GEF FLJ00068 is sufficient for insulin induction of glucose uptake into skeletal‐muscle cells.  相似文献   

17.
Stearoyl-CoA desaturase 1 (SCD1) deficiency protects mice from diet-induced obesity and insulin resistance. To understand the tissue-specific role of SCD1 in energy homeostasis, we have generated mice with an adipose-specific knockout of Scd1 (AKO), and report here that SCD1 deficiency increases GLUT1 expression in adipose tissue of AKO mice, but not global SCD1 knockout (GKO) mice. In 3T3-L1 adipocytes treated with an SCD inhibitor, basal glucose uptake and the cellular expression of GLUT1 were significantly increased while GLUT4 expression remained unchanged. Consistently, adipose-specific SCD1 knockout (AKO) mice had significantly elevated GLUT1 expression, but not GLUT4, in white adipose tissue compared to Lox counterparts. Concurrently, adiponectin expression was significantly diminished, whereas TNF-α expression was elevated. In contrast, in adipose tissue of GKO mice, GLUT4 and adiponectin expression were significantly elevated with lowered TNF-α expression and little change in GLUT1 expression, suggesting a differential responsiveness of adipose tissue to global- or adipose-specific SCD1 deletion. Taken together, these results indicate that adipose-specific deletion of SCD1 induces GLUT1 up-regulation in adipose tissue, associated with decreased adiponectin and increased TNF-α production, and suggest that GLUT1 may play a critical role in controlling glucose homeostasis of adipose tissue in adipose-specific SCD1-deficient conditions.  相似文献   

18.
葡萄糖转运蛋白4(GLUT4)与胰岛素抵抗有着紧密联系,抑制自噬能减缓胰岛素抵抗.为了探讨自噬对胰岛素抵抗方面的作用,现以GLUT4囊泡为动力学模型,通过全内反射荧光显微镜实时观测3T3-L1成熟脂肪细胞中GLUT4囊泡的运动,并采用高斯拟合及相应的搜索算法,从TIRFM时间序列中提取运动轨迹、速度等信息进行统计分析.结果显示:自噬对GLUT4的运动具有一定的影响.抑制自噬后,GLUT4囊泡运动的胰岛素响应程度增强,长距离运动囊泡增多,平均运动速度加快.  相似文献   

19.
The GTPase ADP-ribosylation factor related protein 1 (ARFRP1) controls the recruitment of proteins such as golgin-245 to the trans-Golgi. ARFRP1 is highly expressed in adipose tissues in which the insulin-sensitive glucose transporter GLUT4 is processed through the Golgi to a specialized endosomal compartment, the insulin-responsive storage compartment from which it is translocated to the plasma membrane in response to a stimulation of cells by insulin. In order to examine the role of ARFRP1 for GLUT4 targeting, subcellular distribution of GLUT4 was investigated in adipose tissue specific Arfrp1 knockout (Arfrp1ad−/−) mice. Immunohistochemical and ultrastructural studies of brown adipocytes demonstrated an abnormal trans-Golgi in Arfrp1ad−/− adipocytes. In addition, in Arfrp1ad−/− adipocytes GLUT4 protein accumulated at the plasma membrane rather than being sequestered in an intracellular compartment. A similar missorting of GLUT4 was produced by siRNA-mediated knockdown of Arfrp1 in 3T3-L1 adipocytes which was associated with significantly elevated uptake of deoxyglucose under basal conditions. Thus, Arfrp1 appears to be involved in sorting of GLUT4.  相似文献   

20.
Diabetic cardiomyopathy (DCM) is associated with oxidative stress and augmented inflammation in the heart. Neuraminidases (NEU) 1 has initially been described as a lysosomal protein which plays a role in the catabolism of glycosylated proteins. We investigated the role of NEU1 in the myocardium in diabetic heart. Streptozotocin (STZ) was injected intraperitoneally to induce diabetes in mice. Neonatal rat ventricular myocytes (NRVMs) were used to verify the effect of shNEU1 in vitro. NEU1 is up-regulated in cardiomyocytes under diabetic conditions. NEU1 inhibition alleviated oxidative stress, inflammation and apoptosis, and improved cardiac function in STZ-induced diabetic mice. Furthermore, NEU1 inhibition also attenuated the high glucose-induced increased reactive oxygen species generation, inflammation and, cell death in vitro. ShNEU1 activated Sirtuin 3 (SIRT3) signaling pathway, and SIRT3 deficiency blocked shNEU1-mediated cardioprotective effects in vitro. More importantly, we found AMPKα was responsible for the elevation of SIRT3 expression via AMPKα-deficiency studies in vitro and in vivo. Knockdown of LKB1 reversed the effect elicited by shNEU1 in vitro. In conclusion, NEU1 inhibition activates AMPKα via LKB1, and subsequently activates sirt3, thereby regulating fibrosis, inflammation, apoptosis and oxidative stress in diabetic myocardial tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号