首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
BACKGROUND: The composition and sequence of amino acids in a protein may serve the underlying needs of the nucleic acids that encode the protein (the genome phenotype). In extreme form, amino acids become mere placeholders inserted between functional segments or domains, and--apart from increasing protein length--playing no role in the specific function or structure of a protein (the conventional phenotype). METHODS: We studied the genomes of two malarial parasites and 521 prokaryotes (144 complete) that differ widely in GC% and optimum growth temperature, comparing the base compositions of the protein coding regions and corresponding lengths (kilobases). RESULTS: Malarial parasites show distinctive responses to base-compositional pressures that increase as protein lengths increase. A low-GC% species (Plasmodium falciparum) is likely to have more placeholder amino acids than an intermediate-GC% species (P. vivax), so that homologous proteins are longer. In prokaryotes, GC% is generally greater and AG% is generally less in open reading frames (ORFs) encoding long proteins. The increased GC% in long ORFs increases as species' GC% increases, and decreases as species' AG% increases. In low- and intermediate-GC% prokaryotic species, increases in ORF GC% as encoded proteins increase in length are largely accounted for by the base compositions of first and second (amino acid-determining) codon positions. In high-GC% prokaryotic species, first and third (non-amino acid-determining) codon positions play this role. CONCLUSION: In low- and intermediate-GC% prokaryotes, placeholder amino acids are likely to be well defined, corresponding to codons enriched in G and/or C at first and second positions. In high-GC% prokaryotes, placeholder amino acids are likely to be less well defined. Increases in ORF GC% as encoded proteins increase in length are greater in mesophiles than in thermophiles, which are constrained from increasing protein lengths in response to base-composition pressures.  相似文献   

2.
Summary We have analyzed the correlation that exists between the GC levels of third and first or second codon position for about 1400 human coding sequences. The linear relationship that was found indicates that the large differences in GC level of third codon positions of human genes are paralleled by smaller differences in GC levels of first and second codon positions. Whereas third codon position differences correspond to very large differences in codon usage within the human genome, the first and second codon position differences correspond to smaller, yet very remarkable, differences in the amino acid composition of encoded proteins. Because GC levels of codon positions are linearly correlated with the GC levels of the isochores harboring the corresponding genes, both codon usage and amino acid composition are different for proteins encoded by genes located in isochores of different GC levels. Furthermore, we have also shown that a linear relationship with a unity slope and a correlation coefficient of 0.77 exists between GC levels of introns and exons from the 238 human genes currently available for this analysis. Introns are, however, about 5% lower in GC, on average, than exons from the same genes.  相似文献   

3.
The genomic as well as structural relationship of phycobiliproteins (PBPs) in different cyanobacterial species are determined by nucleotides as well as amino acid composition. The genomic GC constituents influence the amino acid variability and codon usage of particular subunit of PBPs. We have analyzed 11 cyanobacterial species to explore the variation of amino acids and causal relationship between GC constituents and codon usage. The study at the first, second and third levels of GC content showed relatively more amino acid variability on the levels of G3 + C3 position in comparison to the first and second positions. The amino acid encoded GC rich level including G rich and C rich or both correlate the codon variability and amino acid availability. The fluctuation in amino acids such as Arg, Ala, His, Asp, Gly, Leu and Glu in α and β subunits was observed at G1C1 position; however, fluctuation in other amino acids such as Ser, Thr, Cys and Trp was observed at G2C2 position. The coding selection pressure of amino acids such as Ala, Thr, Tyr, Asp, Gly, Ile, Leu, Asn, and Ser in α and β subunits of PBPs was more elaborated at G3C3 position. In this study, we observed that each subunit of PBPs is codon specific for particular amino acid. These results suggest that genomic constraint linked with GC constituents selects the codon for particular amino acids and furthermore, the codon level study may be a novel approach to explore many problems associated with genomics and proteomics of cyanobacteria.  相似文献   

4.
Cocquet J  De Baere E  Caburet S  Veitia RA 《Genetics》2003,165(3):1613-1617
Human proteins containing polyalanine tracts tend to have runs of other amino acids and their open reading frames (ORFs) display a biased codon usage. Their alanine, glycine, proline, and histidine content strongly correlates with the GC content of the third codon base, suggesting that the compositional specificity of these proteins is dictated to a great extent by the evolution of their ORFs.  相似文献   

5.
G D'Onofrio  G Bernardi 《Gene》1992,110(1):81-88
We have investigated the compositional distributions of third codon positions of genes from the 16 prokaryotes and seven eukaryotes for which the largest numbers of coding sequences are available in data banks. In prokaryotes, both narrow and broad distributions were found. In eukaryotes, distributions were very broad (except for Saccharomyces cerevisiae) and remarkably different for different genomes. In low-GC genomes, third codon positions were lower in GC than first + second codon positions and trailed towards high GC; the opposite situation was found for high-GC genomes. In all genomes, first codon positions were higher in GC than second codon positions. We then investigated the compositional correlations between third and first + second codon positions in prokaryotic genomes (the 16 mentioned above plus 87 additional ones) and in genome compartments of eukaryotes. A general, common relationship was found, which also holds within the same (heterogeneous) genomes. This universal correlation is due to the fact that the relative effects of compositional constraints on different codon positions are the same, on the average, whatever the genome under consideration.  相似文献   

6.
Compositional distributions in the three codon positions of the coding sequences of 12 fully sequenced prokaryotic genomes, which are publicly available, were investigated. A universal compositional correlation was observed in most of the genomes under investigation irrespective of their overall genomic GC contents. In all the genomes, the GC contents at the first codon positions are always greater than the overall GC contents of the genomes whereas the reverse is true in the case of second codon positions. GC contents at the third codon positions are higher than the overall genomic GC contents in high GC containing genomes, and the opposite situation was found in case of low GC genomes except for Helicobacter pylori. In high-GC rich genomes, the GC contents at the first + second codon positions are less than the GC contents at the third codon positions, and they are low in low-GC genomes except for Helicobacter pylori. The distributions of four bases at the three different positions were also investigated for all 12 organisms. It was observed that in high-GC genomes G is the most dominant base and in low-GC genomes A is the most dominant base in the first codon positions. But purine bases, i.e., (A + G), predominantly occur in the first codon position. In the second codon position, A is the most dominant base in most of the organisms and G is the least dominant base in all the organisms. There is no unique regular pattern of individual bases at the third codon positions; however, there are significant differences in the occurrences of (G + C) contents in the third codon positions among the different organisms. Calculations of dinucleotide frequencies in 12 different organisms indicate that in GC-rich genomes GG, GC, CC, and CG dinucleotides are the most dominant whereas the reverse is true in case of low-GC genomes. Biological implications of these results are discussed in this paper.  相似文献   

7.
Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.  相似文献   

8.
Jabbari K  Cruveiller S  Clay O  Bernardi G 《Gene》2003,317(1-2):137-140
A positive correlation holds between the GC level of third codon positions of human genes (GC(3)) and hydropathy of the encoded proteins. This correlation may appear counterintuitive, since it links a physical property of proteins to the base composition of 'synonymous' sites. We here establish the nontriviality of the correlation, which has recently been contested. In particular, the correlation cannot simply be a consequence of an analogous correlation for first and second codon positions, since no such correlation exists. More generally, for any explanation via two chained correlations, the intermediate property would need to be strongly correlated with hydrophobicity and/or GC(3).  相似文献   

9.
人类蛋白编码基因局部GC水平相关性分析   总被引:2,自引:0,他引:2  
陈祥贵  胡军  杨潇 《遗传》2008,30(9):1169-1174
GC含量是基因组DNA序列碱基组成的重要特征, 蕴涵基因结构、功能和进化信息。文中通过从公共数据库提取7 992个非冗余的人类蛋白质编码基因DNA序列, 分析了基因序列不同区域的局部GC含量和相关性。结果表明: 基因局部GC含量呈现不均一性, 5′非翻译区GC水平最高, 为62.56%; 而3′非翻译区GC水平最低, 为43.97%。3′侧翼序列的GC含量能较好地代表基因所在区域DNA长片段的GC水平。虽然开放阅读框的GC含量比内含子、3′非翻译区和3′侧翼序列的GC含量高, 但4个区域的GC含量之间均存在较高的相关性。密码子第三位置的平均GC含量(GC3)为58.09%, 显著高于密码子第一位置和第二位置的GC含量, 且与开放阅读框的GC水平高度相关, 相关系数高达0.91。GC3与内含子、3′非翻译区、3′侧翼序列的GC水平相关性也较高, GC3对3′侧翼序列的GC含量的直线回归斜率为1.25。因此, GC3可作为基因所在区域GC水平变化的敏感性指标。而密码子第一位置和第二位置以及5′侧翼序列和5′非翻译区GC水平与基因其他区域的GC水平的相关性较弱。该研究结果提示: 基因蛋白编码区密码子第三位置、内含子、3′非翻译区和3′侧翼序列的碱基可能经历了相近的进化过程, 而蛋白编码区密码子第一位置和第二位置、5′侧翼序列和5′非翻译区由于功能的需要而经历了不同的突变和选择。  相似文献   

10.
Summary The compositional distributions of coding sequences and DNA molecules (in the 50-100-kb range) are remarkably narrower in murids (rat and mouse) compared to humans (as well as to all other mammals explored so far). In murids, both distributions begin at higher and end at lower GC values. A comparison of homologous coding sequences from murids and humans revealed that their different compositional distributions are due to differences in GC levels in all three codon positions, particularly of genes located at both ends of the distribution. In turn, these differences are responsible for differences in both codon usage and amino acids. When GC levels at first+second codon positions and third codon positions, respectively, of murid genes are plotted against corresponding GC levels of homologous human genes, linear relationships (with very high correlation coefficients and slopes of about 0.78 and 0.60, respectively) are found. This indicates a conservation of the order of GC levels in homologous genes from humans and murids. (The same comparison for mouse and rat genes indicates a conservation of GC levels of homologous genes.) A similar linear relationship was observed when plotting GC levels of corresponding DNA fractions (as obtained by density gradient centrifugation in the presence of a sequence-specific ligand) from mouse and human. These findings indicate that orderly compositional changes affecting not only coding sequences but also noncoding sequences took place since the divergence of murids. Such directional fixations of mutations point to the existence of selective pressures affecting the genome as a whole.  相似文献   

11.
A functional significance for codon third bases   总被引:9,自引:0,他引:9  
Epstein RJ  Lin K  Tan TW 《Gene》2000,245(2):291-298
  相似文献   

12.
Genomes of the herpes simplex viruses are extremely enriched with GC. Elevated G+C level in genomes of the simplex viruses is a result of their long-term evolution under the influence of the mutational pressure. We counted the rates of nucleotide substitutions from gene coding major capsid protein (MCP) (G+C = 0.68, 3GC = 0.89) of human simplex virus 1 (HSV-1) to the MCP gene (G+C = 0.70, 3GC = 0.91) of HSV-2 (the first pair of genes) and from the same MCP gene of HSV-1 to the homologous gene (G+C = 0.73, 3GC = 0.99) from cercopithecine herpes virus 16 (the second pair of genes). The rates of transitions from A-T to G-C base pairs increases 2.17-, 3.09-, and 1.27-fold in the first, second, and third codon positions, respectively, if compared those rates between the second and first pair of genes (the growth of GC-richness is only 3%). This effect is due to an approximately 90% GC-richness of the third codon positions in all those genes. Transitions caused by the strong mutational pressure (from A-T to G-C base pairs) have a low probability to occur in the third positions, but high probability to occur in the first and second positions. For MCP gene of human herpes 3, the probability of the occurrence of transition caused by mutational pressure in the third codon position is 2.36 times higher than in MCP gene of HSV1, and 3 times higher than in MCP gene of HSV2. These data could provide an explanation of rarely occurring relapses of herpes Zoster infection and frequently occurring relapses of herpes simplex infection.  相似文献   

13.
The number of completely sequenced archaeal genomes has been sufficient for a large-scale bioinformatic study.We have conducted analyses for each coding region from 36 archaeal genomes using the original CGS algorithm by calculating the total GC content(G+C),GC content in first,second and third codon positions as well as in fourfold and twofold degenerated sites from third codon positions,levels of arginine codon usage(Arg2:AGA/G;Arg4:CGX),levels of amino acid usage and the entropy of amino acid content distribution.In archaeal genomes with strong GC pressure,arginine is coded preferably by GC-rich Arg4 codons,whereas in most of archaeal genomes with G+C0.6,arginine is coded preferably by AT-rich Arg2 codons.In the genome of Haloquadratum walsbyi,which is closely related to GC-rich archaea,GC content has decreased mostly in third codon positions,while Arg4Arg2 bias still persists.Proteomes of archaeal species carry characteristic amino acid biases:levels of isoleucine and lysine are elevated,while levels of alanine,histidine,glutamine and cytosine are relatively decreased.Numerous genomic and proteomic biases observed can be explained by the hypothesis of previously existed strong mutational AT pressure in the common predecessor of all archaea.  相似文献   

14.
15.
Summary We have investigated the compositional properties of coding sequences from cold-blooded vertebrates and we have compared them with those from warm-blooded vertebrates. Moreover, we have studied the compositional correlations of coding sequences with the genomes in which they are contained, as well as the compositional correlations among the codon positions of the genes analyzed.The distribution of GC levels of the third codon positions of genes from cold-blooded vertebrates are distinctly different from those of warm-blooded vertebrates in that they do not reach the high values attained by the latter. Moreover, coding sequences from cold-blooded vertebrates are either equal, or, in most cases, lower in GC (not only in third, but also in first and second codon positions) than homologous coding sequences from warm-blooded vertebrates; higher values are exceptional. These results at the gene level are in agreement with the compositional differences between cold-blooded and warm-blooded vertebrates previously found at the whole genome (DNA) level (Bernardi and Bernardi 1990a,b).Two linear correlations were found: one between the GC levels of coding sequences (or of their third codon positions) and the GC levels of the genomes of cold-blooded vertebrates containing them; and another between the GC levels of third and first+ second codon positions of genes from cold-blooded vertebrates. The first correlation applies to the genomes (or genome compartments) of all vertebrates and the second to the genes of all living organisms. These correlations are tantamount to a genomic code.  相似文献   

16.
Caburet S  Vaiman D  Veitia RA 《Genetics》2004,167(4):1813-1820
We have previously shown that polyAla (A) tract-containing proteins frequently present runs of glycine (G), proline (P), and histidine (H) and that, in their ORFs, GC content at all codon positions is higher than that in the rest of the genome. In this study, we present new analyses of these human proteins/ORFs. We detected striking differences in codon usage for A, G, and P in and out of runs. After dividing the ORFs, we found that 5' halves were richer in runs than 3' halves. Afterward, when removing the runs, we observed that the run-rich halves (grouped irrespectively of their 5' or 3' position) had a marked statistical tendency to have more homo- and hetero-dicodons for A, G, P, and H than the run-poor halves. This suggests that, in addition to the necessary GC-rich genomic background, a specific codon organization is probably required to generate these coding repeats. Homo-dicodons may indeed provide primers for run formation through polymerase slippage. The compositional analysis of human HOX genes, the most polyAla-rich family, and their comparison with their zebrafish homologs, support these hypotheses and suggest possible effects of genomic environment on ORF evolution and organismal diversification.  相似文献   

17.
The complete sequence of honeybee (Apis mellifera) mitochondrial DNA is reported being 16,343 bp long in the strain sequenced. Relative to their positions in the Drosophila map, 11 of the tRNA genes are in altered positions, but the other genes and regions are in the same relative positions. Comparisons of the predicted protein sequences indicate that the honeybee mitochondrial genetic code is the same as that for Drosophila; but the anticodons of two tRNAs differ between these two insects. The base composition shows extreme bias, being 84.9% AT (cf. 78.6% in Drosophila yakuba). In protein-encoding genes, the AT bias is strongest at the third codon positions (which in some cases lack guanines altogether), and least in second codon positions. Multiple stepwise regression analysis of the predicted products of the protein-encoding genes shows a significant association between the numbers of occurrences of amino acids and %T in codon family, but not with the number of codons per codon family or other parameters associated with codon family base composition. Differences in amino acid abundances are apparent between the predicted Apis and Drosophila proteins, with a relative abundance in the Apis proteins of lysine and a relative deficiency of alanine. Drosophila alanine residues are as often replaced by serine as conserved in Apis. The differences in abundances between Drosophila and Apis are associated with %AT in the codon families, and the degree of divergence in amino acid composition between proteins correlates with the divergence in %AT at the second codon positions. Overall, transversions are about twice as abundant as transitions when comparing Drosophila and Apis protein-encoding genes, but this ratio varies between codon positions. Marked excesses of transitions over chance expectation are seen for the third positions of protein-coding genes and for the gene for the small subunit of ribosomal RNA. For the third codon positions the excess of transitions is adequately explained as due to the restriction of observable substitutions to transitions for conserved amino acids with two-codon families; the excess of transitions over expectation for the small ribosomal subunit suggests that the conservation of nucleotide size is favored by selection.  相似文献   

18.
Okayasu T  Sorimachi K 《Amino acids》2009,36(2):261-271
We recently classified 23 bacteria into two types based on their complete genomes; “S-type” as represented by Staphylococcus aureus and “E-type” as represented by Escherichia coli. Classification was characterized by concentrations of Arg, Ala or Lys in the amino acid composition calculated from the complete genome. Based on these previous classifications, not only prokaryotic but also eukaryotic genome structures were investigated by amino acid compositions and nucleotide contents. Organisms consisting of 112 bacteria, 15 archaea and 18 eukaryotes were classified into two major groups by cluster analysis using GC contents at the three codon positions calculated from complete genomes. The 145 organisms were classified into “AT-type” and “GC-type” represented by high A or T (low G or C) and high G or C (low A or T) contents, respectively, at every third codon position. Reciprocal changes between G or C and A or T contents at the third codon position occurred almost synchronously in every codon among the organisms. Correlations between amino acid concentrations (Ala, Ile and Lys) and the nucleotide contents at the codon position were obtained in both “AT-type” and “GC-type” organisms, but with different regression coefficients. In certain correlations of amino acid concentrations with GC contents, eukaryotes, archaea and bacteria showed different behaviors; thus these kingdoms evolved differently. All organisms are basically classifiable into two groups having characteristic codon patterns; organisms with low GC and high AT contents at the third codon position and their derivatives, and organisms with an inverse relationship.  相似文献   

19.
In this paper, the base frequency at the second codon position of the 3839 open reading frames (ORFs) in the Vibrio cholerae genome is analyzed. It is shown that according to the base content at this codon site, the ORFs can be divided into two clusters, each containing 673 and 3166 ORFs, respectively. ORFs in the smaller cluster usually have significantly higher T frequency than that of A at the second codon position. For the two clusters of ORFs, there are significant differences in the frequencies for 18 of the 20 amino acids in the encoding proteins. The two clusters of ORFs are also significantly different in their functions. More than half of the known genes involved in transport and binding are included in the smaller cluster, while few genes involved in amino acid biosynthesis, protein synthesis, and so on are included in this cluster.  相似文献   

20.
Correspondence analysis of amino acid usage was applied to 14,815 complete proteins from the human genome. We found that three major factors influence the variability of amino acidic composition of these proteins, explaining, respectively 20.4%, 14.7%, and 9.9% of the total variability. The first trend is strongly correlated with the GC content of first and second codon positions and is also significantly correlated with the GC level of the corresponding flanking regions and introns. Therefore, the main force shaping amino acid usage among human proteins are the compositional constraints determined by the isochore in which each gene is embedded. The second trend correlates with the hydropathy of each protein and with the frequency of beta-strands. Finally, the third trend is strongly associated with the usage of Cys and the frequency of alpha-helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号