首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The interactive effects of tillage and compaction from wheel traffic were tested on active bacterial and fungal biomass and organic matter decomposition in the planting row at the surface and within the plow layer of a Norfolk loamy sand (fine-loamy, siliceous, thermic Typic Kandiudult). This experiment was arranged in a split plot design with four replications. Main plots were compaction: 1) compaction from wheel traffic and 2) no compaction from wheel traffic; subplots were tilalge system: 1) conventional tillage and 2) no-tillage. Despite a significant increase in bulk density, compaction from wheel traffic and tillage system had no consistent effects on active bacterial or active fungal biomass either in the top 7.5 cm of soil or in the 15–20 cm depth of soil. Active bacteria and fungal biomass at both depths were usually lower in the winter months than the spring, summer or autumn months. Organic matter decomposition, nutrient mineralization and nutrient availability did not differ among soils that received tillage or compaction from wheel traffic. Organic matter decomposition was greater in all treatments when decomposition bags were buried at 15–20 cm than when they were placed on the surface of the soil. The soil that was sampled was an extremely sandy soil so there was probably not a significant effect of compaction on soil aeration and structure.Mention of trade names or commercial products does not constitute endorsement or recommendation of use.Mention of trade names or commercial products does not constitute endorsement or recommendation of use.  相似文献   

2.
Gavito  Mayra E.  Miller  Murray H. 《Plant and Soil》1998,199(2):177-186
We conducted a field experiment to test the hypothesis that improved phosphorus nutrition occurs in maize plants with rapid arbuscular (AM) mycorrhizae development at early developmental stages and that this also is reflected in dry matter allocation and final yield. A split-split plot design was used with previous crop (Zea mays L.-maize and Brassica napus L.-canola), tillage practices (no-tillage or conventional tillage) and P fertilization (5 levels) as factors chosen to modify mycorrhizae development at early developmental stages of maize. Previous cropping with canola resulted in decreased shoot-P concentration and shoot growth of maize at early stages. No-tillage resulted in higher shoot-P concentration but lower shoot weight than conventional tillage. Greater shoot-P uptake was related to a rapid intraradical development of mycorrhizae (previous crop of maize) or rapid connection to a mycorrhizal mycelium network (no-tillage treatments). Maize yield and harvest index were lower after cropping with canola. The yield for conventional tillage was higher than that for no-tillage but the harvest index was lower. The hypothesis was supported at early stages of maize growth by the effect of previous crop but not by results of tillage, because an unknown factor reduced growth in the no-tillage system. The hypothesis was supported at maturity by increased biomass allocation to grain relative to total shoot weight in treatments with greater shoot-P concentration at early stages.  相似文献   

3.
在江西双季稻田进行长期田间定位试验,分析了多年保护性耕作对水稻产量、土壤理化性状及生物学性状的影响。连续8a稻田保护性耕作处理的平均产量高于传统耕作4.46%—8.79%,各处理的有效穗数、每穗粒数和结实率均高于对照,而各处理间穗长和千粒重差异不显著。实行稻田保护性耕作处理的土壤容重低于传统耕作3.6%—5.6%,而总孔隙度和毛管孔隙度分别高出传统耕作1.6%—17.4%、2.4%—16.7%。与传统耕作相比,连续8a保护性耕作显著提高了土壤有机质(2.9%—10.0%)、有效磷(4.8%—31.6%)、速效钾(9.7%—25.7%)。在2005年免耕+插秧的土壤真菌数量最多,显著高于对照处理51.6%,免耕+抛秧在2008年达到最大,显著高于对照处理54.1%。2012年免耕+抛秧、免耕+插秧显著高于对照126.1%、121.1%;另外,各处理间过氧化氢酶、脲酶活性均差异不显著。8a间土壤转化酶活性变化范围在0.292—0.451 mg/g之间,其中2005—2007、2012年均是免耕+抛秧达到最大,与对照相比,增加范围为72.7%—137.7%,且差异显著(P0.05)。因此,实行稻田保护性耕作是适合江南丘陵区双季稻区农业可持续发展的有效模式之一,其中免耕+抛秧和免耕+插秧两种方式效果最为显著。  相似文献   

4.
为揭示土壤真菌群落对免耕、覆盖及有机肥施用的响应机制,在宁夏南部山区冬小麦农田连续3年采用免耕覆盖+施有机肥(NF)、免耕覆盖+不施有机肥(NC)、传统耕作不覆盖+施有机肥(TF)和传统耕作不覆盖+不施有机肥(TC)4个处理,依托Illumina MiSeq 高通量测序平台,研究了土壤真菌群落组成、多样性及其与土壤环境因子间的关系。结果表明: 4个处理共获得3490个可操作分类单元(OTUs),其中含有一些未知真菌。在已知的真菌群落中,子囊菌门和担子菌门为优势菌门,其相对丰度占总丰度的82.1%~94.2%,且TF处理下子囊菌门座囊菌纲的相对丰度最高,NF处理下担子菌门银耳菌纲的相对丰度最高。4个处理真菌群落多样性指数(Shannon和Simpson指数)依次为NC>TC>NF>TF。多元分析结果表明,微生物生物量碳是影响担子菌门和接合菌门相对丰度的主要因素,而土壤全磷、速效钾和速效磷含量高低是驱动子囊菌门真菌相对丰度变化的关键因素。在宁夏南部山区推广以免耕覆盖并施用有机肥的保护性耕作措施有利于提高土壤真菌群落多样性。  相似文献   

5.
Celastrus orbiculatus is an exotic liana that exploits disturbed areas in the eastern United States and once established, can invade into relatively undisturbed forest ecosystems. Mechanisms facilitating its invasion are not fully understood, including whether associations with mycorrhizal fungi are related to its invasion success. We grew C. orbiculatus in a greenhouse and compared growth responses when mycorrhizal fungi or a fungistatic were added to growth media that was either phosphorus-limiting or non-limiting. Results indicated C. orbiculatus forms association with native endomycorrhizal but not with native ectomycorrhizal fungi regardless of phosphorus level. Plants grown with sufficient phosphorus had significantly higher above-ground morphological and physiological traits but significantly lower root biomass compared to plants grown in low phosphorus conditions. Although above-ground traits did not vary significantly between mycorrhizal versus fungistatic added treatments, root biomass was significantly less in plants inoculated with mycorrhizae compared to plants receiving fungistatic. Under low phosphorus conditions, mycorrhizae appeared to be beneficial to the plant although being mycorrhizal did not fully compensate for insufficient phosphorous in the greenhouse situation where pot size limited soil exploration. Our results suggest that in the presence of mycorrhizae or sufficient phosphorus, C. orbiculatus can respond by preferentially allocating energy to above-ground growth, thus supporting its liana growth form onto trees and allowing the exotic to outcompete native species for light resources. If mycorrhizal fungi aid in acquisition of phosphorus, this association could be related to the invasion success of C. orbiculatus.  相似文献   

6.
Volume Contents   总被引:5,自引:1,他引:4  
Rasse  Daniel P.  Smucker  Alvin J.M. 《Plant and Soil》1998,204(2):203-212
Distribution of root systems through soils and recolonization of root channels by successive crops are fundamental, though difficult to study, processes of soil ecology. This article reports a minirhizotron (MR) study of corn and alfalfa root systems throughout the soil profile of Kalamazoo loam (fine-loamy, mixed, mesic Typic Hapludalf) monolith lysimeters for a three-year succession of corn, alfalfa and corn. Multiple-date comparisons within and between years were conducted to estimate total root densities in each soil horizon. Root recolonization was assessed by comparing every video frame of paired minirhizotrons, from recordings conducted one growing season apart. Distributions of corn root systems were modified by tillage practices. In 1994, root populations of corn in the Bt1 horizon peaked 75–90 days after planting (DAP). Numbers of corn roots per m2 in the Bt1 horizon were consistently higher for no-tillage (NT) than for conventional tillage (CT) lysimeters, in 1994 and 1996. Distribution of alfalfa roots within the soil profile was not significantly modified by tillage. However, alfalfa root decomposition rates responded to conventional and no-tillage practices and were specific for each soil horizon. Corn root systems growing in soils previously cropped with alfalfa presented similar patterns of root distribution by horizons as that of the previous alfalfa crop. Successive corn root systems did not display similar distribution patterns throughout the soil profile from one growing season to the next. Proportions of roots of the current crop recolonizing root induced macropores (RIMs) of the previous crop averaged 18% for corn after corn, 22% for alfalfa after corn and 41% for corn after alfalfa, across Bt horizons and tillage treatments. In conclusion, distribution of corn root systems appeared to be modified by tillage practices and root recolonization of RIMs was controlled by the preceding crop.  相似文献   

7.
冬小麦免耕覆盖与生物有机肥施用对土壤细菌群落的影响   总被引:1,自引:0,他引:1  
王小玲  马琨  伏云珍  安嫄嫄  汪志琴 《生态学报》2020,40(19):7030-7043
为揭示保护性耕作措施对土壤细菌群落结构及多样性的影响规律,选取免耕覆盖+施生物有机肥(NF)、免耕覆盖+不施生物有机肥(NC)、传统耕作不覆盖+施生物有机肥(TF)和传统耕作不覆盖+不施生物有机肥(TC)4个处理,以农田土壤生态系统为研究对象,利用16S rDNA基因Illumina MiSeq高通量测序技术,研究了冬小麦免耕覆盖与生物有机肥施用对土壤细菌群落结构及多样性的影响。结果表明:1)与TC处理相比,NF处理显著降低了土壤pH (P=0.03*),增加了土壤全氮(P=0.002**)、总碳含量(P=0.0001**,P=0.007**),影响了土壤碳/氮比分配(P=0.003**)。2)从16个土壤样本中共获得细菌27门、86纲、125目、213科和315属,其中放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和变形菌门(Proteobacteria)为优势菌门,其相对丰度约占总丰度的82.40%。3)与传统耕作施生物有机肥处理相比,免耕覆盖施生物有机肥增加了土壤细菌的多样性指数(Simpson指数和Shannon指数),降低了ACE丰富度指数。4)NMDS及多元分析结果表明:土壤细菌群落丰富度指数、多样性指数均与土壤pH、速效磷和土壤碳/氮比成正相关,与土壤微生物生物量碳(SMBC)和土壤总碳成负相关;其中,土壤pH和SMBC分别是影响酸杆菌门和放线菌门的主要驱动因子。施生物有机肥和耕作措施两种因素均对土壤细菌群落结构组成产生了影响,但以施用生物有机肥对土壤细菌群落多样性的影响较明显;此外,施用生物有机肥在传统耕作和免耕覆盖两种情况下均增加了冬小麦产量,但以传统耕作施生物有机肥处理最明显。因此,传统耕作配施生物有机肥是宁夏南部山区改善土壤理化性质、增加土壤细菌群落丰富度和多样性的重要途径。  相似文献   

8.
不同耕作方法对水稻生长和土壤生态的影响   总被引:48,自引:1,他引:47  
1998-1999年在华南双季稻田研究了不同耕作方法水稻生长和土壤生态的影响,结果表明,在抛秧条件下,免耗水稻分蘖数,有效穗数和实粒数减少,水稻产量比传统耕降低13.4%,经济效益减少10.9%,免耕土壤容重和硬度增大,癖孔隙度,非毛管孔隙度和有效P,K降低,放线菌和真菌数量减少,而土壤细菌数量增加,酶活性增强,轻耕和传统耕的土壤物理化学性质,微生物数量和酶活性相似,但轻耕水稻有效穗数和千粒重较高,水稻产量比传统耕增加2.1%,轻耕降低了耕作成本,经济效益比传统耕作提高11.0%。  相似文献   

9.
Fabião  A.  Madeira  M.  Steen  E.  Kätterer  T.  Ribeiro  C.  Araújo  C. 《Plant and Soil》1995,168(1):215-223
The distribution along the soil profile of Eucalyptus globulus root biomass was followed in a plantation in central Portugal at 1, 2 and 6 years after planting, using an excavation technique. The experimental design consisted of a control (C) and 3 treatments: application of solid fertilizers twice a year (F), irrigation without the application of fertilizers (I) and irrigation combined with liquid fertilizers (IL). Below- and above-ground biomass decreased as follows: IL>I>F>C. So, water stress limited growth more severely than nutrient stress. The roots rapidly colonized the top soil volume (0–20 cm depth) during the first year after planting. Fine root biomass 6 years after planting was 2.2, 1.8 and 1.6 times higher in IL treatment than it was respectively in control, and in F and I treatments. The distribution of fine roots along the soil profile 6 years after planting was more even in IL compared to the other treatments. However, fine roots in the top soil were more concentrated along the tree rows in the irrigated treatments than in the others. The proportion of below-ground biomass relative to the total tree biomass and the root/shoot ratio were higher in C than in the treatments at early growth stages. This pattern was not so clear 6 years after planting, due to the increased proportion of the tap root relative to total biomass, especially in the IL treatment.  相似文献   

10.
为探明保护性耕作对蔗田土壤及甘蔗生长的影响,该研究设置2种耕作方式(常规耕作、粉垄耕作)与2种施肥水平(减量施肥20%、常规施肥),并于甘蔗苗期后在甘蔗行间近根部覆盖豆科秸秆,以第二年宿根蔗为研究对象,采用染色示踪法测定秸秆覆盖下蔗田土壤优先流特征,同时测定分析甘蔗株高、茎围、地下根系生物量、产量及品质等重要农艺性状。结果表明:(1)粉垄耕作方式下蔗田土壤优先流发生速度快且活跃,添加秸秆覆盖降低了土壤优先流发生程度,增加了土壤水分在10~25 cm土层的横向运移能力,在一定程度上提高了土壤蓄水能力。(2)粉垄保护性耕作在秸秆覆盖下提高了甘蔗根系生物量和产量,秸秆覆盖下粉垄免耕宿根蔗根系生物量提高了8.97%~25.54%,并且减量施肥处理中秸秆覆盖宿根蔗伸长期地下根系生物量显著高于无秸秆覆盖,秸秆覆盖下甘蔗株高提高了4.2%~13.1%; 在减量施肥处理中,粉垄耕作添加秸秆覆盖甘蔗产量提高了16.27%,并且添加秸秆覆盖较常规施肥中无秸秆覆盖,产量提高了5.95%。(3)粉垄保护性耕作利于提高甘蔗品质,对比无秸秆覆盖处理,粉垄耕作下秸秆覆盖后显著提高了甘蔗蔗汁视纯度,并且宿根蔗纤维分、蔗汁锤度、转光度和蔗糖分均有提升。综上认为,免耕秸秆覆盖可作为粉垄红壤坡耕地蔗田保护性生产调控方式。  相似文献   

11.
不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究   总被引:94,自引:8,他引:86  
以长期定位试验为基本材料,研究了不同耕作方式对土壤动物、微生物及酶活性的影响.结果表明,0~20cm土壤层内大、中、小型土壤动物垄作免耕为14700个·m^-22,冬水免耕为10450个·m^-22水旱轮作为7950个·m^-22常规平作为6275个·m^-22,垄作免耕处理土壤动物的数量是常规平作的2.34倍.土壤微生物数量和土壤微生物生物量氮因季节而异,总体上是春秋多而夏季少,土壤酶活性表现出表层高,底层低.土壤微生物数量、土壤微生物生物量氮及土壤酶活性不同处理间仍是垄作免耕>水旱轮作>冬水免耕>常规平作,表明垄作免耕有利于改善稻田土壤生态环境。有利于土壤肥力的提高。  相似文献   

12.
保护性耕作对农田土壤水分和冬小麦产量的影响   总被引:4,自引:0,他引:4  
保护性耕作是提高土壤蓄水保墒能力并增加作物产量的重要农艺措施之一.基于河南省长期定位试验2011-2016年数据,分析不同耕作措施(传统耕作、免耕和深松处理)对土壤水分、作物产量和水分利用效率的影响.结果表明: 2011-2016年免耕和深松耕作处理下冬小麦拔节期平均相对保墒率分别为7.3%和-0.68%,且免耕较传统耕作显著提高了冬小麦拔节期0~60 cm土壤贮水量.与传统耕作相比,免耕提高了冬小麦拔节期、扬花期、灌浆期和成熟期0~100 cm土壤平均含水量,而深松耕作并未明显提高冬小麦拔节期土壤平均含水量.此外,免耕较传统耕作能够显著提高冬小麦产量和水分利用效率,尤其在较干旱年份其增产效果更优.因此,免耕的蓄水保墒及增产效果在较干旱年份明显优于深松耕作.  相似文献   

13.
Management of common root rot (Aphanomyces euteiches Drechs.) in peas (Pisum sativum L.) is sought primarily by host crop avoidance for several years. Soil compaction is known to aggravate A. euteiches disease in peas but effects on infection and subsequent symptom development are not sufficiently known to assist in cultural control. Several isolated observations have noted that oat crop residues may suppress A. euteiches infection and disease in pea roots. The individual and combined influence (a factorial combination of two factors each at two levels) of a prior oat crop and soil compaction were studied for their effects on common root rot severity in processing peas grown in an A. euteiches disease nursery on a fine-textured soil in the northern Corn Belt of the USA. A previous crop of summer oats relative to prior-year peas significantly suppressed common root rot and increased pea fresh vine weight 210% at peak bloom stage. Both fresh vine weight and green pea yield were reduced as much as 63% by soil compaction and increased as much as 48% by a prior oat crop. Greater soil bulk density at the 10 to 25-cm depth identified wheel traffic compaction patterns in each year. A 10-fold reduction of saturated hydraulic conductivity in the 10 to 25-cm compacted zone and high soil-water potentials within the upper 60 cm both confirmed an impaired water drainage, especially during infiltration events. These observations support the use of a previous full season or summer oat crop jointly with chisel plowing, plus the prevention of excessive traffic during secondary tillage and planting, to reduce common root rot in a field infested with A. euteiches. Shallow incorporation of oat shoot and root residue by chiseling could be a crucial component of the cultural control of the disease. R Rodriguez Kabana Section editor  相似文献   

14.
探明耕作方式和亏缺灌溉对麦后移栽棉产量和水分利用的效应,对于建立麦后移栽棉的适宜耕作方式及灌溉制度十分重要.在大田条件下设置了翻耕和免耕2种耕作方式(灌水定额均为45 mm)及相应减小50%灌水定额的亏缺灌溉,分析了不同耕作方式和亏缺灌溉对棉花耗水规律、籽棉产量、水分利用效率和纤维品质的影响.结果表明:与翻耕相比,免耕减少了棉田20.3%的棵间土壤蒸发;不论何种耕作方式,亏缺灌溉在不影响棉花产量和纤维品质的同时,有效降低了耗水量,提高了水分利用效率.在喷灌条件下,灌水定额为22.5 mm的免耕耕作方式,不仅可有效降低麦后移栽棉田间无效棵间土壤蒸发,还可实现节水、优质、高产的有效统一.  相似文献   

15.
王丽  李军  李娟  柏炜霞 《生态学杂志》2014,25(3):759-768
2007—2012年在陕西合阳连作玉米田进行保护性轮耕与施肥长期定位试验,设置免耕/深松(NT-ST)、深松/翻耕(ST-CT)和翻耕/免耕(CT-NT)3种隔年交替轮耕处理和连续免耕(NT-NT)、连续深松(ST-ST)、连续翻耕(CT-CT)3种连耕处理及平衡施肥、低肥和常规施肥3种施肥处理,分析了0~40 cm土壤团聚体分布、平均质量直径(MWD)、几何平均直径(GMD)、分形维数(D)及0~60 cm土壤有机碳(SOC)含量.结果表明: 随着耕作强度的增加,土壤团聚体总含量减小,稳定性降低,有机碳损失增大;连续免耕和轮耕增大了土壤团聚体MWD和GMD,减小分形维数,增加了粒径大于0.25 mm团聚体(R0.25)和SOC含量.在相同施肥处理下,团聚体R0.25表现为NT-NT>NT-ST>NT-CT>ST-ST>CT-ST>CT-CT;在相同耕作方式下,平衡施肥和低肥处理下土壤团聚体比常规施肥更稳定.通过对土壤团聚体分形维数进行数学拟合,干筛法和湿筛法所测土壤团聚体的分形维数分别为2.247~2.681和2.897~2.976. 0~30 cm土层土壤团聚体分形维数均表现为连续免耕和轮耕显著低于连续翻耕(CT-CT),随土层加深分形维数增大,在40 cm处趋于稳定.施肥对不同土层有机碳含量的影响差异显著(P<0.05),随土层加深有机碳含量呈递减趋势,平衡施肥处理下有机碳积累量较常规施肥增加了6.9%.土壤有机碳含量随团聚体粒径的增大而增加,0.25~2 mm粒径土壤团聚体含量对有机碳积累的影响达到显著水平(P<0.01),确定系数R2为0.848.  相似文献   

16.
The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain.  相似文献   

17.
Root and soil water distribution was studied in a mature drip-irrigated apricot (Prunus armeniaca L. cv. Búlida) orchard with different soil tillage practices, in a loamy textured soil with a 7% slope, located in Murcia (SE Spain). Three treatments were applied between tree rows:control (no-tillage), whereby, following the common practice in the area, weeds were cut back to ground level by a blade attached to a tractor; perforated treatment, where the soil surface was mechanically perforated with an adapted-plough; and mini-catchment treatment, consisting of mini-catchments with low banks manually raised perpendicular to the line of emitters. Almost all of the apricot root system was located in the first 0.75 m of soil depth, with 91% in the first 0.50 m. More than 75% of the roots corresponded to thin roots, with a diameter less than 0.2 mm. Both tillage treatments decreased runoff compared with the control treatment, while the mini-catchment treatment showed the highest change in soil water content after rainfall events. The mini-catchment treatment was performed in an attempt to reduce the rainwater running down the slope, leaving the accumulated water near plant roots, an effect which was responsible for the higher root length density (RLD) values found in this treatment. In addition, roots were distributed over a wider area, providing higher RLD values up to 1 m from the emitter, meaning that a higher soil volume was explored. For these reasons, the mini-catchment treatment was seen to be the most beneficial soil tillage treatment for optimising water use in semiarid conditions.  相似文献   

18.
渭北旱作麦田长期保护性耕作土壤肥力特征综合评价   总被引:3,自引:0,他引:3  
王倩  李军  宁芳  孙磊  温鹏飞 《应用生态学报》2018,29(9):2925-2934
以渭北旱作麦田10年长期定位试验4种土壤物理指标和7种化学指标组成的土壤肥力性质为评价指标,研究长期实施6种保护性耕作处理后11种土壤指标的累积效应,并运用主成分分析对不同耕作处理下土壤肥力的累积效果进行综合评分,以期为渭北旱塬土壤可持续利用和管理提供科学依据.结果表明: 与传统连续翻耕(CT/CT)比较,免耕与深松轮耕(NT/ST)、深松与翻耕轮耕(ST/CT)、翻耕与免耕轮耕(CT/NT)处理土壤容重分别降低了6.6%、5.9%、6.6%,连续免耕(NT/NT)与连续翻耕差异不明显.>0.25 mm力稳性团聚体含量以NT/NT最高,水稳性团聚体含量以NT/ST最高.与传统翻耕相比,5种耕作处理力稳性团聚体增加了1.7%~10.1%,土壤有机质增加了0.6%~11.2%,氮、磷、钾含量也均有提高.通过主成分分析将11种土壤指标分为两个主成分综合表征土壤质量,第1主成分的贡献率为75.5%,在其上有较高载荷的指标为土壤有机质、水稳性团聚体、全氮、全磷、全钾、碱解氮、速效磷、速效钾含量,容重、孔隙度,第2主成分的贡献率为13.2%,力稳性团聚体在其上有较高载荷,两者共解释了88.6%的原变量.长期不同耕作效果逐渐累加形成的土壤肥力水平依次表现为:NT/ST>ST/CT>CT/NT>NT/NT>ST/ST>CT/CT,NT/ST处理形成了一个相对平衡和较高肥力质量的土壤状况,为渭北旱作麦田最适宜的轮耕模式.  相似文献   

19.
不同耕作措施对黄土高原旱地土壤呼吸的影响   总被引:12,自引:1,他引:11  
在甘肃省定西市李家堡镇设置不同耕作措施试验,对春小麦、豌豆双序列轮作下的土壤呼吸及其对应时间的冠层温度、土壤水分进行了测定.结果表明:春小麦和豌豆在整个生育期内的土壤呼吸都表现出不同的变化趋势,春小麦地土壤呼吸在拔节前期、灌浆期和收后分别达到高峰期;豌豆地土壤呼吸在五叶期、吐丝期、开花结荚期和收后分别达到高峰期.免耕秸秆覆盖处理和传统耕作处理下春小麦地土壤呼吸日变化明显,免耕秸秆覆盖处理明显低于传统耕作处理;而豌豆地土壤呼吸日变化不明显.春小麦和豌豆冠层温度均与土壤呼吸呈显著线性相关,春小麦孕穗期相关性最高,灌浆期次之;豌豆开花结荚期相关性最高,分枝期次之.土壤含水量与土壤呼吸间存在极显著的凸型抛物线型相关,保护性耕作下的相关性都高于传统耕作,其中免耕秸秆覆盖处理的春小麦地和豌豆地土壤含水量与土壤呼吸的相关性在各层次土壤中均为最高,10~30 cm土壤含水量对春小麦地土壤呼吸的影响最大,5~10 cm土壤含水量对豌豆地土壤呼吸的影响最大.与传统耕作相比,免耕秸秆覆盖、免耕、传统耕作秸秆还田、传统耕作结合地膜覆盖、免耕结合地膜覆盖5种保护性耕作措施都能不同程度地降低土壤呼吸,其中免耕秸秆覆盖优势最明显.  相似文献   

20.
Novel management practices are needed to increase dryland soil organic matter and crop yields that have been declining due to long-term conventional tillage with spring wheat (Triticum aestivum L.)-fallow system in the northern Great Plains, USA. The effects of tillage, crop rotation, and cultural practice were evaluated on dryland crop biomass (stems + leaves) yield, surface residue, and soil organic C (SOC) and total N (STN) at the 0?C20?cm depth in a Williams loam (fine-loamy, mixed, superactive, frigid, Typic Argiustolls) from 2004 to 2007 in eastern Montana, USA. Treatments were two tillage practices [no-tillage (NT) and conventional tillage (CT)], four crop rotations [continuous spring wheat (CW), spring wheat-pea (Pisum sativum L.) (W-P), spring wheat-barley (Hordeum vulgaris L.) hay-pea (W-B-P), and spring wheat-barley hay-corn (Zea mays L.)-pea (W-B-C-P)], and two cultural practices [regular (conventional seed rates and plant spacing, conventional planting date, broadcast N fertilization, and reduced stubble height) and ecological (variable seed rates and plant spacing, delayed planting, banded N fertilization, and increased stubble height)]. Crop biomass and N content were 4 to 44% greater in W-B-C-P than in CW in 2004 and 2005 and greater in ecological than in regular cultural practice in CT. Soil surface residue amount and C and N contents were greater in NT than in CT, greater in CW, W-P, and W-B-C-P than in W-B-P, and greater in 2006 and 2007 than in 2004 and 2005. The SOC and STN concentrations at 0?C5?cm were 4 to 6% greater in CW than in W-P or W-B-P in NT and CT from 2005 and 2007. In 2007, SOC content at 10?C20?cm was greater in W-P and W-B-P than in W-B-C-P in CT but STN was greater in W-B-P and W-B-C-P than in CW in NT. From 2004 to 2007, SOC and STN concentrations varied at 0?C5?cm but increased at 5?C20?cm. Diversified crop rotation and delayed planting with higher seed rates and banded N fertilization increased the amount of crop biomass returned to the soil and surface residue C and N. Although no-tillage increased surface residue C and N, continuous nonlegume cropping increased soil C and N levels at the surface layer compared with other crop rotations. Continued return of crop residue from 2004 to 2007 may increase soil C and N levels but long-term studies are needed to better evaluate the effect of management practices on soil C and N levels under dryland cropping systems in the northern Great Plains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号