首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The aim of this paper is to review and discuss the results obtained by fluorescence and absorption spectroscopy of bacterial chromatophores excited with picosecond pulses of varying power and intensity. It was inferred that spectral and kinetic characteristics depend essentially on the intensity, the repetition rate of the picosecond excitation pulses as well as on the optical density of the samples used. Taking the different experimental conditions properly into account, most of the discrepancies between the fluorescence and absorption measurements can be solved. At high pulse repetition rate (>106 Hz), even at moderate excitation intensities (1010–1011 photons/cm2 per pulse), relatively long-lived triplet states start accumulating in the system. These are efficient (as compared to the reaction centers) quenchers of mobile singlet excitations due to singlet-triplet annihilation. The singlet-triplet annihilation rate constant in Rhodospirillum rubrum was determined to be equal to 10-9 cm3 s-1. At fluences >1012 photons/cm2 per pulse singlet-singlet annihilation must be taken into account. Furthermore, in the case of high pulse repetition rates, triplet-triplet annihilation must be considered as well. From an analysis of experimental data it was inferred that the singlet-singlet annihilation process is probably migration-limited. If this is the case, one has to conclude that the rate of excitation decay in light-harvesting antenna at low pumping intensities is limited by the efficiency of excitation trapping by the reaction center. The influence of annihilation processes on spectral changes is also discussed as is the potential of a local heating caused by annihilation processes. The manifestation of spectral inhomogeneity of light-harvesting antenna in picosecond fluorescence and absorption kinetics is analyzed.Abbreviations LHA light-harvesting antenna - RC reaction center  相似文献   

2.
Studies of the fluorescence quantum yield and decay times, determined at the emission maxima of 685 and 735 nm, using picosecond laser pulses for excitation, indicate that the pigments which are responsible for the 735 nm emission derive their energy by transfer of singlet excitons from the light-harvesting pigments and not by direct absorption of photons. Microsecond pulse laser studies of the fluorescence quantum yields at these two fluorescence wavelengths indicate that long lived quenchers (most probably triplet states), which quench singlet excitons, accumulate preferentially within the long wavelength pigment system which gives rise to the 735 nm emission band.  相似文献   

3.
The fluorescence decays of barley chloroplasts have been measured by single-photon counting with tunable picosecond dye laser excitation. The fluorescence decays of dark-adapted chloroplasts are best fitted to a sum of three exponential lifetime components with lifetimes of 112, 380 and 2214 ps. The relative magnitude of each component is shown to be dependent on the excitation wavelength and collected emission wavelength. The excitation wavelength dependence is correlated with the Photosystem (PS) I and PS II action study of Ried [36] and with the measured pigment distributions in the photosynthetic unit [37,41]. Experiments varying the single excitation pulse intensity from 108 to 1012 photons/cm2 pulse show that our results are not distorted by singlet-singlet annihilation. Unflowed samples where the cloroplasts are under constant illumination show 2-fold increases in quantum yield of fluorescence primarily in the two longer lifetime components. Theoretical calculations of Shipman [31] on an isolated reaction center with a homogeneous antenna are discussed and the principles extended to discussion of the measured barley chloroplast fluorescence decay components in terms of photosynthetic unit light-harvesting array models and earlier experimental work. Our data support a photosynthetic unit model in which 70–90% of the photons absorbed are quenched by either PS I or efficiently quenching PS II in a process where the fluorescence lifetime is 100 ps. The origin of the intermediate 380 ps. component is probably due to excitation transfer to a PS II reaction center in a redox state which quenches less efficiently.  相似文献   

4.
The fluorescence decay time of spinach chloroplasts at 77 degrees K was determined at 735 nm (corresponding to the photosystem I emission) using a train of 10-ps laser pulses spaced 10 ns apart. The fluorescence lifetime is constant at congruent to 1.5 ns for up to the fourth pulse, but then decreases with increasing pulse number within the pulse train. This quenching is attributed to triplet excited states, and it is concluded that triplet excitons exhibit a time lag of about 50 ns in diffusing from light harvesting antenna pigments to photosystem I pigments. The diffusion coefficient of triplet excitons is a least 300--400 times slower than the diffusion coefficient of singlet excitons in chloroplast membranes.  相似文献   

5.
G. Porter  J.A. Synowiec  C.J. Tredwell 《BBA》1977,459(3):329-336
A technique for measuring relative quantum yields of fluorescence with a picosecond streak camera is described. We show that Chlorella pyrenoidosa exhibit an intensity dependent quantum yield when irradiated with single picosecond light pulses. This effect also occurs under conditions that inhibit the activity of the reaction centres, which can therefore be excluded as the cause.When a pulse train (pulse separation 6.9 ns) was used, the quantum yield was further reduced by the light absorbed from previous pulses, which indicates the formation of a quenching species having a relatively long lifetime.Absolute quantum yields calculated from the fluorescence decay show that single excitation pulses of 3 · 1013 photons/cm2 give results comparable to those obtained by very low intensity methods.  相似文献   

6.
The recent results of Campillo et al. and Mauzerall on the quenching of the fluorescence of chlorophyll a in Chlorella pyrenoidosa as a function of the intensity of the laser excitation pulses are rationalized by applying a model invoking singlet-singlet exciton annihilation.  相似文献   

7.
Two-photon excitation, time-resolved fluorescence microscopy was used to investigate the fluorescence quenching mechanisms in aggregates of light-harvesting chlorophyll a/b pigment protein complexes of photosystem II from green plants (LHCII). Time-gated microscopy images show the presence of large heterogeneity in fluorescence lifetimes not only for different LHCII aggregates, but also within a single aggregate. Thus, the fluorescence decay traces obtained from macroscopic measurements reflect an average over a large distribution of local fluorescence kinetics. This opens the possibility to resolve spatially different structural/functional units in chloroplasts and other heterogeneous photosynthetic systems in vivo, and gives the opportunity to investigate individually the excited states dynamics of each unit. We show that the lifetime distribution is sensitive to the concentration of quenchers contained in the system. Triplets, which are generated at high pulse repetition rates of excitation (>1 MHz), preferentially quench domains with initially shorter fluorescence lifetimes. This proves our previous prediction from singlet-singlet annihilation investigations (Barzda, V., V. Gulbinas, R. Kananavicius, V. Cervinskas, H. van Amerongen, R. van Grondelle, and L. Valkunas. 2001. Biophys. J. 80:2409-2421) that shorter fluorescence lifetimes originate from larger domains in LHCII aggregates. We found that singlet-singlet annihilation has a strong effect in time-resolved fluorescence microscopy of connective systems and has to be taken into consideration. Despite that, clear differences in fluorescence decays can be detected that can also qualitatively be understood.  相似文献   

8.
The transfer of excitation energy between phycobiliproteins in isolated phycobilisomes has been observed on a picosecond time scale. The photon density of the excitation pulse has been carefully varied so as to control the level of exciton interactions induced in the pigment bed. The 530 nm light pulse is absorbed predominantly by B-phycoerythrin, and the fluorescence of this component rises within the pulse duration and shows a mean 1/e decay time of 70 ps. The main emission band, centred at 672 nm, is due to allophycocyanin and is prominent because of the absence of energy transfer to chlorophyll. Energy transfer to this pigment from B-phycoerythrin via R-phycocyanin produces a risetime of 120 ps to the fluorescence maximum. The lifetime of the allophycocyanin fluorescence is found to be about 4 ns using excitation pulses of low photon densities (1013 photons · cm?2), but decreases to about 2 ns at higher photon densities. The relative quantum yield of the allophycocyanin fluorescence decreases almost 10 fold over the range of laser pulse intensities, 1013–1016 photons · cm?2. Fluorescence quenching by exciton-exciton annihilation is only observed in allophycocyanin and could be a consequence of the long lifetime of the single exciton in this pigment.  相似文献   

9.
Nonlinear annihilation of excitations in photosynthetic systems.   总被引:3,自引:3,他引:0       下载免费PDF全文
The theory of the singlet-singlet annihilation in quasi-homogeneous photosynthetic antenna systems is developed further. In the new model, the following important contributions are taken into account: 1) the finite excitation pulse duration, 2) the occupation of higher excited states during the annihilation, 3) excitation correlation effects, and 4) the effect of local heating. The main emphasis is concentrated on the analysis of pump-probe kinetic measurements demonstrating the first two above possible contributions. The difference with the results obtained from low-intensity fluorescence kinetic measurements is highlighted. The experimental data with picosecond time resolution obtained for the photosynthetic bacterium Rhodospirillum rubrum at room temperature are discussed on the basis of this theory.  相似文献   

10.
G.S. Beddard  G. Porter 《BBA》1977,462(1):63-72
The kinetics of the in vivo fluorescence decays and fluorescence yields, as a function of excitation intensity, have been analysed with a model using excited state annihilation and time-dependent quenching processes. Triplet states, formed in the singlet-singlet annihilation processes, account for additional quenching of singlet states and the persistence of annihilation at longer times than the fluorescence lifetime. Together these processes give a satisfactory account of existing experimental data of the intensity dependence of fluorescence in vivo.  相似文献   

11.
Eight chlorophyll b deficient nuclear mutants of pea (Pisum sativum L.) have been characterized by low temperature fluorescence emission spectra of their leaves and by the ultrastructure, photochemical activities and polypeptide compositions of the thylakoid membranes. The room temperature fluorescence induction kinetics of leaves and isolated thylakoids have also been recorded. In addition, the effects of Mg2+ on the fluorescence kinetics of the membranes have been investigated. The mutants are all deficient in the major polypeptide of the light-harvesting chlorophyll a/b protein of photosystem II. The low temperature fluorescence emission spectra of aurea-5106, xantha-5371 and –5820 show little or no fluorescence around 730 nm (photosystem I fluorescence), but possess maxima at 685 and 695 nm (photosystem II fluorescence). These three mutants have low photosystem II activities, but significant photosystem I activities. The long-wavelength fluorescence maximum is reduced for three other mutants. The Mg2+ effect on the variable component of the room temperature fluorescence (685 nm) induction kinetics is reduced in all mutants, and completely absent in aurea-5106 and xantha-5820. The thylakoid membranes of these 2 mutants are appressed pairwise in 2-disc grana of large diameter. Chlorotica-1-206A and–130A have significant long-wavelength maxima in the fluorescence spectra and show the largest Mg2+ enhancement of the variable part of the fluorescence kinetics. These two mutants have rather normally structured chloroplast membranes, though the stroma regions are reduced. The four remaining mutants are in several respects of an intermediate type.Abbreviations Chl chlorophyll - CPI Chi-protein complex I, Fo, Fv - Fm parameters of room temperature chlorophyll fluorescence induction kinetics - F685, F695 and F-1 components of low temperature chlorophyll emission with maximum at 685, 695 and ca 735 nm, respectively - PSI photosystem I - PSII photosystem II - LHCI and LHCII light-harvesting chlorophyll a/b complexes associated with PSI and PSII, respectively - SDS sodium dodecyl sulfate  相似文献   

12.
本文研究了分别从红藻多管藻(Polysiphoniaurceolate)和条斑紫菜(Porphyrayezoensis)中提取的两种不同光谱类型的R-藻红蛋白R-phycoerythrin激发强度相关的皮秒(10-12秒)荧光衰减动力学过程。结果发现:随激发光强增大,单重态-单重态激子湮灭发生(其衰减过程约为60~80皮秒),并引起荧光量子产率下降。这两种B-藻红蛋白在相同光强激发下,表现出不同的单重态一单重态激子湮灭过程,主要因它们处于激发态的发色团数目不同所致。  相似文献   

13.
The development of a technique for laser measurement of fPhotosystem II (PS II) photochemical characteristics of phytoplankton and terrestrial vegetation from an airborne platform is described. Results of theoretical analysis and experimental study of pump-and-probe measurement of the PS II functional absorption cross-section and photochemical quantum yield are presented. The use of 10 ns probe pulses of PS II sub-saturating intensity provides a significant, up to 150-fold, increase in the fluorescence signal compared to conventional `weak-probe' protocol. Little effect on the fluorescence yield from the probe-induced closure of PS II reaction centers is expected over the short pulse duration, and thus a relatively intense probe pulse can be used. On the other hand, a correction must be made for the probe-induced carotenoid triplet quenching and singlet-singlet annihilation. A Stern-Volmer model developed for this correction assumes a linear dependence of the quenching rate on the laser pulse fluence, which was experimentally validated. The PS II saturating pump pulse fluence (532 nm excitation) was found to be 10 and 40 μmol quanta m−2 for phytoplankton samples and leaves of higher plants, respectively. Thirty μs was determined as the optimal delay in the pump-probe pair. Our results indicate that the short-pulse pump-and-probe measurement of PS II photochemical characteristics can be implemented from an airborne platform using existing laser and LIDAR technologies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The intensity dependence of picosecond kinetics in the light-harvesting antenna of the photosynthetic bacterium Rhodospirillum rubrum is studied at 77 K. By changing either the average excitation intensity or the pulse intensity we have been able to discriminate singlet-singlet and singlet-triplet annihilation. It is shown that the kinetics of both annihilation types are well characterized by the concept of percolative excitation dynamics leading to the time-dependent annihilation rates. The time dependence of these two types of annihilation rates is qualitatively different, whereas the dependencies can be related through the same adjustable parameter-a spectral dimension of fractal-like structures. The theoretical dependencies give a good fit to the experimental kinetics if the spectral dimension is equal to 1.5 and the overall singlet-singlet annihilation rate is close to the value obtained at room temperature. The percolative transfer is a consequence of spectral inhomogeneous broadening. The effect is more pronounced at lower temperatures because of the narrowing of homogeneous spectra.  相似文献   

15.
The transfer of excitation energy between phycobiliproteins in isolated phycobilisomes has been observed on a picosecond time scale. The photon density of the excitation pulse has been carefully varied so as to control the level of exciton interactions induced in the pigment bed. The 530 nm light pulse is absorbed predominantly by B-phycoerythrin, and the fluorescence of this component rises within the pulse duration and shows a mean 1/e decay time of 70 ps. The main emission band, centred at 672 nm, is due to allophycocyanin and is prominent because of the absence of energy transfer to chlorophyll. Energy transfer to this pigment from B-phycoerythrin via R-phycocyanin produces a risetime of 120 ps to the fluorescence maximum. The lifetime of the allophycocyanin fluorescence is found to be about 4 ns using excitation pulses of low photon densities (10(13) photons.cm-2), but decreases to about 2 ns at higher photon densities. The relative quantum yield of the allophycocyanin fluorescence decreases almost 10 fold over the range of laser pulse intensities, 10(13)--10(16) photons-cm-2. Fluorescence quenching by exciton-exciton annihilation is only observed in allophycocyanin and could be a consequence of the long lifetime of the single exciton in this pigment.  相似文献   

16.
Behera  L.M.  Choudhury  N.K. 《Photosynthetica》1998,34(2):161-168
The chlorophyll (Chl) fluorescence emission as well as excitation and polarization characteristics of chloroplasts from intact cotyledons were determined in pumpkin seedlings after removal of one cotyledon (co-cotyledon) or apical bud or primary root, or after kinetin treatment of derooted seedlings. Qualitatively, the fluorescence emission and excitation spectra of chloroplasts were similar. The fluorescence emission spectra showed a maximum at 685 (F685) and a hump at 735 nm (F735), whereas the excitation spectra showed peaks at 439, 471, 485, and 676 nm. The fluorescence intensities at F685 and F735 differed in various groups of seedlings, as indicated by changes in their ratios. Similarly, the ratios of 471/439, 485/439, and 676/439 nm were also different. Variability in the Chl fluorescence intensity values and the fluorescence polarization of chloroplasts prepared from various seedling types may suggest a different degree of binding between the pigment complexes and light-harvesting Chl-protein (LHCP), resulting in different rates of photoexcitation energy loss in the form of fluorescence emission. Kinetin treatment improved the coupling of pigment complexes with reaction centre, as indicated by low polarization values in derooted and kinetin-treated seedlings, which suggests the development of a suntype chloroplast.  相似文献   

17.
The chlorophyll (Chl) fluorescence emission as well as excitation and polarization characteristics of chloroplasts from intact cotyledons were determined in pumpkin seedlings after removal of one cotyledon (co-cotyledon) or apical bud or primary root, or after kinetin treatment of derooted seedlings. Qualitatively, the fluorescence emission and excitation spectra of chloroplasts were similar. The fluorescence emission spectra showed a maximum at 685 (F685) and a hump at 735 nm (F735), whereas the excitation spectra showed peaks at 439, 471, 485, and 676 nm. The fluorescence intensities at F685 and F735 differed in various groups of seedlings, as indicated by changes in their ratios. Similarly, the ratios of 471/439, 485/439, and 676/439 nm were also different. Variability in the Chl fluorescence intensity values and the fluorescence polarization of chloroplasts prepared from various seedling types may suggest a different degree of binding between the pigment complexes and light-harvesting Chl-protein (LHCP), resulting in different rates of photoexcitation energy loss in the form of fluorescence emission. Kinetin treatment improved the coupling of pigment complexes with reaction centre, as indicated by low polarization values in derooted and kinetin-treated seedlings, which suggests the development of a suntype chloroplast. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The kinetics of thylakoid membrane protein phosphorylation in the presence of light and adenosine triphosphate is correlated to an incease in the 77 °K fluorescence emission at 735 nm (F735) relative to that at 685 nm (F685). Analysis of detergent-derived submembrane fractions indicate phosphorylation only of the polypeptides of Photosystem II, and the light-harvesting chlorophyll-protein complex serving Photosystem II (LHC-II). Although several polypeptides are phosphorylated, only the dephosphorylation kinetics of LHC-II follow the kinetics of the decrease of the F735F685 fluorescence emission ratios. The relative quantum yield of Photosystem II was significantly lower in phosphorylated membranes compared to dephosphorylated membranes. Reversible LHC-II phosphorylation thus provides the physiological mechanism for the control of the distribution of absorbed excitation energy between the two photosystems.  相似文献   

19.
The problem of singlet excitation kinetics and dynamics, especially at high excitation intensities, among a small number of chromophores of a given system has been addressed. A specific scheme for the kinetics is suggested and applied to CPII, a small chlorophyll (Chl)a/b antenna complex the fluorescence lifetime of which has been reported to be independent of excitation intensity over a wide intensity range of picosecond pulses. We have modeled the kinetics from the point of view that Chla molecules in CPII are Förster coupled so that a second excitation received by the group of Chla's either creates a state with two localized excitons or raises the first one to a doubly excited state. The data on CPII can be understood on the basis of a kinetic model that does not exclude exciton annihilation during the excitation pulse. The implied annihilation rate is consistent with our theoretical estimates of that rate obtained by applying excitation transfer theory to pairs of molecules both initially excited.  相似文献   

20.
Excitation energy trapping and charge separation in Photosystem II were studied by kinetic analysis of the fast photovoltage detected in membrane fragments from peas with picosecond excitation. With the primary quinone acceptor oxidized the photovoltage displayed a biphasic rise with apparent time constants of 100–300 ps and 550±50 ps. The first phase was dependent on the excitation energy whereas the second phase was not. We attribute these two phases to trapping (formation of P-680+ Phe-) and charge stabilization (formation of P-680+ QA -), respectively. A reversibility of the trapping process was demonstrated by the effect of the fluorescence quencher DNB and of artificial quinone acceptors on the apparent rate constants and amplitudes. With the primary quinone acceptor reduced a transient photoelectric signal was observed and attributed to the formation and decay of the primary radical pair. The maximum concentration of the radical pair formed with reduced QA was about 30% of that measured with oxidized QA. The recombination time was 0.8–1.2 ns.The competition between trapping and annihilation was estimated by comparison of the photovoltage induced by short (30 ps) and long (12 ns) flashes. These data and the energy dependence of the kinetics were analyzed by a reversible reaction scheme which takes into account singlet-singlet annihilation and progressive closure of reaction centers by bimolecular interaction between excitons and the trap. To put on firmer grounds the evaluation of the molecular rate constants and the relative electrogenicity of the primary reactions in PS II, fluorescence decay data of our preparation were also included in the analysis. Evidence is given that the rates of radical pair formation and charge stabilization are influenced by the membrane potential. The implications of the results for the quantum yield are discussed.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNB m-dinitrobenzene - PPBQ phenyl-p-benzoquinone - PS I photosystem I of green plants - PS II photosystem II of green plants - PSU photosynthetic unit - P-680 primary donor of PS II - Phe intermediary pheophytin acceptor of PS II - QA primary quinone acceptor of PS II - RC reaction center  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号