首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Summary By use of an antiserum raised against the Nterminal sequence pGlu-Leu-Asn-Phe..., common to red pigment-concentrating hormone (RPCH) of Pandalus borealis and three structurally similar insect neuropeptides, putative RPCH-immunopositive structures were revealed in the eyestalks of Carcinus maenas and Orconectes limosus and in the brain and thoracic ganglion (TG) of C. maenas. In the eyestalks, complete neurosecretory pathways were demonstrated, consisting of perikarya, axons and terminals in the neurohemal organ, the sinus gland (SG). In C. maenas approximately 20 small RPCH cells are present as a distinct group adjacent to the medulla terminalis ganglionic X-organ (MTGXO, XO). They are morphologically different from the larger XO perikarya, which contain the crustacean hyperglycemic hormone (CHH). The occurrence of both neuropeptides in distinct neurosecretory pathways was ascertained by immunologic double staining (PAP/gold) or by analysis of consecutive sections. In addition, a group of two to four larger RPCH cells is located in the proximal part of the MT. In O. limosus, RPCH cells are found in the XO. Cells corresponding to the proximal MT cells of C. maenas were not found. In both species, a few more weakly staining immunopositive perikarya were observed in clusters of cell somata of the optic ganglia. It is uncertain whether these are connected to the SG.In the brain of C. maenas, several smaller and three larger perikarya were consistently observed in the dorsal lateral cell somata adjacent to the olfactory lobes. In the optic nerve, two axons that project into the eyestalk were stained. Some axons were also observed in the ventral median neuropil of the brain. In the TG, RPCH cells were found in small numbers in median positions, i.e., in clusters of somata between the ganglia of the appendages.HPLC analysis of the red pigment-concentrating activity from the SG of C. maenas revealed that the retention time of the neuropeptide is similar but not identical to that of Pandalus borealis RPCH.  相似文献   

2.
The eyestalk of Astacus leptodactylus is investigated immunocytochemically by light, fluorescence, and electron microscopy, using an antiserum raised against purified crustacean hyperglycemic hormone (CHH). CHH can be visualized in a group of neurosecretory perikarya on the medualla terminalis (medulla terminalis ganglionic X-organ: MTGX), in fibers forming part of the MTGX-sinus gland tractus, and in a considerable part of the axon terminals composing the sinus gland. Immunocytochemical combined with ultrastructural investigations led to the identification of the CHH-producing cells and the CHH-containing neurosecretory granule type.  相似文献   

3.
Summary An antiserum was obtained by immunizing rabbits with sinus gland extracts from Carcinus maenas. The antiserum is almost exclusively directed against neurosecretory material in the medulla terminalis X-organ (MTGXO), as demonstrated by the peroxidase—antiperoxidase (PAP) staining method in light and electron microscopic studies. Radioimmunological binding studies indicate the presence of antibodies against the crustacean hyperglycemic hormone (CHH) or the black pigment dispersing hormone (BPDH) in the antiserum. The results suggest that the neurosecretory perikarya of the MTGXO are the sites of production of CHH and/or BPDH.Supported by the Deutsche Forschungsgemeinschaft (Ke 206/2)  相似文献   

4.
The crustacean X-organ–sinus gland (XO–SG) complex controls molt-inhibiting hormone (MIH) production, although extra expression sites for MIH have been postulated. Therefore, to explore the expression of MIH and distinguish between the crustacean hyperglycemic hormone (CHH) superfamily, and MIH immunoreactive sites (ir) in the central nervous system (CNS), we cloned a CHH gene sequence for the crab Portunus pelagicus (Ppel-CHH), and compared it with crab CHH-type I and II peptides. Employing multiple sequence alignments and phylogenic analysis, the mature Ppel-CHH peptide exhibited residues common to both CHH-type I and II peptides, and a high degree of identity to the type-I group, but little homology between Ppel-CHH and Ppel-MIH (a type II peptide). This sequence identification then allowed for the use of MIH antisera to further confirm the identity and existence of a MIH-ir 9 kDa protein in all neural organs tested by Western blotting, and through immunohistochemistry, MIH-ir in the XO, optic nerve, neuronal cluster 17 of the supraesophageal ganglion, the ventral nerve cord, and cell cluster 22 of the thoracic ganglion. The presence of MIH protein within such a diversity of sites in the CNS, and external to the XO–SG, raises new questions concerning the established mode of MIH action.  相似文献   

5.
Double labelling experiments were performed on the same tissue section at the electron microscopic level, in order to show the involvement of the opioid leucine-enkephalin (Leu-enk) in the modulation of crustacean hyperglycaemic hormone (CHH) mobilization. Both neuropeptides were stored in distinct axon terminals of the sinus gland ofCarcinus maenas. A post-embedding immunogold cytochemical technique for Leuenk, CHH and the CHH neurohormone related moult inhibiting hormone (MIH) was combined with a scintillator intensified autoradiographic method to demonstrate binding of the opioid antagonist [3H] naloxone. Ultrathin sections were successively incubated with antisera against Leu-enk, CHH or MIH, and the corresponding colloidal gold labelled antisera, followed by autoradiographic processing. At the ultrastructural level [3H] naloxone binding sites were easily recognized by their silver tracks after development. Opioid binding sites for [3H] naloxone were visualized only at membranes of CHH-containing axon terminals. These results provide morphological evidence for direct enkephalinergic control of CHH containing neurons in the sinus gland ofC. maenas and are furthermore the first autoradiographic demonstration of opioid binding sites in the nervous system of invertebrates.  相似文献   

6.
Summary By use of a new antiserum, raised against synthetic pigment-dispersing hormone (PDH) from Uca pugilator, immunoreactive structures were studied at the light-microscopic level in the eyestalk ganglia of Carcinus maenas and Orconectes limosus. PDH-reactivity was mainly found in two types of neurons that were located between the medulla interna (MI) and the medulla terminalis (MT) in both species. Several additional perikarya were located in the distal part of the MI in O. limosus. In C. maenas, two to three PDH-positive perikarya were found in the region of the X-organ (XO) in the MT. Processes from single and clustered cells could be traced into all medullae of the eyestalk. Axons from the immunoreactive perikarya running between MI and MT form a larger tract that traverses the MT. Fibers from this tract give rise to extensive arborizations and plexuses throughout the proximal MT. A plexus containing very fine fibers is located at the surface of the MT in a position distal to the XO-area of C. maenas only. The proximal plexus also receives PDH-positive fibers through the optic nerve. PDH-perikarya in the cerebral ganglion may also project into the more distal regions of the eyestalk. Distal projections of the perikarya between the MI and MT consist of several branches. Most of these are directed toward the MI and ME (medulla externa) wherein they form highly organized, layered plexuses. One branch was traced into the principal neurohemal organ, the sinus gland (SG). In the SG, the tract gives off arborizations and neurosecretory terminals. It then proceeds in a proximal direction out of the SG, adjacent to the MT. Its further course could not be elucidated. The lamina ganglionaris (LG) receives PDH-fibers from the ME and fine processes from small perikarya located in close association with the LG in the distal part of the first optic chiasma. The architecture of PDH-positive elements was similar in both C. maenas and O. limosus. The distribution of these structures suggests that PDH is not only a neurohormone but may, in addition, have a role as a neurotransmitter or modulator. Immunostaining of successive sections with an FMRF-amide antiserum revealed co-localization of FMRFamideand PDH-immunoreactivities in most, but not all PDH-containing perikarya and fibers. The axonal branch leading to the SG and the SG proper were devoid of FMRFamide immunoreactivity.  相似文献   

7.
Eyestalks of the palinuran species Jasus lalandii and Panulirus homarus, and the brachyuran species Carcinus maenas, were examined with antisera raised against purified crustacean hyperglycaemic hormone (cHH) of the astacidean species Homarus americanus and Procambarus bouvieri, as well as the brachyuran species Cancer pagurus. Other antisera used in this investigation were raised against purified moult-inhibiting hormone (MIH) of C. pagurus and vitellogenesis-inhibiting hormone (VIH) of H. americanus. Positive immunoreactions to all the antisera were localised in perikarya of the X-organ and the axon terminals in the sinus gland of all the crustaceans investigated. These results illustrate the existence of an immunological similarity, detectable at the immunocytochemical level, between the cHH/MIH/VIH neurohormones of the Astacidae, Palinura and Brachyura infraorders. Furthermore, results from consecutive tissue sections indicate that cHH, MIH and VIH are co-localised in a subpopulation of X-organ neurons.  相似文献   

8.
甲壳动物蜕皮抑制激素调控机制的研究进展   总被引:1,自引:0,他引:1  
甲壳动物的蜕皮过程主要是由Y器(Y-organ)分泌的蜕皮类固醇激素与X器-窦腺复合体(X-organ-sinus gland,XO-SG)分泌的蜕皮抑制激素MIH相互拮抗而进行调控的。而MIH调控机制较为复杂,且存在争议。本文就MIH调控机制的研究进展,包括研究方法,以及目前调控机制中争议最大的3个问题:MIH受体、cAMP与cGMP功能以及Ca2+功能作一综述。  相似文献   

9.
中华绒螯蟹窦腺神经末梢及X-器官神经分泌细胞的类型   总被引:5,自引:0,他引:5  
在电子显微镜下观察了性未成熟的中华绒螯蟹黄蟹的窦腺及X-器官的超微结构。X-器官位于眼柄神经节终髓的腹外侧,与窦腺位置斜相对,窦腺主要由神经分泌细胞的末梢和胶质细胞组成。神经末梢含有大量的膜结构包围的颗粒、线粒体、粗面内质网和许多电子透明的小泡,末梢外周有时可见指状突起。依据颗粒的大小、形状、电子致密度以及胞质特征,可区分出6种类型的窦腺神经末梢及7种X-器官神经分泌细胞。观察了末梢中神经分泌颗粒的胞吐作用方式的释放过程,并且尝试对窦腺不同末梢中的颗粒及X-器官神经分泌细胞中的颗粒作了比较,发现二者之间具有较好的对应性,即电子致密度无大的变化,形态特征相似,只是大小稍有增加。  相似文献   

10.
Lee KJ  Watson RD 《Peptides》2002,23(5):853-862
In crustaceans, the synthesis of ecdysteroid molting hormones is regulated by molt-inhibiting hormone (MIH), a neuropeptide produced by an eyestalk neuroendocrine system, the X-organ/sinus gland complex. Using sequence analysis software, two regions of the blue crab (Callinectes sapidus) MIH peptide were selected for antibody production. Two 14-mer peptides were commercially synthesized and used to generate polyclonal antisera. Western blot analysis revealed that each antiserum bound to proteins of the predicted size in extracts of C. sapidus sinus glands, and lysates of insect cells containing recombinant MIH. Thin section immunocytochemistry using either antiserum showed specific immunoreactivity in X-organ neurosecretory cell bodies, their associated axons and collaterals, and their axon terminals in the sinus gland.  相似文献   

11.
The effects of glutamate, aspartate, glycine, proline, alanine, taurine, glycerol, glucose and lactate injections on the haemolymph levels of the crustancean hyperglycemic hormone and/or glucose and lactate in the shore crab, Carcinus maenas, were investigated. Only glucose and lactate caused significant changes of hyperglycaemic hormone levels. Glucose injections resulted in a drop of both hormone and lactate, while lactate had an opposite effect, i.e. it raised both crustacean hormone and glucose levels. The results suggest that during increases in glycolytic flux, lactate may cause a release of hormone by a positive feedback mechanism. The hormone would then stimulate glycogenolysis, thus increasing glucose availability. If more glucose is released than is metabolized, excess glucose may leak from the cells and suppress crustancean hyperglycemic hormone release from the X-organ/sinus gland complex by negative feedback.Abbreviations ABTS 2,2-azino-bis (3-ethylbenzthiazoline sulphonic acid) - ANOVA one-way analysis of variance - BSA bovine serum albumin - BW body weight - CHH crustacean hyperglycemic hormone - ELISA cnzyme-liked immunosorbent assay - GIH gonadinhibiting hormone - IgG immunoglobin G - MIH moult-inhibiting hormone - MTGXO medulla terminalis X-organ - PB sodium phosphate buffer - PBS phosphate buffered saline - Pi inorganic phosphate - XO-SG X-organ-sinus gland complex  相似文献   

12.
This study deals with the localization of crustacean hyperglycemic hormone (CHH, Pej-SGPIII) and molt-inhibiting hormone (MIH, Pej-SGP-IV) in the eyestalk of the kuruma prawn Penaeus japonicus using immunohistochemistry. High-titer and highly specific antisera were raised in rabbits against synthetic Pej-SGP-III C-terminal peptide (Glu-Glu-His-Met-Ala-Ala-Met-Gln-Thr-Val-NH2) and Pej-SGP-IV C-terminal peptide (Val-Trp-Ile-Ser-Ile-Leu-Asn-Ala-Gly-Gln-OH), both of which were conjugated with bovine serum albumin by a cross linker. Eyestalks were removed from mature male prawns at the intermolt stage of the molting cycle and fixed in Bouin's solution. Serial sections stained immunohistochemically showed that neurosecretory cells of Pej-SGP-III and Pej-SGP-IV were located in the same cluster of the medulla terminalis ganglionic X-organ (MTGX), and that three kinds of neurosecretory cells, which were stained with anti-PejSGP-III antiserum and/or anti-Pej-SGP-IV antiserum were present. The number of neurosecretory cells which stained with both antisera was much fewer than that of neurosecretory cells which stained with one of the antisera only. The axon and axon terminals in the sinus gland were also stained and the staining density of the sinus gland was always deeper than that of the neurosecretory cells.  相似文献   

13.
We studied the ontogeny of the eyestalk structure and of the L-CHH and d-Phe3-CHH synthesis in the X-organ/sinus gland (XO/SG) complex by light microscopy and immunocytochemistry in the freshwater crustacean Astacus leptodactylus. The optic ganglia start to differentiate in embryos at EI 190 microm (EI: eye index; close to 410 microm at hatching). At EI 270 microm, the three medullae (externa, interna, and terminalis) and the lamina ganglionaris are present and are organized as in the adult eyestalk. The L-CHH was localized in perikarya of neuroendocrine cells, in their tracts, and in SG from the metanauplius stage to the adult. The d-Phe3-CHH was visualized in XO perikarya, in their tracts and in SG of embryos from EI 350 microm and in all later studied stages. Co-localization of both CHH stereoisomers always occurred in the d-Phe3-CHH-producing cells. These results show that the synthesis of CHH enantiomers starts during the embryonic life in A. leptodactylus, and that the d-isomer is synthesized later than its L-counterpart. We discuss the post-translational isomerization as a way to generate hormonal diversity and the putative relation between d-Phe3-CHH synthesis and the ability to osmoregulate, occurring late during the embryonic life of Astacus leptodactylus.  相似文献   

14.
Proteomics and signal transduction in the crustacean molting gland   总被引:1,自引:0,他引:1  
Regulation of the molting cycle in decapod crustaceans involves2 endocrine organs: the X-organ/sinus gland (XO/SG) complexlocated in the eyestalk ganglia and the Y-organ (YO) locatedin the cephalothorax. Two neuropeptides [molt-inhibiting hormone(MIH) and crustacean hyperglycemic hormone (CHH)] are producedin the XO/SG complex and inhibit ecdysteroidogenesis in theYO. Thus, YO activation is induced by eyestalk ablation (ESA),which removes the primary source of MIH and CHH. Cyclic nucleotides(cAMP and cGMP) and nitric oxide (NO) appear to mediate neuropeptidesuppression of the YO. Proteomics was used to identify potentialcomponents of signal transduction pathways ("targeted" or cell-mapproteomics) as well as assess the magnitude of protein changesin response to activation ("global" or expression proteomics)in the tropical land crab, Gecarcinus lateralis. Total proteinsin YOs from intact and ES-ablated animals were separated bytwo-dimensional gel electrophoresis and expression profileswere assessed by image analysis and gene clustering software.ESA caused a >3-fold increase in the levels of 170 proteinsand >3-fold decrease in the levels of 89 proteins; a totalof 543 proteins were quantified in total YO extracts. ESA inducedsignificant changes in the levels of 3 groups of proteins elutingfrom a phosphoprotein column and detected with phosphoproteinstaining of two-dimensional gels;  相似文献   

15.
Summary Light-microscopical observations with immunofluorescence and peroxidase staining procedures revealed leu-enkephalin-like immunoreactivity in axon profiles of the sinus gland (SG) and in single small neurons in the optic ganglia of the eyestalk of Carcinus maenas. Electron microscopy of the SG showed reactivity to be associated with neurosecretory granules 82±23 nm in diameter. High performance liquid chromatography of SG-extracts revealed radioimmunoreactive substances with the retention times of synthetic met- and leu-enkephalin and met-enkephalin-Arg6-Phe7, respectively.  相似文献   

16.
17.
This study deals with the localization of crustacean hyperglycemic hormone (CHH) and gonad-inhibiting hormone (GIH) in the eyestalk of larvae and postlarvae ofHomarus gammarus, by immunocytochemistry and in situ hybridization. The CHH and GIH neuropeptides are located in the perikarya of neuroendocrine cells belonging to the X-organ of the medulla terminalis, in their tract joining the sinus gland, and in the neurohemal organ itself, at larval stages I, II and III and at the first postlarval stage (stage IV). In all the investigated stages, the mRNA encoding the aforementioned neuropeptides could only be detected in the perikarya of these neuroendocrine cells. In stage I, approximately 19 CHH-immunopositive and 20 GIH-immunopositive cells are present, both with a mean diameter of 7±1 μm. GIH cells are preferably localized at the periphery of the X-organ surrounding the CHH cells that are centrally situated. Colocalization of CHH and GIH immunoreactions can be observed in some cells. The cell system producing CHH and GIH in the larval and postlarval eyestalk is thus functional and is morphologically comparable to the corresponding neuroendocrine center in the adult lobster.  相似文献   

18.
The structure of the precursor of a molt-inhibiting hormone (MIH) of the American crayfish, Orconectes limosus was determined by cloning of a cDNA based on RNA from the neurosecretory perikarya of the X-organ in the eyestalk ganglia. The open reading frame includes the complete precursor sequence, consisting of a signal peptide of 29, and the MIH sequence of 77 amino acids. In addition, the mature peptide was isolated by HPLC from the neurohemal sinus gland and analyzed by ESI-MS and MALDI-TOF-MS peptide mapping. This showed that the mature peptide (Mass 8664.29 Da) consists of only 75 amino acids, having Ala75-NH2 as C-terminus. Thus, C-terminal Arg77 of the precursor is removed during processing, and Gly76 serves as an amide donor. Sequence comparison confirms this peptide as a novel member of the large family, which includes crustacean hyperglycaemic hormone (CHH), MIH and gonad (vitellogenesis)-inhibiting hormone (GIH/VIH). The lack of a CPRP (CHH-precursor related peptide) in the hormone precursor, the size and specific sequence characteristics show that Orl MIH belongs to the MIH/GIH(VIH) subgroup of this larger family. Comparison with the MIH of Procambarus clarkii, the only other MIH that has thus far been identified in freshwater crayfish, shows extremely high sequence conservation. Both MIHs differ in only one amino acid residue ( approximately 99% identity), whereas the sequence identity to several other known MIHs is between 40 and 46%.  相似文献   

19.
Based on the amino acid sequence of the molt-inhibiting hormone of Carcinus maenas, two degenerated oligonucleotide primers were synthesized and used in the polymerase chain reaction. By use of complementary DNA of a library constructed from medulla terminalis-X-organ RNA of C. maenas as template, the specific complementary DNA between the primers was amplified, cloned and sequenced. This strategy revealed a DNA sequence for which the deduced amino acid sequence is identical to the recently published C. maenas molt-inhibiting hormone sequence as determined by Edman degradation. Visualization of messenger RNAs encoding molt-inhibiting hormone and crustacean hyperglycemic hormone in different perikarya of the X-organ was obtained using digoxigenin-labelled complementary RNA probes. Combination of immunocytochemical staining using polyclonal antisera against the native C. maenas neuropeptides and in situ hybridization performed on alternating sections confirmed the specificity of the reaction. The results show that there is no co-localization of molt-inhibiting hormone and crustacean hyperglycemic hormone at the messenger RNA and the protein level.  相似文献   

20.
Crustacean hyperglycemic hormone (CHH) from Carcinus maenas, a 72 amino acid neuropeptide, originates in neurosecretory perikarya in the eyestalk ganglia. Poly (A)RNA was isolated from these perikarya and a cDNA library was prepared. Screening of 20,000 clones with a 26-mer oligonucleotide, corresponding to a partial sequence of CHH, yielded one positive clone with an insert of approximately 2,000 bp, which contained the complete coding sequence for a pre-pro CHH. This precursor consists of a putative 26 amino acid signal sequence, a 38 amino acid peptide of unknown function (Peptide C), and the CHH sequence at the carboxyl end. The CHH-sequence is flanked N-terminally by a Lys-Arg cleavage site and C-terminally by the tetrapeptide Gly-Arg-Lys-Lys which is followed by the stop codon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号