首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 432 毫秒
1.
The influence of central substance P (SP) administration on alcohol intake and brain dopamine metabolism within mesocortico-limbic and nigrostiatal systems of rats exposed to ethanol, was studied. During 6 months, the rats consumed 15% ethanol solution instead of water. Central administration of SP (3 mcg/kg) decreased alcohol consumption by 41% in alcohol-preference animals. After long-term ethanol exposure ratios DOPAC/DA and HVA/DA were reduced in striatum and accumbens. SP in dose 3 mcg/kg increased content of DOPAC by 17% and HVA by 23% as well as DOPAC/DA by 9%, HVA/DA by 19% in accumbens. Whereas in striatum only increased DOPAC (28%) and HVA (29%) were observed as compared with saline-treated rats.  相似文献   

2.
Effects of acute and subacute cocaine administration on dopamine (DA) and its metabolites in striata and nucleus accumbens of nine week-old Wistar-Kyoto and spontaneously hypertensive rats were studied. Levels of DA,3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. There were no differences in DA levels in striata and nucleus accumbens between control WKY and SHR. Levels of DA in two brain regions were unaffected in groups treated acutely with cocaine. Both strains showed a significant increase in striatal HVA 2 hr after cocaine injection. Seven day treatment declined DA levels in striatum of WKY and in nucleus accumbens of SHR. However, only WKY treated subacutely with cocaine showed significantly increased HVA either with or without changes in DOPAC in nucleus accumbens and striatum, respectively. Increased DOPAC/DA and HVA/DA ratios appeared only in striatum of WKY and in nucleus accumbens of SHR following subacute treatment. These results suggest that subacute cocaine administration affects DA levels in striata and nucleus accumbens differently between WKY and SHR.  相似文献   

3.
Intracerebral dialysis was used with a specifically designed HPLC with electrochemical detection assay to monitor extracellular levels of endogenous 3,4-dihydroxyphenylethylamine (dopamine, DA) and its major metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in brain regions of the halothane-anesthetized rat. Significant amounts of DA, DOPAC, and HVA were detected in control perfusates collected from striatum and n. accumbens whereas the medial prefrontal cortex showed lower monoamine levels. The ratio of DA in perfusate to DA in whole tissue suggests that in f. cortex, compared to n. accumbens and striatum, there is a greater amount of DA in the extracellular space relative to the intraneuronal DA content. The DOPAC/HVA ratio in control perfusates varied between regions in accordance with whole tissue measurements. This ratio was highest in n. accumbens and lowest in f. cortex. The monoamine oxidase inhibitor pargyline (100 mg/kg i.p.) caused an exponential decline in DOPAC, but not of HVA, in regional perfusates, an effect that was associated with an increase in DA. The data indicated a higher turnover of extracellular DOPAC in n. accumbens than in striatum and the lowest DOPAC turnover in f. cortex. The rate of decline in extracellular DA metabolite levels was slow compared to whole tissue measurements. In the perfusates there was no statistical correlation between basal amounts of DA in the perfusates and DOPAC and HVA levels or DOPAC turnover for any of the areas, indicating that measurement of DA metabolism in the brain under basal conditions does not provide a good index of DA release. In summary, this study shows clear regional differences in basal DA release and metabolite levels, metabolite patterns, and DOPAC turnover rates in rat brain in vivo.  相似文献   

4.
Abstract— Conjugated (sulphonyloxy) dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were synthesized from free DOPAC and HVA and used as reference compounds in their fluorimetric determination in rat brain (detection limit 0.2 nmol/g). The conjugated DOPAC and HVA form 29 and 36% of the total DOPAC and HVA found in rat striatum, respectively. Dopamine (DA) metabolism was studied in the rat striatum by following the decline of both free and conjugated DOPAC and HVA after treatment with pargyline (100mg/kg. i.p.) either alone or in combination with tropolone (100 mg/kg, i.p.). or from the accumulation of the free and conjugated acids after treatment with probenecid (100-500mg/kg. i.p.). The rates of decline were analysed by a non-linear curve fitting method using a simple model of DA metabolism that postulates the formation of the conjugates exclusively from the free acids, and HVA from DOPAC, with first order kinetics and single open compartments only. The curves computed all passed through the s.e.m. of every experimental point. The rate constants thus found indicate that DOPAC turnover is about 23nmol/g/h. Of this about 16 nmol/g/h are O -methylated to HVA, about 6 nmol/g/h are conjugated and less than 1 nmol/g/h is eliminated as free DOPAC. Of the HVA formed, about 8.5nmol/g/h are conjugated and about 7.5 nmol/g/h eliminated as free HVA. The conjugates accumulated after treatment with probenecid (1 h) faster than the free acids. The maximal accumulation of all four metabolites found (21 nmol/g/h) approximates the total turnover of DOPAC.  相似文献   

5.
M F Sugrue 《Life sciences》1980,26(6):423-429
Changes in rat brain monoamine turnover were studied following the chronic administration of five agents which markedly differ in their patterns of monoamine uptake inhibition. Compounds (10 mg/kg, i.p.) were injected once daily for 14 days and experiments undertaken 24 h after the last injection. Chronic administration of desipramine or mianserin elevated brain MOPEG-SO4 content and the α-MT-induced reduction in brain NA levels was enhanced by chronic desipramine. either antidepressant altered turnover of brain DA or 5-HT. Steady state levels of brain 5-HIAA or striatal levels of DOPAC or HVA were also unchanged. Chronically administered Org 6582, a selective inhibitor of 5-HT uptake, decreased basal and attenuated the probenecid-induced increase iin brain 5-HIAA levels. Chronic Org 6582 had no effect on NA or DA turnover and on the levels of MOPEG-SO4, DOPAC or HVA. Neither maprotiline nor chlorimipramine altered turnover of NA, DA or 5-HT or levels of metabolites. Thus, in contrast to the acute situation, chronically administered desipramine increases rat brain NA turnover. Conversely, acute and chronic Org 6582 administration yield similar findings, viz. a decrease in turnover. These observations suggest that rat brain 5-HT systems are more resistant than NA systems to adaptive changes following a prolonged inhibition of monoamine uptake.  相似文献   

6.
The concentrations of catecholamine and indoleamine metabolites were measured in intact and adrenalectomized mice to determine whether adrenal hormones mediate or modulate the stress-induced responses. Thirty minutes of footshock resulted in significant increases of the ratios of the dopamine (DA) catabolite, dihydroxyphenylacetic acid (DOPAC), to DA in prefrontal cortex, nucleus accumbens, striatum, hypothalamus, and brainstem, and of homovanillic (HVA)/DA ratios in nucleus accumbens, striatum, amygdala, and hypothalamus. Ratios of 3-methoxy-4-hydroxyphenylethyleneglycol to norepinephrine (NE) were also increased in prefrontal cortex, nucleus accumbens, septum, amygdala, hypothalamus, hippocampus, and brainstem. The concentration of NE was decreased in amygdala. 5-Hydroxyindoleacetic acid (5-HIAA)/5-hydroxytryptamine (5-HT, serotonin) ratios and free tryptophan were also increased in every brain region. Very similar data were obtained from mice restrained for 30 min. Adrenalectomy resulted in increased HVA/DA ratios in prefrontal cortex and striatum, and 5-HIAA/5-HT in septum. The stress-related changes were largely similar in adrenalectomized mice. Significant interactions between adrenalectomy and footshock treatment occurred in prefrontal cortical DOPAC/DA and hypothalamic NE which was depleted only in adrenalectomized mice, suggesting tendencies for these measures to be more responsive in adrenalectomized mice. Corticosterone administration (0.5-2.0 mg/kg s.c.) which resulted in plasma concentrations in the physiological range did not alter the concentrations of the cerebral metabolites measured in any region. We conclude that adrenal hormones do not mediate cerebral catecholamine or indoleamine metabolism in stress, although adrenalectomy may affect HVA and 5-HIAA metabolism, and there was a tendency for catecholamines to be more sensitive to stress in adrenalectomized animals.  相似文献   

7.
Acute and chronic effects of γ-butyrolactone-γ-carbonyl-histidyl-prolinamide (DN-1417) were investigated on motor activity, dopamine (DA) metabolites and DA receptors in various brain regions of rats. The motor activity, as measured with Automex recorder, was enhanced after a single injection with DN-1417 (20 mg/kg, IP), and the motor stimulating action persisted during 21 daily injections. Acute DN-1417 elevated both homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in 7 brain regions, prefrontal cortex polar, medial and lateral fields, nucleus accumbens, olfactory tubercles, amygdala and striatum. After chronic treatment for 7 days, the acute effect of DN-1417 on DA metabolites disappeared in all regions except for the striatum in which DN-1417 still increased HVA and DOPAC. The response of striatal DA metabolites was also observed after chronic treatment for 21 days. Chronic DN-1417 produced no significant change in 3H-spiperone binding in the prefrontal cortex, nucleus accumbens, olfactory tubercles and striatum, while striatal 3H-DA binding displaced by 30 nM spiperone was enhanced after chronic treatment. These results indicate that DN-1417 interacts with mesocortical, mesolimbic and nigrostriatal DA systems in the different modes of action. The lack of tolerance to motor hyperactivity, however, raises the question as to whether DN-1417-induced hyperactivity may be mediated by the activation of mesolimbic DA neurons. The involvement of nigrostriatal neurons in DN-1417-induced motor hyperactivity is suggested.  相似文献   

8.
The effects of acute and chronic administration of diisopropylfluorophosphate (DFP) to rats on acetylcholinesterase (AChE) activity (in striatum, medulla, diencephalon, cortex, and medulla) and muscarinic, dopamine (DA), and gamma-aminobutyric acid (GABA) receptor characteristics (in striatum) were investigated. After a single injection of (acute exposure to) DFP, striatal region was found to have the highest degree of AChE inhibition. After daily DFP injections (chronic treatment), all brain regions had the same degree of AChE inhibition, which remained at a steady level despite the regression of the DFP-induced cholinergic overactivity. Acute administration of DFP increased the number of DA and GABA receptors without affecting the muscarinic receptor characteristics. Whereas chronic administration of DFP for either 4 or 14 days reduced the number of muscarinic sites without affecting their affinity, the DFP treatment caused increase in the number of DA and GABA receptors only after 14 days of treatment; however, the increase was considerably lower than that observed after the acute treatment. The in vitro addition of DFP to striatal membranes did not affect DA, GABA, or muscarinic receptors. The results indicate an involvement of GABAergic and dopaminergic systems in the actions of DFP. It is suggested that the GABAergic and dopaminergic involvement may be a part of a compensatory inhibitory process to counteract the excessive cholinergic activity produced by DFP.  相似文献   

9.
A dialysis cannula implanted into rat striatum was perfused with Ringer's solution containing drugs. Levels of 3,4-dihydroxyphenyl-acetic acid (DOPAC) and homovanillic acid (HVA) in the dialysate or striatal tissue were determined by HPLC with electrochemical detection. Continuous perfusion of oxotremorine, a muscarinic agonist, for 4 h gradually increased the levels of DOPAC and HVA. The maximal levels of DOPAC and HVA were 180 and 130% of the basal ones, respectively. Perfusion of lobeline, a nicotinic agonist, caused a rapid increase in DOPAC level within I h (160% of the basal level) and HVA was 120% of the basal level for 4 h. In striatal tissue 20 min after starting perfusion of oxotremorine or lobeline, there were no changes in DOPAC and HVA measured except for a decrease in dopamine after lobeline. Pretreatment with tetrodotoxin suppressed the effect of oxotremorine, but did not suppress the effect of the lobeline. These data suggest that, in the rat striatum in vivo, most of the muscarinic receptors indirectly enhance the turnover of dopamine via striatonigral or other loops, while some of the nicotinic receptors directly enhance the release or turnover of dopamine in the dopamine nerve terminals.  相似文献   

10.
5-Hydroxytryptamine (5-HT) turnover and dopamine (DA) turnover values were obtained in individual conscious rats by measuring the rates of accumulation of 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in cisternal CSF samples taken from each rat at 0, 30, and 60 min after probenecid (200 mg/kg i.p.) administration. In a separate experiment, 5-HT and DA turnover values were determined in CSF, striatum, and rest of brain of groups of rats killed 0, 30, or 60 min after probenecid. Whole brain turnover values were calculated from striatal and rest of brain values. Mean turnover values using CSF were comparable with both procedures. DA turnover values were greater when based on total (i.e., free + conjugated) DA metabolites than when based on free metabolites. After partial inhibition of monoamine synthesis with the decarboxylase inhibitor DL-alpha- monofluoromethyl -DOPA ( MFMD , 100 mg/kg p.o.) DA and 5-HT turnover values were comparably reduced in whole brain, rest of brain, and CSF but more markedly reduced in the striatum. Mean DA and 5-HT turnover values obtained using CSF were similar with probenecid doses over the range 150-250 mg/kg i.p. but were variable when repeatedly determined in the same rats after administration of 200 mg/kg probenecid. Results in general show that the CSF procedure may be used to determine concurrently both 5-HT and DA turnover (when estimated from the sum of total but not free metabolites) and that it provides a good index of whole brain turnover of these transmitters in the conscious individual rat.  相似文献   

11.
Hyperammonemia and changes in brain monoamine metabolism have been proposed to contribute to the pathogenesis of the neuropsychiatric symptoms characteristic of human portal-systemic encephalopathy (PSE) resulting from chronic liver disease. Portacaval anastomosis (PCA) in the rat leads to sustained hyperammonemia and mild encephalopathy. In order to evaluate the role of dopamine (DA) metabolism in PSE, levels of DA and its metabolites were measured by HPLC with electrochemical detection in brain regions of rats with PCA at various stages of encephalopathy precipitated by ammonium acetate administration. Following ammonium acetate administration, rats with PCA rapidly develop severe neurological signs of encephalopathy progressing through loss of righting reflex to coma; sham-operated control animals administered ammonium acetate showed no such neurological deterioration. Concentrations of the DA metabolites DOPAC and HVA as well as [DA metabolites]/[DA] ratios, an indirect measure of DA turnover in brain, were increased in caudate-putamen, in cingulate and pyriform entorhinal cortices as well as in raphe nucleus and locus coeruleus. Increased DA metabolites, however, did not worsen at coma states of PSE. Increased DA turnover thus appears to relate to early neuropsychiatric and extrapyramidal symptoms of PSE.  相似文献   

12.
3,4-Dihydroxyphenylethylamine (DA, dopamine) and 5-hydroxytryptamine (5-HT) turnover values were determined in freely moving male rats by measuring the rates of accumulation of the acidic metabolites of the above transmitters, i.e., 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in cisternal cerebrospinal fluid (CSF) samples after probenecid (200 mg/kg i.p.) administration. Determinations on samples before and after acid hydrolysis showed that the latter procedure was necessary for DA turnover determination. Thus whereas total (DOPAC + HVA) increased linearly with time after probenecid, free (DOPAC + HVA) did not. This was because the percentage of DOPAC + HVA in conjugated form increased with time. Determinations on a group of 28 rats during the dark (red light) period showed that cisternal amine metabolite concentrations before probenecid injection did not parallel turnover values. This was probably because individual differences in metabolite egress strongly affect the pre-probenecid values. The poor correlations between CSF tryptophan and 5-HT turnover suggested that differences of brain tryptophan concentration were not major determinants of differences of brain 5-HT metabolism within this group of normal rats. Considering that the rats were of similar weight and that the turnover values were all determined at approximately the same time of day, the three- to fourfold ranges of the turnover values are remarkable. The positive correlation between the DA and 5-HT turnovers of individual rats suggests the existence of common effects on DA and 5-HT turnover in normal rats.  相似文献   

13.
In Parkinson's disease (PD) and experimental parkinsonism, losses of up to 60% and 80%, respectively, of dopaminergic neurons in substantia nigra, and dopamine (DA) in striatum remain asymptomatic. Several mechanisms have been suggested for this functional compensation, the DA-mediated being the most established one. Since this mechanism was recently challenged by striatal DA analysis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, we present data on several DAergic parameters in three groups of rhesus monkeys: MPTP-treated asymptomatic animals; symptomatic MPTP-treated animals with stable parkinsonism; and untreated sex and age matched controls. We determined ratios of striatal and nigral 3,4-dihydroxyphenyl acetic acid (DOPAC) to DA levels and tyrosine hydroxylase (TH) enzyme activity to DA levels, in addition to the commonly used homovanillic acid (HVA)/DA ratios which, as such, might be less reliable under the conditions of partial denervation. We found that in the asymptomatic MPTP monkeys the DOPAC/DA ratios in putamen and caudate nucleus were shifted with high statistical significance 1.9-5.8-fold, as compared to controls, the shifting of the ratios being in the same range as the 2.6-5.4-fold shifts in the symptomatic animals. Also TH/DA ratios were significantly increased in both, the asymptomatic and the symptomatic MPTP-treated monkeys, with shifts in the putamen and caudate nucleus of 3- and 2.7-7.0-fold, respectively. In the substantia nigra, DOPAC levels and TH activity were strongly decreased after MPTP (-77 to -97%), but the ratios DOPAC/DA and TH/DA were not changed in this brain region. Collectively, our findings support the concept of DAergic compensation of the progressive striatal DA loss in the presymptomatic stages of the parkinsonian disease process.  相似文献   

14.
The concentrations of the acidic dopamine (DA) catabolites homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) measured in human CSF are supposed to reflect the "turnover" of DA in the brain. The notion of "turnover" is, however, not synonymous with impulse nerve activity in the dopaminergic systems. Significant amounts of DOPAC and HVA could, indeed, be demonstrated in brain structures wherein dopaminergic innervation has not been documented. It must also be noted that DA is not only a neurotransmitter itself, but also a precursor of norepinephrine and epinephrine. Furthermore, in lumbar CSF, levels of biogenic amine catabolites partially reflect metabolism in the spinal cord and may have limited relevance to neurotransmission in the brain. To elucidate these points further, we determined the concentrations of DOPAC and HVA in 22 areas of six human brains and eight levels of six human spinal cords. The data were correlated with the concentration of DA. Quantitative determinations were done using HPLC with electrochemical detection, after solvent and ion-pair extraction. In this study, significant amounts of both DOPAC and HVA were demonstrated in brain structures not previously associated with dopaminergic innervation. The relatively lower DA concentration in these structures suggests that in these regions, the DOPAC and HVA concentrations are unrelated to dopaminergic neurotransmission. The possible role of capillary walls and glial cells in the catabolism of DA must be further evaluated. The demonstration of DOPAC and HVA in the spinal cord is another argument against the hypothesis that CSF levels of HVA and DOPAC reflect closely the activity of the dopaminergic systems in the brain.  相似文献   

15.
Hiroshi Watanabe 《Life sciences》1985,37(24):2319-2325
To investigate mechanisms of behavioral enhancement produced by repeated doses of amphetamines, the effects of apomorphine on 3,4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA) levels were examined in various brain regions of the rat on the 4th day of withdrawal after repeated administration of saline or methamphetamine (3 mg/kg, s.c.) twice daily for 14 days. Apomorphine (0.1 and 1.0 mg/kg, i.p.) produced a dose-dependent decrease in DOPAC levels and no effect on DA levels in the olfactory tubercle, nucleus accumbens, striatum, frontal and cingulate cortices of saline-treated animals. A decrease in DOPAC levels produced by a low dose of apomorphine was attenuated selectively in the olfactory tubercle and nucleus accumbens of methamphetamine-treated animals. A high dose of apomorphine produced a significant decrease in DOPAC levels in both regions. No such attenuation was obtained in the striatum and the frontal and cingulate cortices.These results suggest that subchronic methamphetamine may induce development of hyposensitivity of presynaptic DA receptors in the mesolimbic regions, which contribute to the behavioral enhancement produced by the drug.  相似文献   

16.
The effect of naloxone-precipitated withdrawal after acute morphine was studied on the concentrations of noradrenaline (NA), 4-hydroxy-3-methoxyphenylethyleneglycol (MHPG), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and on the metabolite/parent amine ratios MHPG/NA, DOPAC/DA and HVA/DA, in eight regions of the guineapig brain. Guinea-pigs were treated with a single dose of morphine sulphate (15 mg/kg s.c.) or saline (control) and 2h later with naloxone hydrochloride (15 mg/kg s.c.) to precipitate withdrawal. The animals were decapitated at 0.5 h or 1 h after naloxone injections and their brains analysed for monoamine concentrations by HPLC-ECD. At 0.5 h after naloxone-precipitated withdrawal NA and MHPG levels, and the MHPG/NA ratio, were increased in the hypothalamus, and the NA levels were increased in the hypothalamus, medulla/pons and cortex 1 h after naloxone. Naloxoneprecipitated withdrawal also produced increased DA metabolism in the cortex, midbrain and medulla 0.5 h later, and in the cortex, hypothalamus and striatum 1 h later. Hence naloxone-precipitated withdrawal from acute morphine treatment produced a complex pattern of increased synthesis and metabolism of NA and DA which varied over time and with the brain region examined.  相似文献   

17.
A dialysis cannula was implanted into rat striatum while the animals were anesthetized, and the area was perfused with Ringer solution while the animals were unanesthetized after at least 3 days following surgery. Concentrations of the metabolites of 3,4-dihydroxyphenylethylamine (DA) and 5-hydroxytryptamine (5-HT) in the perfusate were determined by HPLC with electrochemical detection. Levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the perfusate significantly decreased after pargyline administration (50 mg/kg i.p.), which may inhibit not only monoamine oxidase (MAO)-B but also MAO-A in these high doses. The level of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) also decreased after pargyline treatment, although change in the relative level of 5-HIAA was less than that of DOPAC or HVA. To clarify the mechanisms for the metabolism of monoamines in rat striatum, highly specific MAO-A and -B inhibitors were used in the following experiments. Treatment with l-deprenyl (10 mg/kg), a specific inhibitor for MAO-B, did not cause any statistically significant change in DOPAC, HVA, and 5-HIAA levels. No significant change was found in rat striatal homogenates at 2 h after the same treatment with l-deprenyl. In contrast, low-dose treatment (1 mg/kg) with clorgyline, a specific inhibitor for MAO-A, caused a significant decrease in levels of these three metabolites in both the perfusates and tissue homogenates. In addition to the above three metabolites, the level of 3-methoxytyramine, which is an indicator of the amount of DA released, greatly increased after treatment with a low dose (1 mg/kg) of clorgyline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Rats received 7 daily injections with baclofen (40 mg/kg), GBL (750 mg/kg) or HA-966 (100 mg/kg). Dopamine (DA) was measured in the striatum and olfactory tubercle (OT) of rats, sacrificed 0.5 h or 1 h after the last injection. Marked tolerance and cross-tolerance for the DA-elevating effect of these drugs was seen in the striatum, but not in OT. When on day 7 a unilateral lesion of the nigrostriatal pathway was made, also some tolerance to the DA increase in the striatum on the lesioned side was seen in HA-966-pretreated rats, but it was small compared to the tolerance after an additional drug administration in non-lesioned animals. A low dose of apomorphine (0.25 mg/kg, i.p.) had no effect on DA, dihydroxyphenylacetic acid DOPAC) or homovanillic acid (HVA) levels in the lesioned striata, whether the rats had been pretreated for 6 days with HA-966 or not. However, this dose of apomorphine had a significantly more lowering effect on striatal DOPAC and HVA levels on the unlesioned side of HA-966 pretreated rats. The results show that tolerance develops to the increase of DA synthesis, which is possibly receptor-mediated. This tolerance develops more readily in the striatum than in the olfactory tubercle.  相似文献   

19.
Haloperidol or saline was administered to rats daily for 1, 8, 15 or 22 days. During haloperidol, but not saline administration, changes in plasma homovanillic acid (HVA) concentrations were correlated with changes in nucleus accumbens HVA. Haloperidol administration also had a significant effect on the intercorrelation of dopamine (DA) concentrations and indices of DA turnover across multiple brain areas. In particular, intercorrelations of HVA concentrations among DA terminal brain areas (i.e. striatum, nucleus accumbens, and olfactory tubercle) occurred only during haloperidol treatment.  相似文献   

20.
Persistent neurochemical changes consistent with parkinsonism have been reported in brains of mice treated with repeated high doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We now report that ethanol or acetaldehyde potentiate MPTP-induced damage to mouse striatum. One hour after the combined treatments (ethanol and MPTP or acetaldehyde and MPTP), the animals exhibited a marked and long-lasting catatonic posture and then returned gradually to apparently normal locomotion. Seven days after MPTP administration, depletion of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in mouse striatum were further potentiated in the group of animals treated with ethanol. This effect was more evident when the treatment was repeated twice and was dose-dependent. Acetaldehyde was more potent than ethanol in enhancing MPTP neurotoxicity. A single exposure to acetaldehyde before and during MPTP treatment produced a very consistent fall of DA, DOPAC and HVA but not serotonin (5HT) or 5-hydroxyindoleacetic acid (5HIAA) in the striatum. This suggests that ethanol effects on MPTP neurotoxicity might be related to acetaldehyde formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号