首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incorporation of the glycolipid trehalose 6,6'-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4 degrees C and 25 degrees C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-gamma cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-gamma was identified as CD4 T cells.  相似文献   

2.
Boosting bacillus Calmette-Guérin (BCG)-primed mice with a recombinant adenovirus expressing Mycobacterium tuberculosis Ag 85A by different administration routes has very different effects on protection against aerosol challenge with M. tuberculosis. Mice boosted intradermally make very strong splenic CD4 and CD8 Th1 cytokine responses to Ag 85A, but show no change in lung mycobacterial burden over BCG primed animals. In contrast, intranasally boosted mice show greatly reduced mycobacterial burden and make a much weaker splenic response but a very strong lung CD4 and CD8 response to Ag 85A and an increased response to purified protein derivative. This effect is associated with the presence in the lung of multifunctional T cells, with high median fluorescence intensity and integrated median fluorescence intensity for IFN-gamma, IL-2, and TNF. In contrast, mice immunized with BCG alone have few Ag-specific cells in the lung and a low proportion of multifunctional cells, although individual cells have high median fluorescence intensity. Successful immunization regimes appear to induce Ag-specific cells with abundant intracellular cytokine staining.  相似文献   

3.
The long-term control of tuberculosis (TB) will require the development of more effective anti-TB vaccines, as the only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG), has limited protective efficacy against infectious pulmonary TB. Subunit vaccines have an improved safety profile over live, attenuated vaccines, such as BCG, and may be used in immuno-compromised individuals. MPT83 (Rv2873) is a secreted mycobacterial lipoprotein expressed on the surface of Mycobacterium tuberculosis. In this study, we examined whether recombinant MPT83 is recognized during human and murine M. tuberculosis infection. We assessed the immunogenicity and protective efficacy of MPT83 as a protein vaccine, with monophosphyl lipid A (MPLA) in dimethyl-dioctadecyl ammonium bromide (DDA) as adjuvant, or as a DNA vaccine in C57BL/6 mice and mapped the T cell epitopes with peptide scanning. We demonstrated that rMPT83 was recognised by strong proliferative and Interferon (IFN)-γ-secreting T cell responses in peripheral blood mononuclear cells (PBMC) from patients with active TB, but not from healthy, tuberculin skin test-negative control subjects. MPT83 also stimulated strong IFN-γ T cell responses during experimental murine M. tuberculosis infection. Immunization with either rMPT83 in MPLA/DDA or DNA-MPT83 stimulated antigen-specific T cell responses, and we identified MPT83(127-135) (PTNAAFDKL) as the dominant H-2(b)-restricted CD8(+) T cell epitope within MPT83. Further, immunization of C57BL/6 mice with rMPT83/MPLA/DDA or DNA-MPT83 stimulated significant levels of protection in the lungs and spleens against aerosol challenge with M. tuberculosis. Interestingly, immunization with rMPT83 in MPLA/DDA primed for stronger IFN-γ T cell responses to the whole protein following challenge, while DNA-MPT83 primed for stronger CD8(+) T cell responses to MPT83(127-135). Therefore MPT83 is a protective T cell antigen commonly recognized during human M. tuberculosis infection and should be considered for inclusion in future TB subunit vaccines.  相似文献   

4.
Infusion of viral-specific T cells (VSTs) is an effective treatment for viral infection after stem cell transplant. Current manufacturing approaches are rapid, but growth conditions can still be further improved. To optimize VST cell products, the authors designed a high-throughput flow cytometry-based assay using 40 cytokine combinations in a 96-well plate to fully characterize T-cell viability, function, growth and differentiation. Peripheral blood mononuclear cells (PBMCs) from six consenting donors were seeded at 100 000 cells per well with pools of cytomegalovirus peptides from IE1 and pp65 and combinations of IL-15, IL-6, IL-21, interferon alpha, IL-12, IL-18, IL-4 and IL-7. Ten-day cultures were tested by 13-color flow cytometry to evaluate viable cell count, lymphocyte phenotype, memory markers and interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) expression. Combinations of IL-15/IL-6 and IL-4/IL-7 were optimal for the expansion of viral-specific CD3+ T cells, (18-fold and 14-fold, respectively, compared with unstimulated controls). CD8+ T cells expanded 24-fold in IL-15/IL-6 and 9-fold in IL-4/IL-7 cultures (P < 0.0001). CD4+ T cells expanded 27-fold in IL-4/IL-7 and 15-fold in IL-15/IL-6 (P < 0.0001). CD45RO+ CCR7– effector memory (CD45RO+ CCR7– CD3+), central memory (CD45RO+ CCR7+ CD3+), terminal effector (CD45RO– CCR7– CD3+), and naive (CD45RO– CCR7+ CD3+). T cells were the preponderant cells (76.8% and 72.3% in IL-15/IL-6 and IL-15/IL-7 cultures, respectively). Cells cultured in both cytokine conditions were potent, with 19.4% of CD3+ cells cultured in IL-15/IL-6 producing IFNγ (7.6% producing both TNFα and IFNγ) and 18.5% of CD3+ cells grown in IL-4/IL-7 producing IFNγ (9% producing both TNFα and IFNγ). This study shows the utility of this single-plate assay to rapidly identify optimal growth conditions for VST manufacture using only 107 PBMCs.  相似文献   

5.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

6.
To investigate the potential role of endogenous IL-15 in mycobacterial infection, we examined protective immunity in IL-15-deficient (IL-15(-/-)) mice after infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG) or recombinant OVA-expressing BCG (rBCG-OVA). IL-15(-/-) mice exhibited an impaired protection in the lung on day 120 after BCG infection as assessed by bacterial growth. CD4(+) Th1 response capable of producing IFN-gamma was normally detected in spleen and lung of IL-15(-/-) mice on day 120 after infection. Although Ag-specific CD8 responses capable of producing IFN-gamma and exhibiting cytotoxic activity were detected in the lung on day 21 after infection with rBCG-OVA, the responses were severely impaired on days 70 and 120 in IL-15(-/-) mice. The degree of proliferation of Ag-specific CD8(+) T cells in IL-15(-/-) mice was similar to that in wild-type mice during the course of infection with rBCG-OVA, whereas sensitivity to apoptosis of Ag-specific CD8(+) T cells significantly increased in IL-15(-/-) mice. These results suggest that IL-15 plays an important role in the development of long-lasting protective immunity to BCG infection via sustaining CD8 responses in the lung.  相似文献   

7.
To search for a potential role of TCR gamma/delta T cells in host-defense against mycobacterial infection, we analyzed the kinetics, repertoire, specificity, and cytokine production of gamma/delta T cells in the peritoneal exudate cells (PEC), lymph node (LN) cells and spleen cells during an i.p. infection with a sublethal dose (5 x 10(5) of viable Bacillus Calmétte-Guérin (BCG) in mice. In the PEC on day 7 after infection, approximately 26% of the CD3+ cells were CD4-CD8-, most of which expressed TCR gamma/delta on their surface. However, the PEC on day 28 contained an increased number of alpha/beta T cells that were CD4+8- or CD4-8+ and the proportion of gamma/delta T cells in the PEC reciprocally decreased to 18% of the CD3+ cells. The kinetics of gamma/delta and alpha/beta T cells in the LN during BCG infection showed in much the same pattern as that seen in the PEC. When purified CD4-CD8- cells in the LN on day 7 after BCG infection were cultured with sonicated BCG lysate, PPD derived from Mycobacterium tuberculosis or recombinant 65 kDa heat shock protein derived from Mycobacterium bovis, the gamma/delta T cells on this stage significantly proliferated and secreted IL-2 in response to sonicated BCG lysate and PPD but not to 65 kDa heat shock protein. V gene segment usage analysis with PCR method revealed that purified protein derivative-reactive gamma/delta T cells preferentially used V gamma 1/2/V delta 6, whereas gamma/delta T cells polyclonally expanded in response to the BCG lysate. These results suggest that gamma/delta T cells specific for mycobacterial antigens preceding alpha/beta T cells in appearance during infection may serve as a first line of defense against mycobacterial infection.  相似文献   

8.
Various cytokines, including interferon α (IFNα), tumor necrosis factor α (TNFα), and granulocyte–macrophage colony-stimulating factor (GM-CSF), have been used as adjuvant therapy for advanced-stage melanoma with some success but with marked toxicity, which appears to be related to higher doses. We investigated the efficacy of IFNα, GM-CSF, and TNFα in various combinations to induce antitumor and immune responses in a B16F10 murine melanoma model. These studies showed that GM-CSF, IFNα, and TNFα, when injected together intratumorally, mediated significant inhibition of tumor growth. Tumor regression correlated with local tumor necrosis and significant infiltration of T cells. In addition, this injected intralesional cytokine cocktail also induced lymphadenopathy, with an increase in both CD4+ and CD8+ T cells in the draining lymph nodes. Furthermore, tumor-specific CD8+ T cells were identified from draining lymph nodes. These investigations identify the combined effects of IFNα, GM-CSF, and TNFα in induction of the adaptive immune response and generation of antigen-specific T-cell reactivity. These results support potential clinical trials of the low-dose cytokine combination as adjuvant therapy for melanoma.  相似文献   

9.
Multiple sclerosis and an animal model resembling multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the CNS that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-gamma, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-gamma in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). In this study, we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of myelin oligodendrocyte glycoprotein-specific IFN-gamma-producing CD4(+) T cells in the CNS. IL-17(+)CD4(+) T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3(+)CD4(+) T cells in these mice was equivalent to that of control mice. Intracerebral BCG infection-induced protection of EAE and suppression of myelin oligodendrocyte glycoprotein-specific IL-17(+)CD4(+) T cell responses were similar in both wild-type and IFN-gamma-deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-gamma-mediated mechanisms.  相似文献   

10.
To investigate the immunomodulating effects of IL-15 in vivo on mycobacterial infection, we used IL-15-transgenic (Tg) mice, which were recently constructed with cDNA-encoding secretable isoform of IL-15 precursor protein under the control of a MHC class I promoter. The IL-15-Tg mice exhibited resistance against infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG), as assessed by bacteria growth. IFN-gamma level in serum was significantly higher in IL-15-Tg mice than in non-Tg mice after BCG infection. NK cells were remarkably increased, and Ag-specific T cytotoxic 1 response mediated by CD8+ T cells producing IFN-gamma was significantly augmented in the IL-15-Tg mice following BCG infection. Neutralization of endogenous IFN-gamma by in vivo administration of anti-IFN-gamma mAb deteriorated the clearance of the bacteria. Depletion of of NK cells or CD8+ T cells by in vivo administration of anti-asialo-GM(1) Ab or anti-CD8 mAb hampered the exclusion of bacteria. Thus, overexpression of IL-15 in vivo enhanced protection against BCG infection via augmentation of NK and T cytotoxic 1 responses.  相似文献   

11.
BCG has been administered globally for more than 75 years, yet tuberculosis (TB) continues to kill more than 2 million people annually. Further, BCG protects childhood TB but is quite inefficient in adults. This indicates that BCG fails to induce long-term protection. Hence there is a need to explore alternative vaccination strategies that can stimulate enduring T cell memory response. Dendritic cell based vaccination has attained extensive popularity following their success in various malignancies. In our previous study, we have established a novel and unique vaccination strategy against Mycobacterium tuberculosis (M. tb) and Salmonella typhimurium by utilizing infected macrophages (IM). In short-term experiments (30 days), substantial degree of protection was observed. However, remarkable difference was not observed in long-term studies (240 days) due to failure of the vaccine to generate long-lasting memory T cells. Hence, in the present study we employed T cell memory augmenting cytokines IL-1+IL-6+TNF-α and IL-7+IL-15 for the induction of the enhancement of long-term protection by the vaccine. We co-administered the M. tb infected macrophages vaccine with IL-1+IL-6+TNF-α (IM-1.6.α) and IL-7+IL-15 (IM-7.15). The mice were then rested for a reasonably large period (240 days) to study the bona fide T cell memory response before exposing them to aerosolized M. tb. IM-1.6.α but not IM-7.15 significantly improved memory T cell response against M. tb, as evidenced by recall responses of memory T cells, expansion of both central as well as effector memory CD4 and CD8 T cell pools, elicitation of mainly Th1 memory response, reduction in the mycobacterial load and alleviated lung pathology. Importantly, the protection induced by IM-1.6.α was significantly better than BCG. Thus, this study demonstrates that not only antigen-pulsed DCs can be successfully employed as vaccines against cancer and infectious diseases but also macrophages infected with M. tb can be utilized with great efficacy especially in protection against TB.  相似文献   

12.

Background

With the exception of some live vaccines, e.g. BCG, subunit vaccines formulated with “classical” adjuvants do not induce similar responses in neonates as in adults. The usual neonatal profile is characterized by lower levels of TH1-associated biomarkers. This has hampered the development of new neonatal vaccines for diseases that require early protection. Tuberculosis is one of the major targets for neonatal immunization. In this study, we assessed the immunogenicity of a novel candidate vaccine comprising a mycobacterial fusion protein, Ag85B-ESAT-6, in a neonatal murine immunization model.

Methods/Findings

The Ag85B-ESAT-6 fusion protein was formulated either with a classical alum based adjuvant or with the novel IC31® adjuvant. Following neonatal or adult immunization, 3 parameters were studied in vivo: (1) CD4+ T cell responses, (2) vaccine targeting/activation of dendritic cells (DC) and (3) protection in a surrogate mycobacterial challenge model. Conversely to Alum, IC31® induced in both age groups strong Th1 and Th17 responses, characterized by multifunctional T cells expressing IL-2 and TNF-α with or without IFN-γ. In the draining lymph nodes, a similarly small number of DC contained the adjuvant and/or the antigen following neonatal or adult immunization. Expression of CD40, CD80, CD86 and IL-12p40 production was focused on the minute adjuvant-bearing DC population. Again, DC targeting/activation was similar in adults and neonates. These DC/T cell responses resulted in an equivalent reduction of bacterial growth following infection with M. bovis BCG, whereas no protection was observed when Alum was used as adjuvant.

Conclusion

Neonatal immunization with the IC31®- adjuvanted Ag85B-ESAT-6 subunit vaccine elicited adult-like multifunctional protective anti-mycobacterial T cell responses through the induction of an adult pattern of in vivo DC activation.  相似文献   

13.
We have previously demonstrated that IL-7 is essential for the persistence of colitis as a survival factor of colitogenic IL-7Rα-expressing memory CD4(+) T cells. Because IL-7Rα is broadly expressed on various immune cells, it is possible that the persistence of colitogenic CD4(+) T cells is affected by other IL-7Rα-expressing non-T cells. To test this hypothesis, we conducted two adoptive transfer colitis experiments using IL-7Rα(-/-) CD4(+)CD25(-) donor cells and IL-7Rα(-/-) × RAG-2(-/-) recipient mice, respectively. First, IL-7Rα expression on colitic lamina propria (LP) CD4(+) T cells was significantly higher than on normal LP CD4(+) T cells, whereas expression on other colitic LP immune cells, (e.g., NK cells, macrophages, myeloid dendritic cells) was conversely lower than that of paired LP cells in normal mice, resulting in predominantly higher expression of IL-7Rα on colitogenic LP CD4(+) cells, which allows them to exclusively use IL-7. Furthermore, RAG-2(-/-) mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells did not develop colitis, although LP CD4(+) T cells from mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells were differentiated to CD4(+)CD44(high)CD62L(-) effector-memory T cells. Finally, IL-7Rα(-/-) × RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells developed colitis similar to RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells. These results suggest that IL-7Rα expression on colitogenic CD4(+) T cells, but not on other cells, is essential for the development of chronic colitis. Therefore, therapeutic approaches targeting the IL-7/IL-7R signaling pathway in colitogenic CD4(+) T cells may be feasible for the treatment of inflammatory bowel diseases.  相似文献   

14.
A simplified C32 monomycolyl glycerol (MMG) analogue demonstrated enhanced immunostimulatory activity in a dioctadecyl ammonium bromide (DDA)/Ag85B-ESAT-6 formulation. Elevated levels of IFN-γ and IL-6 were produced in spleen cells from mice immunised with a C32 MMG analogue comparable activity to the potent Th1 adjuvant, trehalose 6,6′-di-behenate (TDB).  相似文献   

15.
Protein subunit vaccines present a compelling new area of research for control of tuberculosis (TB). Based on the interaction between Mycobacterium tuberculosis and its host, five stage-specific antigens of M. tuberculosis that participate in TB pathogenesis—Rv1813, Rv2660c, Ag85B, Rv2623, and HspX—were selected. These antigens were verified to be recognized by T cells from a total of 42 whole blood samples obtained from active TB patients, patients with latent TB infections (LTBIs), and healthy control donors. The multistage polyprotein A1D4 was developed using the selected five antigens as a potentially more effective novel subunit vaccine. The immunogenicity and protective efficacy of A1D4 emulsified in the adjuvant MTO [monophosphoryl lipid A (MPL), trehalose-6,6′-dibehenate (TDB), components of MF59] was compared with Bacillus Calmette-Guerin (BCG) in C57BL/6 mice. Our results demonstrated that A1D4/MTO could provide more significant protection against M. tuberculosis infection than the PBS control or MTO adjuvant alone judging from the A1D4-specific Th1-type immune response; however, its efficacy was inferior to BCG as demonstrated by the bacterial load in the lung and spleen, and by the pathological changes in the lung. Antigen-specific single IL-2-secreting cells and different combinations with IL-2-secreting CD4+ T cells were beneficial and correlated with BCG vaccine-induced protection against TB. Antigen-specific IFN-γ+IL-2+ CD4+ T cells were the only effective biomarker significantly induced by A1D4/MTO. Among all groups, A1D4/MTO immunization also conferred the highest number of antigen-specific single IFN-γ+ and IFN-γ+TNF-α+ CD4+ T cells, which might be related to the antigen load in vivo, and single IFN-γ+ CD8+ T cells by mimicking the immune patterns of LTBIs or curable TB patients. Our strategy seems promising for the development of a TB vaccine based on multistage antigens, and subunit antigen A1D4 suspended in MTO adjuvant warrants preclinical evaluation in animal models of latent infection and may boost BCG vaccination.  相似文献   

16.
Immune cytokines are important regulators of the immune response to neoplastic cells. We previously reported that interleukin 4 (IL-4) and either tumor necrosis factor α (TNF) or interferon γ (IFN) synergistically inhibit melanoma cell growth and induce cell differentiation. In the present study we used various combinations of IL-4, IFN and TNF to enhance the antigenicity of melanoma cells. IL-4 plus TNF significantly increased the ability of melanoma cells to stimulate cytotoxic T cells (CTL) and act as targets of these CTL; IL-4 plus IFN was somewhat less effective, while TNF plus IFN was not as effective. IL-4 plus TNF also increased the expression of HLA class I and HLA-DR antigens on melanoma cells. The CTL lines examined in this study were CD3+CD4+ and oligoclonal. These preclinical results suggest that the immune response to melanoma whole-cell vaccines might be enhanced by pretreating vaccine cells with IL-4 plus TNF.  相似文献   

17.
18.
Disaccharides are well-known reagents to protect biostructures like proteins and phospholipid-based liposomes during freezing and drying. We have investigated the ability of the two disaccharides trehalose and sucrose to stabilize a novel, non-phospholipid-based liposomal adjuvant composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) upon freeze-drying. The liposomes were freeze-dried using a human dose concentration containing 2.5 mg/ml DDA and 0.5 mg/ml TDB with varying concentrations of the two sugars. The influence on particle size upon rehydration was investigated using photon correlation spectroscopy (PCS) and the gel to fluid phase transition was examined by differential scanning calorimetry (DSC). Data revealed that concentrations above 211 mM trehalose protected and preserved DDA/TDB during freeze-drying, and the liposomes were readily rehydrated. Sucrose was less efficient as a stabilizer and had to be used in concentrations above 396 mM in order to obtain the same effect. Immunization of mice with the tuberculosis vaccine candidate Ag85B-ESAT-6 in combination with the trehalose stabilized adjuvant showed that freeze-dried DDA/TDB liposomes retained their ability to stimulate both a strong cell-mediated immune response and an antibody response. These findings show that trehalose at isotonic concentrations protects cationic DDA/TDB-liposomes during freeze-drying. Since this is not the case for liposomes based on DDA solely, we suggest that the protection is facilitated via direct interaction with the headgroup of TDB and a kosmotropic effect, whereas direct interaction with DDA plays a minor role.  相似文献   

19.
Disaccharides are well-known reagents to protect biostructures like proteins and phospholipid-based liposomes during freezing and drying. We have investigated the ability of the two disaccharides trehalose and sucrose to stabilize a novel, non-phospholipid-based liposomal adjuvant composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6′-dibehenate (TDB) upon freeze-drying. The liposomes were freeze-dried using a human dose concentration containing 2.5 mg/ml DDA and 0.5 mg/ml TDB with varying concentrations of the two sugars. The influence on particle size upon rehydration was investigated using photon correlation spectroscopy (PCS) and the gel to fluid phase transition was examined by differential scanning calorimetry (DSC). Data revealed that concentrations above 211 mM trehalose protected and preserved DDA/TDB during freeze-drying, and the liposomes were readily rehydrated. Sucrose was less efficient as a stabilizer and had to be used in concentrations above 396 mM in order to obtain the same effect. Immunization of mice with the tuberculosis vaccine candidate Ag85B-ESAT-6 in combination with the trehalose stabilized adjuvant showed that freeze-dried DDA/TDB liposomes retained their ability to stimulate both a strong cell-mediated immune response and an antibody response. These findings show that trehalose at isotonic concentrations protects cationic DDA/TDB-liposomes during freeze-drying. Since this is not the case for liposomes based on DDA solely, we suggest that the protection is facilitated via direct interaction with the headgroup of TDB and a kosmotropic effect, whereas direct interaction with DDA plays a minor role.  相似文献   

20.
CD4 T cell deficiency or defective IFNγ signaling render humans and mice highly susceptible to Mycobacterium tuberculosis (Mtb) infection. The prevailing model is that Th1 CD4 T cells produce IFNγ to activate bactericidal effector mechanisms of infected macrophages. Here we test this model by directly interrogating the effector functions of Th1 CD4 T cells required to control Mtb in vivo. While Th1 CD4 T cells specific for the Mtb antigen ESAT-6 restrict in vivo Mtb growth, this inhibition is independent of IFNγ or TNF and does not require the perforin or FAS effector pathways. Adoptive transfer of Th17 CD4 T cells specific for ESAT-6 partially inhibited Mtb growth while Th2 CD4 T cells were largely ineffective. These results imply a previously unrecognized IFNγ/TNF independent pathway that efficiently controls Mtb and suggest that optimization of this alternative effector function may provide new therapeutic avenues to combat Mtb through vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号