首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase   总被引:11,自引:0,他引:11  
Based on the observation that the Na(+)/K(+)-ATPase alpha subunit contains two conserved caveolin-binding motifs, we hypothesized that clustering of the Na(+)/K(+)-ATPase and its partners in caveolae facilitates ouabain-activated signal transduction. Glutathione S-transferase pull-down assay showed that the Na(+)/K(+)-ATPase bound to the N terminus of caveolin-1. Significantly, ouabain regulated the interaction in a time- and dose-dependent manner and stimulated tyrosine phosphorylation of caveolin-1 in LLC-PK1 cells. When added to the isolated membrane fractions, ouabain increased tyrosine phosphorylation of proteins from the isolated caveolae but not other membrane fractions. Consistently, ouabain induced the formation of a Na(+)/K(+)-ATPase-Src-caveolin complex in the isolated caveolae preparations as it did in live cells. Finally, depletion of either cholesterol by methyl beta-cyclodextrin or caveolin-1 by siRNA significantly reduced the caveolar Na(+)/K(+)-ATPase and Src. Concomitantly, cholesterol depletion abolished ouabain-induced recruitment of Src to the Na(+)/K(+)-ATPase signaling complex. Like depletion of caveolin-1, it also blocked the effect of ouabain on ERKs, which was restored after cholesterol repletion. Clearly, the caveolar Na(+)/K(+)-ATPase represents the signaling pool of the pump that interacts with Src and transmits the ouabain signals.  相似文献   

2.
3.
Na(+)/K(+)-ATPase as a signal transducer.   总被引:19,自引:0,他引:19  
  相似文献   

4.
Binding of ouabain to Na(+)/K(+)-ATPase activates tyrosine phosphorylation of the epidermal growth factor receptor (EGFR), Src, and p42/44 mitogen-activated protein kinases (MAPKs) in both cardiac myocytes and A7r5 cells. Here, we explored the roles of Src and the EGFR in the ouabain-invoked pathways that lead to the activation of MAPKs. Exposure of A7r5 and LLC-PK1 cells to ouabain caused a dose-dependent inhibition of Na(+)/K(+)-ATPase activity, which correlated well with ouabain-induced activation of Src and MAPKs in these cells. Immunoprecipitation experiments showed that ouabain stimulated Src binding to Na(+)/K(+)-ATPase in a dose- and time-dependent manner and increased phosphorylation of Src at Tyr(418) but had no effect on Tyr(529) phosphorylation. Ouabain failed to activate MAPKs in A7r5 cells that were pretreated with the Src inhibitor PP2 and in SYF cells in which Src family kinases are knocked out. Preincubation with AG1478, but not AG1295, also blocked the effects of ouabain on p42/44 MAPKs in A7r5 cells. Significantly, both herbimycin A and PP2 abrogated ouabain-induced but not epidermal growth factor-induced Src binding to the EGFR and the subsequent EGFR tyrosine phosphorylation. Ouabain also failed to affect tyrosine phosphorylation of the EGFR in SYF cells. In addition, unlike epidermal growth factor, ouabain did not increase EGFR autophosphorylation at Tyr(1173). These findings clearly indicate that ouabain transactivates the EGFR by activation of Src and stimulation of Src binding to the EGFR. Furthermore, we found that the transactivated EGFR was capable of recruiting and phosphorylating the adaptor protein Shc. This resulted in increased binding of another adaptor protein Grb2 to the Src-EGFR complex and the subsequent activation of Ras and MAPKs. Taken together, these new findings suggest that Src mediates the inter-receptor cross-talk between Na(+)/K(+)-ATPase and the EGFR to transduce the signals from ouabain to the Ras/MAPK cascade.  相似文献   

5.
The secondary structure of Na(+)/K(+)-ATPase after modification of the ATP-binding sites was analyzed. Consistently with recent reports, we found in trypsin-treated Na(+)/K(+)-ATPase additionally to alpha-helix also beta-sheet structures in the transmembrane segments. However, binding of fluorescein 5'-isothiocyanate (FITC), the pseudo-ATP analog, to the ATP-binding site did not affect the secondary structure of undigested Na(+)/K(+)-ATPase. Consequently, fluorescence intensity changes of FITC-labeled Na(+)/K(+)-ATPase commonly used to observe conformational transitions of the enzyme reflect physiological changes of the native structure. The metal complex analogues of ATP, Cr(H(2)O)(4)ATP and Co(NH(3))(4)ATP, on the other hand, affected the secondary structure of Na(+)/K(+)-ATPase. We propose that these changes in the secondary structure are responsible for inhibition of backdoor phosphorylation.  相似文献   

6.
7.
We have shown before that Na(+)/K(+)-ATPase acts as a signal transducer, through protein-protein interactions, in addition to being an ion pump. Interaction of ouabain with the enzyme of the intact cells causes activation of Src, transactivation of EGFR, and activation of the Ras/ERK1/2 cascade. To determine the role of protein kinase C (PKC) in this pathway, neonatal rat cardiac myocytes were exposed to ouabain and assayed for translocation/activation of PKC from cytosolic to particulate fractions. Ouabain caused rapid and sustained stimulation of this translocation, evidenced by the assay of Ca(2+)-dependent and Ca(2+)-independent PKC activities and by the immunoblot analysis of the alpha, delta, and epsilon isoforms of PKC. Dose-dependent stimulation of PKC translocation by ouabain (1-100 microm) was accompanied by no more than 50% inhibition of Na(+)/K(+)-ATPase and doubling of [Ca(2+)](i), changes that do not affect myocyte viability and are known to be associated with positive inotropic, but not toxic, effects of ouabain in rat cardiac ventricles. Ouabain-induced activation of ERK1/2 was blocked by PKC inhibitors calphostin C and chelerythrine. An inhibitor of phosphoinositide turnover in myocytes also antagonized ouabain-induced PKC translocation and ERK1/2 activation. These and previous findings indicate that ouabain-induced activation of PKC and Ras, each linked to Na(+)/K(+)-ATPase through Src/EGFR, are both required for the activation of ERK1/2. Ouabain-induced PKC translocation and ERK1/2 activation were dependent on the presence of Ca(2+) in the medium, suggesting that the signal-transducing and ion-pumping functions of Na(+)/K(+)-ATPase cooperate in activation of these protein kinases and the resulting regulation of contractility and growth of the cardiac myocyte.  相似文献   

8.
Cardenolides are toxic plant compounds which specifically inhibit Na(+)/K(+)-ATPase, an animal enzyme which is essential for many physiological processes, such as the generation of action potentials. Several adapted insects feeding on cardenolide-containing plants sequester these toxins for their own defence. Some of these insects were shown to possess Na(+)/K(+)-ATPases with a reduced sensitivity towards cardenolides (target site insensitivity). In the present study we screened five species of arctiid moths feeding on cardenolide-containing plants for target site insensitivity towards cardenolides using an in vitro enzyme assay. The derived dose response curves of the respective Na(+)/K(+)-ATPases were compared to the insensitive Na(+)/K(+)-ATPase of the monarch butterfly (Danaus plexippus). Na(+)/K(+)-ATPases of all arctiid species tested were highly sensitive to ouabain, a water-soluble cardenolide which is most widely used in laboratory studies. Nevertheless, we detected substantial amounts of cardenolides in the haemolymph of two of the arctiid species. In caterpillars of the sequestering arctiid Empyreuma pugione and of D. plexippus we localized Na(+)/K(+)-ATPase by immunohistochemistry and western blot (in D. plexippus). Both techniques revealed strong expression of the enzyme in the nervous tissue and indicated weak expression or even absence in other tissues tested. We conclude that instead of target site insensitivity the investigated arctiid species use a different strategy to tolerate cardenolides. Most plausibly, the perineurium surrounding the nervous tissue functions as a barrier which prevents cardenolides from reaching Na(+)/K(+)-ATPase in the ventral nerve cord.  相似文献   

9.
Accumulation sites of lead phosphate reaction product consequent to Na(+)/K(+)-ATPase activity in gill and renal epithelia of the freshwater shrimp Macrobrachium olfersii were located ultracytochemically by para-nitrophenyl-phosphate hydrolysis and lead precipitation, and quantified per unit membrane area and cytoplasmic volume. In shrimps in freshwater (<0.5 per thousand S, 20 mOsm/kg H(2)O, 0.7 mEq Na(+)/liter), numerous sites of electron-dense, Na(+)/K(+)-ATPase reaction product accumulation were demonstrated in the membrane invaginations of the mitochondria-rich, intralamellar septal cells (12.5 +/- 1.7 sites/microm(2) membrane, 179 +/- 22 sites/microm(3) cytoplasm, mean+/- SEM, N 相似文献   

10.
Na(+),K(+)-ATPase is a heterodimer consisting of catalytic α1-α4 and regulatory β1-β3 subunits. Recently, we reported that transfection with ouabain-resistant α1R-Na(+),K(+)-ATPase rescues renal epithelial C7-MDCK cells exclusively expressing the ouabain-sensitive α1S-isoform from the cytotoxic action of ouabain. To explore the role of α2 subunit in ion transport and cytotoxic action of ouabain, we compared the effect of ouabain on K(+) ((86)Rb) influx and the survival of ouabain-treated C7-MDCK cells stably transfected with α1R- and α2R-Na(+),K(+)-ATPase. α2R mRNA in transfected cells was ~8-fold more abundant than α1R mRNA, whereas immunoreactive α2R protein content was 5-fold lower than endogenous α1S protein. A concentration of 10?μmol/L ouabain led to complete inhibition of (86)Rb influx both in mock- and α2R-transfected cells, whereas maximal inhibition of (86)Rb influx in α1R-transfectd cells was observed at 1000?μmol/L ouabain. In contrast to the massive death of mock- and α2R-transfected cells exposed to 3?μmol/L ouabain , α1R-cells survived after 24?h incubation with 1000?μmol/L ouabain. Thus, our results show that unlike α1R, the presence of α2R-Na(+),K(+)-ATPase subunit mRNA and immunoreactive protein does not contribute to Na(+)/K(+) pump activity, and does not rescue C7-MDCK cells from the cytotoxic action of ouabain. Our results also suggest that the lack of impact of transfected α2-Na(+),K(+)-ATPase on Na(+)/K(+) pump activity and cell survival can be attributed to the low efficiency of its translation and (or) delivery to the plasma membrane of renal epithelial cells.  相似文献   

11.
In the Albers-Post model, occlusion of K(+) in the E(2) conformer of the enzyme (E) is an obligatory step of Na(+)/K(+)-ATPase reaction. If this were so the ratio (Na(+)/K(+)-ATPase activity)/(concentration of occluded species) should be equal to the rate constant for deocclusion. We tested this prediction in a partially purified Na(+)/K(+)-ATPase from pig kidney by means of rapid filtration to measure the occlusion using the K(+) congener Rb(+). Assuming that always two Rb(+) are occluded per enzyme, the steady-state levels of occluded forms and the kinetics of deocclusion were adequately described by the Albers-Post model over a very wide range of [ATP] and [Rb(+)]. The same happened with the kinetics of ATP hydrolysis. However, the value of the parameters that gave best fit differed from those for occlusion in such a way that the ratio (Na(+)/K(+)-ATPase activity)/(concentration of occluded species) became much larger than the rate constant for deocclusion when [Rb(+)] <10 mM. This points to the presence of an extra ATP hydrolysis that is not Na(+)-ATPase activity and that does not involve occlusion. A possible way of explaining this is to posit that the binding of a single Rb(+) increases ATP hydrolysis without occlusion.  相似文献   

12.
We propose a reaction model for the palytoxin-sodium-potassium (PTX-Na(+)/K(+)) pump complex. The model, which is similar to the Albers-Post model for Na(+)/K(+)-ATPase, is used to elucidate the effect of PTX on Na(+)/K(+)-ATPase during the enzyme interactions with Na(+) and/or K(+) ions. Conformational substates and reactions for the pump are incorporated into the Albers-Post model to represent enzymes with or without bound PTX. A mathematical model based on the reaction scheme is used in simulations modeling experimental studies of PTX-induced ionic currents. Our simulations suggest that (i) extracellular Na(+) as well as K(+) promotes PTX-induced channel blockage; (ii) extracellular K(+) accelerates PTX unbinding; and (iii) K(+) occlusion in the PTX-pump complex is essential for describing the PTX-induced current dynamics.  相似文献   

13.
Na(+)/K(+)-ATPase (sodium/potassium pump) is a P-type ion-motive ATPase found in the plasma membranes of animal cels. In vertebrates, the functions of this enzyme in nerves, heart and kidney are well characterized and characteristics a defined by different isoforms. In contrast, despite different tissue distributions, insects possess a single isoform of the alpha-subunit. A comparison of insect and vertebrate Na(+)/K(+)-ATPases reveals that although the mode of action and structure are very highly conserved, the specific roles of the enzyme in most tissues varies. However, the enzyme is essential for the function of nerve cells, and in this respect Na(+)/K(+)-ATPase appears to be fundamental in metazoan evolution.  相似文献   

14.
Marinobufagenin (MBG) is an endogenous mammalian cardiotonic steroid involved in the inhibition of Na(+)/K(+)-ATPase. Increased plasma levels have been reported in patients with volume expansion-related hypertension. We have recently demonstrated that MBG impairs first trimester cytotrophoblast (CTB) cell proliferation, migration, and invasion, which may play a role in the development of preeclampsia. However, whether apoptosis contributes to altered CTB cell function by MBG remains unknown. Using the human extravillous CTB cell line SGHPL-4, we examined the effect of MBG and a similar Na(+)/K(+)-ATPase inhibitor, ouabain, on the phosphorylation status of Jnk, p38, and Src. Additionally, we measured apoptosis by caspase 9 and 3/7 activity and by annexin-V staining. We also investigated interleukin-6 (IL-6) secretion with or without p38 and Jnk inhibition. MBG significantly increased the phosphorylation of Jnk, p38, and Src and increased the expression of caspase 9 and 3/7 indicating the activation of apoptosis. MBG treatment also stimulated the expression of the early apoptosis marker, annexin-V, which was prevented by Jnk and p38 inhibition. MBG also stimulated the secretion of IL-6, which was attenuated by p38 inhibition. Ouabain had similar effects to those of MBG, suggesting that the apoptotic effects on CTB cells may be mediated by inhibition of Na(+)/K(+)-ATPase. In conclusion, the MBG-induced impairment of CTB function occurs via activation of Jnk, p38, and Src leading to increased apoptosis and IL-6 secretion. These observations may have clinical applicability with respect to the therapy of preeclampsia.  相似文献   

15.
Our previous studies on cardiac myocytes showed that positive inotropic concentrations of the digitalis drug ouabain activated signaling pathways linked to Na(+)-K(+)-ATPase through Src and epidermal growth factor receptor (EGFR) and led to myocyte hypertrophy. In view of the known involvement of phosphatidylinositol 3-kinase (PI3K)-Akt pathways in cardiac hypertrophy, the aim of the present study was to determine whether these pathways are also linked to cardiac Na(+)-K(+)-ATPase and, if so, to assess their role in ouabain-induced myocyte growth. In a dose- and time-dependent manner, ouabain activated Akt and phosphorylation of its substrates mammalian target of rapamycin and glycogen synthase kinase in neonatal rat cardiac myocytes. Akt activation by ouabain was sensitive to PI3K inhibitors and was also noted in adult myocytes and isolated hearts. Ouabain caused a transient increase of phosphatidylinositol 3,4,5-trisphosphate content of neonatal myocytes, activated class IA, but not class IB, PI3K, and increased coimmunoprecipitation of the alpha-subunit of Na(+)-K(+)-ATPase with the p85 subunit of class IA PI3K. Ouabain-induced activation of ERK1/2 was prevented by Src, EGFR, and MEK inhibitors, but not by PI3K inhibitors. Activation of Akt by ouabain, however, was sensitive to inhibitors of PI3K and Src, but not to inhibitors of EGFR and MEK. Similarly, ouabain-induced myocyte hypertrophy was prevented by PI3K and Src inhibitors, but not by an EGFR inhibitor. These findings 1) establish the linkage of the class IA PI3K-Akt pathway to Na(+)-K(+)-ATPase and the essential role of this linkage to ouabain-induced myocyte hypertrophy and 2) suggest cross talk between these PI3K-Akt pathways and the signaling cascades previously identified to be associated with cardiac Na(+)-K(+)-ATPase.  相似文献   

16.
Phospholemman (PLM) is a small sarcolemmal protein that modulates the activities of Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger (NCX), thus contributing to the maintenance of intracellular Na(+) and Ca(2+) homeostasis. We characterized the expression and subcellular localization of PLM, NCX, and the Na(+)/K(+)-ATPase alpha1-subunit during perinatal development. Western blotting demonstrates that PLM (15kDa), NCX (120kDa), and Na(+)/K(+)-ATPase alpha-1 (approximately 100kDa) proteins are all more than 2-fold higher in ventricular membrane fractions from newborn rabbit hearts (1-4-day old) compared to adult hearts. Our immunocytochemistry data demonstrate that PLM, NCX, and Na(+)/K(+)-ATPase are all expressed at the sarcolemma of newborn ventricular myocytes. Taken together, our data indicate that PLM, NCX, and Na(+)/K(+)-ATPase alpha-1 proteins have similar developmental expression patterns in rabbit ventricular myocardium. Thus, PLM may have an important regulatory role in maintaining cardiac Na(+) and Ca(2+) homeostasis during perinatal maturation.  相似文献   

17.
Because nearly all structure/function studies on Na(+)/K(+)-ATPase have been done on enzymes prepared in the presence of SDS, we have studied previously unrecognized consequences of SDS interaction with the enzyme. When the purified membrane-bound kidney enzyme was solubilized with SDS or TDS concentrations just sufficient to cause complete solubilization, but not at concentrations severalfold higher, the enzyme retained quaternary structure, exhibiting alpha,alpha-, alpha,beta-, beta,beta-, and alpha,gamma-associations as detected by chemical cross-linking. The presence of solubilized oligomers was confirmed by sucrose density gradient centrifugation. This solubilized enzyme had no ATPase activity and was not phosphorylated by ATP, but it retained the ability to occlude Rb(+) and Na(+). This, and comparison of cross-linking patterns obtained with different reagents, suggested that the transmembrane domains of the enzyme are more resistant to SDS-induced unfolding than its other domains. These findings (a). indicate that the partially unfolded oligomer(s) retaining partial function is the intermediate in the SDS-induced denaturation of the native membrane enzyme having the minimum oligomeric structure of (alpha,beta,gamma)(2) and (b). suggest potential functions for Na(+)/K(+)-ATPase with intrinsically unfolded domains. Mixtures of solubilized/partially unfolded enzyme and membrane-bound enzyme exhibited cross-linking patterns and Na(+) occlusion capacities different from those of either enzyme species, suggesting that the two interact. Formation of the partially unfolded enzyme during standard purification procedure for the preparation of the membrane-bound enzyme was shown, indicating that it is necessary to ensure the separation of the partially unfolded enzyme from the membrane-bound enzyme to avoid the distortion of the properties of the latter.  相似文献   

18.
The linear pentadecapeptide gramicidin A forms an ion channel in the lipid bilayer to selectively transport monovalent cations. Nevertheless, we have surprisingly found that gramicidin A directly inhibits mammalian Na(+)/K(+)-ATPase. Gramicidin A inhibited ATP hydrolysis by Na(+)/K(+)-ATPase from porcine cerebral cortex at the IC(50) value of 8.1 microM, while gramicidin S was approximately fivefold less active. The synthetic gramicidin A analog lacking N-terminal formylation and C-terminal ethanolamine exhibited a weaker inhibitory effect on the ATP-hydrolyzing activity of Na(+)/K(+)-ATPase than gramicidin A, indicating that these end modifications are necessary for gramicidin A to inhibit Na(+)/K(+)-ATPase activity. Moreover, Lineweaver-Burk analysis showed that gramicidin A exhibits a mixed type of inhibition. In addition to the most well-studied ionophore activity, our present study has disclosed a novel biological function of gramicidin A as a direct inhibitor of mammalian Na(+)/K(+)-ATPase activity.  相似文献   

19.
Kinetics and inhibition of Na(+)/K(+)-ATPase and Mg(2+)-ATPase activity from rat synaptic plasma membrane (SPM), by separate and simultaneous exposure to transition (Cu(2+), Zn(2+), Fe(2+) and Co(2+)) and heavy metals (Hg(2+) and Pb(2+)) ions were studied. All investigated metals produced a larger maximum inhibition of Na(+)/K(+)-ATPase than Mg(2+)-ATPase activity. The free concentrations of the key species (inhibitor, MgATP(2-), MeATP(2-)) in the medium assay were calculated and discussed. Simultaneous exposure to the combinations Cu(2+)/Fe(2+) or Hg(2+)/Pb(2+) caused additive inhibition, while Cu(2+)/Zn(2+) or Fe(2+)/Zn(2+) inhibited Na(+)/K(+)-ATPase activity synergistically (i.e., greater than the sum metal-induced inhibition assayed separately). Simultaneous exposure to Cu(2+)/Fe(2+) or Cu(2+)/Zn(2+) inhibited Mg(2+)-ATPase activity synergistically, while Hg(2+)/Pb(2+) or Fe(2+)/Zn(2+) induced antagonistic inhibition of this enzyme. Kinetic analysis showed that all investigated metals inhibited Na(+)/K(+)-ATPase activity by reducing the maximum velocities (V(max)) rather than the apparent affinity (Km) for substrate MgATP(2-), implying the noncompetitive nature of the inhibition. The incomplete inhibition of Mg(2+)-ATPase activity by Zn(2+), Fe(2+) and Co(2+) as well as kinetic analysis indicated two distinct Mg(2+)-ATPase subtypes activated in the presence of low and high MgATP(2-) concentration. EDTA, L-cysteine and gluthathione (GSH) prevented metal ion-induced inhibition of Na(+)/K(+)-ATPase with various potencies. Furthermore, these ligands also reversed Na(+)/K(+)-ATPase activity inhibited by transition metals in a concentration-dependent manner, but a recovery effect by any ligand on Hg(2+)-induced inhibition was not obtained.  相似文献   

20.
Effects of dimethyl sulfoxide (Me(2)SO) on substrate affinity for phosphorylation by inorganic phosphate, on phosphorylation by ATP in the absence of Na(+), and on ouabain binding to the free form of the Na(+)/K(+)-ATPase have been attributed to changes in solvation of the active site or Me(2)SO-induced changes in the structure of the enzyme. Here we used selective trypsin cleavage as a procedure to determine the conformations that the Na(+)/K(+)-ATPase acquires in Me(2)SO medium. In water or in Me(2)SO medium, Na(+)/K(+)-ATPase exhibited after partial proteolysis two distinct groups of fragments: (1) in the presence of 0.1 M Na(+) or 0.1 M Na(+) + 3 mM ADP (enzyme in the E1 state) cleavage produced a main fragment of about 76 kDa; and (2) in the presence of 20 mM K(+) (E2 state) a 58-kDa fragment plus two or three fragments of 39-41 kDa were obtained. Cleavage in Me(2)SO medium in the absence of Na(+) and K(+) exhibited the same breakdown pattern as that obtained in the presence of K(+), but a 43-kDa fragment was also observed. An increase in the K(+) concentration to 0.5 mM eliminated the 43-kDa fragment, while a 39- to 41-kDa doublet was accumulated. Both in water and in Me(2)SO medium, a strong enhancement of the 43-kDa band was observed in the presence of either P(i) + ouabain or vanadate, suggesting that the 43-kDa fragment is closely related to the conformation of the phosphorylated enzyme. These results indicate that Me(2)SO acts not only by promoting the release of water from the ATP site, but also by inducing a conformation closely related to the phosphorylated state, even when the enzyme is not phosphorylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号