首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ocean color images acquired from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from 1998 to 2006 were used to examine the patterns of physical connectivity between land and reefs, and among reefs in the Mesoamerican Barrier Reef System (MBRS) in the northwestern Caribbean Sea. Connectivity was inferred by tracking surface water features in weekly climatologies and a time series of weekly mean chlorophyll-a concentrations derived from satellite imagery. Frequency of spatial connections between 17 pre-defined, geomorphological domains that include the major reefs in the MBRS and river deltas in Honduras and Nicaragua were recorded and tabulated as percentage of connections. The 9-year time series of 466 weekly mean images portrays clearly the seasonal patterns of connectivity, including river plumes and transitions in the aftermath of perturbations such as hurricanes. River plumes extended offshore from the Honduras coast to the Bay Islands (Utila, Cayo Cochinos, Guanaja, and Roatán) in 70% of the weekly mean images. Belizean reefs, especially those in the southern section of the barrier reef and Glovers Atoll, were also affected by riverine discharges in every one of the 9 years. Glovers Atoll was exposed to river plumes originating in Honduras 104/466 times (22%) during this period. Plumes from eastern Honduras went as far as Banco Chinchorro and Cozumel in Mexico. Chinchorro appeared to be more frequently connected to Turneffe Atoll and Honduran rivers than with Glovers and Lighthouse Atolls, despite their geographic proximity. This new satellite data analysis provides long-term, quantitative assessments of the main pathways of connectivity in the region. The percentage of connections can be used to validate predictions made using other approaches such as numerical modeling, and provides valuable information to ecosystem-based management in coral reef provinces. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
This study evaluated DNA fingerprinting as a tool for estimating population genetic diversity and differentiation by comparing minisatellite variation in island and mainland populations of silvereyes (Aves: Zosterops lateralis). Three populations with different recent histories were compared: (1) Heron Island and neighboring islands, colonized 3000 to 4000 yr ago; (2) Lady Elliot Island, colonized within the past two decades; and (3) an adjacent mainland population, which presumably has existed for thousands of years. The degree of genetic variability within the three populations reflected both their size and the time since their colonization. Minisatellite diversity was highest in the mainland population, intermediate in the Capricorn Island group (which was shown to represent a single admixture), and lowest in the Lady Elliot Island population, possibly because of a recent population bottleneck during colonization. Mean band sharing between any two populations was less than the mean within either of those populations, and four fingerprint bands common to island birds were rare or absent in the fingerprints of mainland birds. In the absence of significant gene flow between the mainland and the islands, the populations have apparently become distinct at minisatellite loci, as evidenced by differences in both allelic diversity and in the frequencies of specific fragments. Within the Heron Island population, cohort analyses demonstrated the temporal stability of the fingerprint profile over 6 yr. This study demonstrates that length polymorphisms at minisatellite loci may be stable enough over time to retain information about recent historical and demographic effects on the relative genetic variability and differentiation of small, closely related populations.  相似文献   

3.
This study puts together genetic data and an approximate bayesian computation (ABC) approach to infer the time at which the tree Geoffroea spinosa colonized the Galápagos Islands. The genetic diversity and differentiation between Peru and Galápagos population samples, estimated using three chloroplast spacers and six microsatellite loci, reveal significant differences between two mainland regions separated by the Andes mountains (Inter Andean vs. Pacific Coast) as well as a significant genetic differentiation of island populations. Microsatellites identify two distinct geographical clusters, the Galápagos and the mainland, and chloroplast markers show a private haplotype in the Galápagos. The nuclear distinctiveness of the Inter Andean populations suggests current restricted pollen flow, but chloroplast points to cross‐Andean dispersals via seeds, indicating that the Andes might not be an effective biogeographical barrier. The ABC analyses clearly point to the colonization of the Galápagos within the last 160 000 years and possibly as recently as 4750 years ago (475 generations). Founder events associated with colonization of the two islands where the species occurs are detected, with Española having been colonized after Floreana. We discuss two nonmutually exclusive possibilities for the colonization of the Galápagos, recent natural dispersal vs. human introduction.  相似文献   

4.
The levels of genetic diversity and gene flow may influence the long-term persistence of populations. Using microsatellite markers, we investigated genetic diversity and genetic differentiation in island (Krakatau archipelago, Indonesia) and mainland (Java and Sumatra, Indonesia) populations of Liporrhopalum tentacularis and Ceratosolen bisulcatus, the fig wasp pollinators of two dioecious Ficus (fig tree) species. Genetic diversity in Krakatau archipelago populations was similar to that found on the mainland. Population differentiation between mainland coastal sites and the Krakatau islands was weak in both wasp species, indicating that the intervening 40 km across open sea may not be a barrier for wasp gene flow (dispersal) and colonization of the islands. Surprisingly, mainland populations of the fig waSPS may be more genetically isolated than the islands, as gene flow between populations on the Javan mainland differed between the two wasp species. Contrasting growth forms and relative 'immunity' to the effects of deforestation in their host fig trees may account for these differences.  相似文献   

5.
Contact between humans and the marine environment is increasing, but the capacity of communities to adapt to human presence remains largely unknown. The popularization of SCUBA diving has added a new dimension to human impacts in aquatic systems and, although individual-level impacts have been identified, cumulative effects on ecosystem function and community-wide responses are unclear. In principle, habituation may mitigate the consequences of human presence on the biology of an individual and allow the quick resumption of its ecological roles, but this has not been documented in aquatic systems. Here, we investigate the short-term impact of human presence and the long-term habituation potential of reef-fish communities to recreational SCUBA divers by studying symbiotic cleaning interactions on coral reefs with differing levels of historical contact with divers. We show that incidences of human contact result in a smaller decline in ecosystem function and more rapid resumption of baseline services on a reef in Utila, Honduras that has heavy historical levels of SCUBA diver presence, compared to an un-dived reef site in the Cayos Cochinos Marine Protected Area (CCMPA). Nonetheless, despite the generally smaller change in ecosystem function and decades of regular contact with divers, cleaning behavior is suppressed by >50% at Utila when divers are present. We hypothesize that community-wide habituation of reef fish is not fully achievable and may be biologically restricted to only partial habituation. Differential responses to human presence impacts the interpretation and execution of behavioral research where SCUBA is the predominant means of data collection, and provides an important rationale for future research investigating the interplay between human presence, ecosystem function, and community structure on coral reefs.  相似文献   

6.
The genetic structure of six western Mediterranean island populations of Mus musculus domesticus were investigated by means of an electrophoretic analysis at 34 loci and compared to that of five neighbouring mainland populations. No reduction in variability (H = 0.09 for both island and mainland samples) was observed in the island populations except for a very small island (6 ha), in which one-third of the variability was lost. Patterns of colonization inferred from a Wagner cluster analysis and the distribution of rare variants suggest that, although these island populations are clearly related to European mainland mice, their genetic structure is the result of multiple founding events from sources dispersed throughout the Mediterranean Basin. Furthermore, the presence of the same rare alleles in Sardinia, Corsica and Piana, suggest that the three islands share a common history of colonization.
Estimates of genetic distance and gene flow indicate that the level of genie differentiation is greater between island and mainland populations that between the latter due to geographic isolation. Multiple founder events and post-colonization evolution are the factors that best explain the observed levels of genie variability and differentiation in these Mediterranean islands.  相似文献   

7.
Morphological and genetic variation is evaluated among populations of the bat, Eidolon helvum , in the islands of the Gulf of Guinea (Central Africa). The populations from the islands of Bioko, Principe, and Sao Tome do not show significant phenetic differentiation, although a trend towards a reduction of size is found in the latter two islands. The low genetic distances between populations, as well as their values of Wright's fixation indexes, suggest that gene flow has hampered differentiation on these islands. In contrast, the population from Annobon, the smallest and farthermost island, shows remarkable morphological and genetic differentiation. On the mainland, E. helvum displays unique migratory and dispersal behaviours, but migratory behaviour was not found in any of the island populations. The combination of selective forces in harsher oceanic environments and restricted gene flow among populations appears to have favoured the high degree of morphological differentiation of E. helvum on Annobon. Due to the extended length of the dry season in Annobon, an earlier achievement of sexual maturity–and consequently smaller size—may be advantageous in the absence of migration. The differentiation is more marked among females, which also suggests that selection may be linked to the reproductive pattern. The population of the island of Annobon is herein described as a new subspecies, Eidolon helvum annobonensis subsp. nov.  相似文献   

8.
Many studies have addressed evolution and phylogeography of plant taxa in oceanic islands, but have primarily focused on endemics because of the assumption that in widespread taxa the absence of morphological differentiation between island and mainland populations is due to recent colonization. In this paper, we studied the phylogeography of Scrophularia arguta, a widespread annual species, in an attempt to determine the number and spatiotemporal origins of dispersal events to Canary Islands. Four different regions, ITS and ETS from nDNA and psbA‐trnH and psbJ‐petA from cpDNA, were used to date divergence events within S. arguta lineages and determine the phylogenetic relationships among populations. A haplotype network was obtained to elucidate the phylogenetic relationships among haplotypes. Our results support an ancient origin of S. arguta (Miocene) with expansion and genetic differentiation in the Pliocene coinciding with the aridification of northern Africa and the formation of the Mediterranean climate. Indeed, results indicate for Canary Islands three different events of colonization, including two ancient events that probably happened in the Pliocene and have originated the genetically most divergent populations into this species and, interestingly, a recent third event of colonization of Gran Canaria from mainland instead from the closest islands (Tenerife or Fuerteventura). In spite of the great genetic divergence among populations, it has not implied any morphological variation. Our work highlights the importance of nonendemic species to the genetic richness and conservation of island flora and the significance of the island populations of widespread taxa in the global biodiversity.  相似文献   

9.
Genetic diversity and population structure were studied in eight populations of the kestrel Falco tinnunculus to identify the genetic consequences of spatial distribution and to infer the colonization patterns of the Cape Verde archipelago. We studied genetic differentiation and gene flow among seven island populations and one mainland population using nine microsatellite loci. Within the archipelago, differentiation was strong and genetic diversity and heterozygosity were low but variable among populations. Two subspecies F. tinnunculus neglectus on the northwestern islands and F. tinnunculus alexandri on all the other islands were identified as genetically distinct units. F. t. alexandri could be further separated into two groups on eastern and southern islands. Populations are probably founded by birds originating from the mainland. Immigration is more likely to the eastern and southern populations, whereas the northwestern islands with the lowest genetic diversity and highest differentiation are likely to exhibit fewer founding events by immigrants. The number of founding events on each island may depend not only on geographical distance to neighbouring populations, but also on directional immigration due to the northeastern trade winds. This may explain differences in genetic differentiation and diversity between populations and subspecies and may enable allopatric speciation.  相似文献   

10.
Galápagos hawks (Buteo galapagoensis) are one of the most inbred bird species in the world, living in small, isolated island populations. We used mitochondrial sequence and nuclear minisatellite data to describe relationships among Galápagos hawk populations and their colonization history. We sampled 10 populations (encompassing the entire current species range of nine islands and one extirpated population), as well as the Galápagos hawk's closest mainland relative, the Swainson's hawk (B. swainsoni). There was little sequence divergence between Galápagos and Swainson's hawks (only 0.42% over almost 3kb of data), indicating that the hawks colonized Galápagos very recently, likely less than 300,000 years ago, making them the most recent arrivals of the studied taxa. There were only seven, closely related Galápagos hawk haplotypes, with most populations being monomorphic. The mitochondrial and minisatellite data together indicated a general pattern of rapid population expansion followed by genetic isolation of hawk breeding populations. The recent arrival, genetic isolation, and phenotypic differentiation among populations suggest that the Galápagos hawk, a rather new species itself, is in the earliest stages of further divergence.  相似文献   

11.
In this paper we apply molecular methods to study the colonization of islands off the west coast of Scotland by the common shrew ( Sorex araneus L.), and current gene flow. We collected 497 individuals from 13 islands of the Inner Hebrides and Clyde Island groups and six mainland regions. Individuals were genotyped at eight microsatellite loci, and the mitochondrial cytochrome b sequence (1140 base pairs) was obtained for five individuals from each island/mainland region. Based on these molecular data, island colonization apparently proceeded directly from the mainland, except for Islay, for which Jura was the most likely source population. Raasay may also have been colonized by island hopping. Most island populations are genetically very distinct from the mainland populations, suggesting long periods of isolation. Two exceptions to this are the islands of Skye and Seil, which are geographically and genetically close to the mainland, suggesting in each case that there has been long-term gene flow between these islands and the mainland. We consider possible methods of island colonization, including human-mediated movement, swimming, and land and ice bridges.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 797–808.  相似文献   

12.
Aim The distinct nature of island populations has traditionally been attributed either to adaptation to particular insular conditions or to random genetic effects. In order to assess the relative importance of these two disparate processes, insular effects were addressed in the European wood mouse, Apodemus sylvaticus (Linnaeus, 1758). Location Wood mice from 33 localities on both mainland and various Atlantic and western Mediterranean islands were considered. This sampling covers only part of the latitudinal range of A. sylvaticus but included the two main genetic clades identified by previous studies. Islands encompass a range of geographical conditions (e.g. small islands fringing the continent through large and isolated ones). Methods The insular syndrome primarily invokes variations in body size, but ecological factors such as release from competition, niche widening and food availability should also influence other characters related to diet. In the present study, the morphology of the wood mice was quantified based on two characters involved in feeding: the size and shape of the mandibles and first upper molars. The size of the mandible is also a proxy for the body size of the animal. Patterns of morphological differentiation of both features were estimated using two‐dimensional outline analysis based on Fourier methods. Results Significant differences between mainland and island populations were observed in most cases for both the mandibles and molars. However, molars and mandibles displayed divergent patterns. Mandible shape diverged mostly on islands of intermediate remoteness and competition levels, whereas molars exhibited the greatest shape differentiation on small islands, such as Port‐Cros and Porquerolles. A mosaic pattern was also displayed for size. Body and mandible size increased on Ibiza, but molar size remained similar to mainland populations. Mosaic patterns were, however, not apparent in the mainland populations. Congruent latitudinal variations were evident for the size and shape of both mandibles and molars. Main conclusions Mosaic evolution appears to characterize insular divergence. The molar seems to be more prone to change with reduced population size on small islands, whereas the mandible could be more sensitive to peculiar environmental conditions on large and remote islands.  相似文献   

13.
Aim To provide insights into genetic differentiation between insular endemic Weigela coraeensis var. fragrans and its progenitor variety W. coraeensis var. coraeensis, the population genetic structure of both varieties was examined, and factors promoting genetic differentiation between the two taxa were explored. Location The natural range of W. coraeensis (sensu lato) throughout mainland Japan (Honshu) and the Izu Islands. Methods The analysis included 349 and 504 individuals across the mainland (Honshu) and the Izu Islands, respectively, using 10 allozyme and 10 microsatellite loci. The population genetic structure of W. coraeensis was assessed by analysing genetic diversity indices for each population, genetic differentiation among populations, model‐based Bayesian clustering or distance‐based clustering, and bottleneck tests. Results The level of genetic diversity in each of the populations on the Izu Islands was negatively correlated with geographical distance between each island and the mainland. The populations on the mainland and on the Izu Islands were genetically differentiated to a certain extent; however, the microsatellite analyses suggested that gene flow also occurred between the mainland and the islands, and among individual islands. These microsatellite analyses also suggested recent bottlenecks in several populations in both areas. Main conclusions The decrease in genetic diversity throughout the Izu Islands, which correlated with distance to the mainland, Honshu, may be the result of a repeated founder effect occurring at a series of inter‐island colonizations from north to south. The stepping stone‐like configuration of the islands may have played a role in the dispersal of the species. Geographical isolation by sea would effectively result in genetic differentiation of W. coraeensis between mainland Honshu and the Izu Islands, although some gene flow may still occur between Honshu and the northern Izu Islands. The differentiation process of the endemic plants on the Izu Islands is anagenetic but not completed, and the study of these plants will provide insightful knowledge concerning the evolution of insular endemics.  相似文献   

14.
Like other amphibians native to Britain, the natterjack toad Bufo calamita must have colonized the islands during the relatively short period between the end of the last glaciation and the separation of Britain from mainland Europe by rising sea levels. Unlike the other native amphibians, however, B. calamita is a habitat specialist at the north-westerly edge of its biogeographical range and for most of the 8000–10000 years since its colonization has probably been restricted to open dunes, heathlands and upper saltmarshes, as isolated populations in a few discrete areas of the country. We have investigated the genetic diversity and relatedness of six widely separated British natterjack populations by allozyme analysis, and shown that all have very low diversity (Overall P 95%= 2.7%, H = 0.004) by comparison with other anurans, including natterjack populations in mainland Europe and common frogs ( Rana temporaria , L) in Britain. Eighty percent of loci were fixed for the same allele in all six British natterjack populations and genetic differentiation between colonies was extremely low. The possible significance of these findings to the persistence of small isolated populations at range edges is discussed.  相似文献   

15.
The Mediterranean Basin as one the world's most biologically diverse regions provides an interesting area for the study of plant evolution and spatial structure in plant populations. The dioecious moss Pleurochaete squarrosa is a widespread and common bryophyte in the Mediterranean Basin. Thirty populations were sampled for a study on molecular diversity and genetic structure, covering most major islands and mainland populations from Europe and Africa. A significant decline in nuclear and chloroplast sequence and allozyme variation within populations from west to east was observed. While DNA sequence data showed patterns of isolation by distance, allozyme markers did not. Instead, their considerable interpopulation genetic differentiation appeared to be unrelated to geographic distance. Similar high values for coefficients of gene diversity (G(ST)) in all data sets provided evidence of geographic isolation and limited gene flow among populations (i) within islands, (ii) within mainland areas, and (iii) between islands and mainland. Notably, populations in continental Spain are strongly genetically isolated from all other investigated areas. Surprisingly, there was no difference in gene diversity and G(ST) between islands and mainland areas. Thus, we conclude that large Mediterranean islands may function as 'mainland' for bryophytes. This hypothesis and its implication for conservation biology of cryptogamic plants warrant further investigation. While sexually reproducing populations were found all over the Mediterranean Basin, high levels of multilocus linkage disequilibrium provide evidence of mainly vegetative propagation even in populations where sexual reproduction was observed.  相似文献   

16.
Aim We investigate the population genetic structure of the Maghrebian bat, Myotis punicus, between the mainland and islands to assess the island colonization pattern and current gene flow between nearby islands and within the mainland. Location North Africa and the Mediterranean islands of Corsica and Sardinia. Methods We sequenced part of the control region (HVII) of 79 bats across 11 colonies. The phylogeographical pattern was assessed by analysing molecular diversity indices, examining differentiation among populations and estimating divergence time. In addition, we genotyped 182 bats across 10 colonies at seven microsatellite loci. We used analysis of molecular variance and a Bayesian approach to infer nuclear population structure. Finally, we estimated sex‐specific dispersal between Corsica and Sardinia. Results Mitochondrial analyses indicated that colonies between Corsica, Sardinia and North Africa are highly differentiated. Within islands there was no difference between colonies, while at the continental level Moroccan and Tunisian populations were highly differentiated. Analyses with seven microsatellite loci showed a similar pattern. The sole difference was the lack of nuclear differentiation between populations in North Africa, suggesting a male‐biased dispersal over the continental area. The divergence time of Sardinian and Corsican populations was estimated to date back to the early and mid‐Pleistocene. Main conclusions Island colonization by the Maghrebian bats seems to have occurred in a stepping‐stone manner and certainly pre‐dated human colonization. Currently, open water seems to prevent exchange of bats between the two islands, despite their ability to fly and the narrowness of the strait of Bonifacio. Corsican and Sardinian populations are thus currently isolated from any continental gene pool and must therefore be considered as different evolutionarily significant units (ESU).  相似文献   

17.
The Galápagos Islands (Ecuador) are usually associated with the explorations and theoretical deductions of Charles Robert Darwin (1809–1882), but Alfred Russel Wallace (1823–1913) also investigated these islands and published several reports on the living world of this unique archipelago. In contrast to Darwin, Wallace described the destruction of natural ecosystems by humans and foresaw the resulting extinction of species. Here, we outline two case studies pertinent to Wallace’s prediction. First, we summarize the behavior of the predator-naive marine iguanas (Amblyrhynchus cristatus) on the Galápagos Islands, which are threatened by feral dogs and cats imported by humans. We also describe the unique life cycle of the spiny-tailed iguana (Ctenosaura bakeri) from the island of Utila (Honduras), a rare species whose populations are declining because of habitat destructions. In contrast to these threatened, endemic island species, the Green iguana (Iguana iguana) is still widely distributed, although, as a result of de-forestation, in some areas of South America local populations have disappeared. We conclude that Wallace was correct in his prediction that, because of human activities, numerous species of animals and plants will be driven to extinction, notably on islands.  相似文献   

18.
Genetic and phylogenetic consequences of island biogeography   总被引:5,自引:0,他引:5  
Abstract.— Island biogeography theory predicts that the number of species on an island should increase with island size and decrease with island distance to the mainland. These predictions are generally well supported in comparative and experimental studies. These ecological, equilibrium predictions arise as a result of colonization and extinction processes. Because colonization and extinction are also important processes in evolution, we develop methods to test evolutionary predictions of island biogeography. We derive a population genetic model of island biogeography that incorporates island colonization, migration of individuals from the mainland, and extinction of island populations. The model provides a means of estimating the rates of migration and extinction from population genetic data. This model predicts that within an island population the distribution of genetic divergences with respect to the mainland source population should be bimodal, with much of the divergence dating to the colonization event. Across islands, this model predicts that populations on large islands should be on average more genetically divergent from mainland source populations than those on small islands. Likewise, populations on distant islands should be more divergent than those on close islands. Published observations of a larger proportion of endemic species on large and distant islands support these predictions.  相似文献   

19.
Genetic diversity was estimated by allozyme analysis at 26 loci in black rat populations (Rattus rattus) from 15 western Mediterranean islands (Hyéres, Corsica, Sardinia and related islets). Although overall variability levels were low (H = 0.025), the mean heterozygosity values for the islands were similar to those for three reference mainland populations. Within the islands, however, genetic diversity varied in relation to island size and geographic isolation. In particular, most small insular populations were significantly more variable than those on both large and isolated islands. The generic relationships between island populations were established by FST analyses indicating possible geographic origins and patterns of colonization. The maintenance of unexpectedly high levels of variability in the small island populations is discussed in relation to changes in the demographic and social structure observed in these populations. These island populations of black rat illustrate how genetic diversity may be efficiently maintained in a series of interconnected spatially fragmented populations.  相似文献   

20.
The Galápagos petrel (Pterodroma phaeopygia) is endemic to the Galápagos archipelago, where it is known to breed only on five islands. The species has been listed as critically endangered due to habitat deterioration and predation by introduced mammals. Significant morphological and behavioural differences among petrels nesting on different islands suggest that island populations may differ genetically. Furthermore, nesting phenology suggests that genetically differentiated seasonal populations may exist within at least one island. We analysed variation in six microsatellite loci and part of the mitochondrial ATPase 6/8 gene in 206 Galápagos petrels sampled from all five islands. No evidence of genetic structuring within islands was found, although statistical power was low. In contrast, significant differences occurred among island populations. For the microsatellite loci, private alleles occurred at all islands, sometimes at high frequency; global and pairwise estimates of genetic differentiation were all statistically significant; Bayesian analysis of genotypes frequencies provided strong support for three genetic populations; and most estimates of migration between populations did not differ significantly from zero. Only two ATPase haplotypes were found, but the geographic distribution of haplotypes indicated significant differentiation among populations. For conservation purposes, populations from Floreana, Santa Cruz, San Cristóbal and Santiago should be regarded as separate genetic management units. Birds from Isabela appear to be derived recently from the Santiago population, and the population on San Cristóbal appears to be a mixture of birds from other populations. However, considering ecological and behavioural differences among birds from different islands, we recommend that all five populations be protected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号