首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytokine tumor necrosis factor alpha (TNF-alpha) stimulates the NF-kappaB, SAPK/JNK, and p38 mitogen-activated protein (MAP) kinase pathways by recruiting RIP1 and TRAF2 proteins to the tumor necrosis factor receptor 1 (TNFR1). Genetic studies have revealed that RIP1 links the TNFR1 to the IkappaB kinase (IKK) complex, whereas TRAF2 couples the TNFR1 to the SAPK/JNK cascade. In transfection studies, RIP1 and TRAF2 stimulate p38 MAP kinase activation, and dominant-negative forms of RIP1 and TRAF2 inhibit TNF-alpha-induced p38 MAP kinase activation. We found TNF-alpha-induced p38 MAP kinase activation and interleukin-6 (IL-6) production impaired in rip1(-/-) murine embryonic fibroblasts (MEF) but unaffected in traf2(-/-) MEF. Yet, both rip1(-/-) and traf2(-/-) MEF exhibit a normal p38 MAP kinase response to inducers of osmotic shock or IL-1alpha. Thus, RIP1 is a specific mediator of the p38 MAP kinase response to TNF-alpha. These studies suggest that TNF-alpha-induced activation of p38 MAP kinase and SAPK/JNK pathways bifurcate at the level of RIP1 and TRAF2. Moreover, endogenous RIP1 associates with the MAP kinase kinase kinase (MAP3K) MEKK3 in TNF-alpha-treated cells, and decreased TNF-alpha-induced p38 MAP kinase activation is observed in Mekk3(-/-) cells. Taken together, these studies suggest a mechanism whereby RIP1 may mediate the p38 MAP kinase response to TNF-alpha, by recruiting the MAP3K MEKK3.  相似文献   

2.
Tumor necrosis factor alpha (TNF-alpha) is a cytokine implicated in the pathogenesis of numerous chronic and acute inflammatory conditions. We have previously shown that mouse Sertoli cells respond to TNF-alpha by increasing interleukin-6 production and intercellular adhesion molecule-1 (ICAM-1) expression (1). In this cell type TNF-alpha activates the mitogen-activated protein kinase (MAPK) pathways p42/p44 MAPK, JNK/SAPK, and p38, the last of which is responsible for interleukin-6 production (1). To determine which MAPK signaling pathway is required for TNF-alpha induction of ICAM-1 expression, we have utilized the protein kinase inhibitor dimethylaminopurine, demonstrating that treatment of Sertoli cells with such compound significantly reduced ICAM-1 expression and JNK/SAPK activation. Moreover, dimethylaminopurine treatment increased the expression of MAPK phosphatase-2, providing a possible mechanism of action of this compound. By using agonist antibodies to p55 and to p75 TNF-alpha receptors and both human and mouse TNF-alpha, we demonstrate that both TNF receptors are expressed and that only the p55 receptor is involved in ICAM-1 expression. The p55 receptor activates all of the three pathways, whereas p75 failed to activate any of the MAPKs. Altogether our results demonstrate that TNF-alpha up-regulates ICAM-1 expression through the activation of the JNK/SAPK transduction pathway mediated by the p55 receptor.  相似文献   

3.
4.
5.
6.
7.
8.
In response to inflammation stimuli, tumor necrosis factor-alpha (TNF-alpha) induces expression of cell adhesion molecules (CAMs) in endothelial cells (ECs). Studies have suggested that the nuclear factor-kappaB (NF-kappaB) and the p38 MAP kinase (p38) signaling pathways play central roles in this process, but conflicting results have been reported. The objective of this study is to determine the relative contributions of the two pathways to the effect of TNF-alpha. Our initial data indicated that blockade of p38 activity by chemical inhibitor SB203580 (SB) at 10 microM moderately inhibited TNF-alpha-induced expression of three types of CAMs; ICAM-1, VCAM-1 and E-selectin, indicating that p38 may be involved in the process. However, subsequent analysis revealed that neither 1 microM SB that could completely inhibit p38 nor specific knockdown of p38alpha and p38beta with small interference RNA (siRNA) had an apparent effect, indicating that p38 activity is not essential for TNF-alpha-induced CAMs. The most definitive evidence to support this conclusion was from the experiments using cells differentiated from p38alpha knockout embryonic stem cells. We could show that deletion of p38alpha gene did not affect TNF-alpha-induced ICAM-1 and VCAM-1 expression when compared with wild-type cells. We further demonstrated that inhibition of NF-kappaB completely blocked TNF-alpha-induced expression of ICAM-1, VCAM-1 and E-selectin. Taken together, our results clearly demonstrate that NF-kappaB, but not p38, is critical for TNF-alpha-induced CAM expression. The inhibition of SB at 10 microM on TNF-alpha-induced ICAM-1, VCAM-1 and E-selectin is likely due to the nonspecific effect of SB.  相似文献   

9.
The initial step in an immune response toward a viral infection is the induction of inflammatory cytokines. This innate immune response is mediated by expression of a variety of cytokines exemplified by TNF-alpha and IL-1beta. A key signal for the recognition of intracellular viral infections is the presence of dsRNA. Viral infections and dsRNA treatment can activate several signaling pathways including the protein kinase R pathway, mitogen-activated protein kinase (MAPK) pathways, and NF-kappaB, which are important in the expression of inflammatory cytokines. We previously reported that activation of protein kinase R was required for dsRNA induction of TNF-alpha, but not for IL-1beta. In this study, we report that activation of the p38 MAPK pathway by respiratory viral infections is necessary for induction of inflammatory cytokines in human bronchial epithelial cells. Inhibition of p38 MAPK by two different pharmacological inhibitors showed that expression of both TNF-alpha and IL-1beta required activation of this signaling pathway. Interestingly, inhibition of NF-kappaB did not significantly reduce viral induction of either cytokine. Our data show that, during the initial infections of epithelial cells with respiratory viruses, activation of the p38 MAPK pathway is associated with induction of inflammation, and NF-kappaB activation may be less important than previously suggested.  相似文献   

10.
11.
12.
Tumor-associated macrophages may influence tumor progression, angiogenesis and invasion. To investigate mechanisms by which macrophages interact with tumor cells, we developed an in vitro coculture model. Previously we reported that coculture enhanced invasiveness of the tumor cells in a TNF-alpha- and matrix metalloprotease-dependent manner. In this report, we studied intracellular signaling pathways and induction of inflammatory genes in malignant cells under the influence of macrophage coculture. We report that coculture of macrophages with ovarian or breast cancer cell lines led to TNF-alpha-dependent activation of JNK and NF-kappaB pathways in tumor cells, but not in benign immortalized epithelial cells. Tumor cells with increased JNK and NF-kappaB activity exhibited enhanced invasiveness. Inhibition of the NF-kappaB pathway by TNF-alpha neutralizing Abs, an NF-kappaB inhibitor, RNAi to RelA, or overexpression of IkappaB inhibited tumor cell invasiveness. Blockade of JNK also significantly reduced invasiveness, but blockade of p38 MAPK or p42 MAPK had no effect. Cocultured tumor cells were screened for the expression of 22 genes associated with inflammation and invasion that also contained an AP-1 and NF-kappaB binding site. EMMPRIN and MIF were up-regulated in cocultured tumor cells in a JNK- and NF-kappaB-dependent manner. Knocking down either MIF or EMMPRIN by RNAi in the tumor cells significantly reduced tumor cell invasiveness and matrix metalloprotease activity in the coculture supernatant. We conclude that TNF-alpha, via NF-kappaB, and JNK induces MIF and EMMPRIN in macrophage to tumor cell cocultures and this leads to increased invasive capacity of the tumor cells.  相似文献   

13.
Tumor necrosis factor-alpha (TNF-alpha) is a pleiotropic cytokine with a proposed role in obesity-related insulin resistance. This could be mediated by increased lipolysis in adipose tissue resulting in elevated free fatty acid levels. The early intracellular signals entailed in TNF-alpha-mediated lipolysis are unknown but may involve members of the mitogen-activated protein kinase (MAPK) family. We investigated the possible contribution of MAPK in TNF-alpha-induced lipolysis in human preadipocytes. TNF-alpha activated the three mammalian MAPK, p44/42, JNK, and p38, in a distinct time- and concentration-dependent manner. TNF-alpha also induced a concentration-dependent stimulation of lipolysis with a more than 3-fold increase at the maximal dose. Lipolysis was completely inhibited by blockers specific for p44/42 (PD98059) and JNK (dimetylaminopurine) but was not affected by the p38 blocker SB203580. Use of receptor-specific TNF-alpha mutants showed that activation of MAPK is entirely mediated by the TNFR1 receptor. The results in human preadipocytes differed from those obtained in murine 3T3-L1 adipocytes in which all three MAPK were constitutively active. Thus, studies of intracellular signaling pathways obtained in different cellular contexts should be interpreted with caution. In conclusion, although TNF-alpha activates all three known MAPK in human preadipocytes, only p44/42 and JNK appear to be involved in the regulation of lipolysis.  相似文献   

14.
Tumor necrosis factor-alpha (TNF-alpha) stimulates expression of endothelial cell (EC) genes that may promote atherosclerosis in part by an activation of mitogen-activated protein (MAP) kinases. Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), a selenoorganic compound, is effective for acute ischemic stroke; however, its effect on EC has not yet been elucidated. We examined the effect of ebselen on TNF-alpha-induced MAP kinase activation and adhesion molecule expression in cultured human umbilical vein endothelial cells (HUVEC). Extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 were rapidly and significantly activated by TNF-alpha in HUVEC. TNF-alpha-induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 were not affected. Apoptosis signal-regulated kinase 1 (ASK1) was suggested to be involved in TNF-alpha-induced JNK activation because transfection of kinase-inactive ASK1 inhibited TNF-alpha-induced JNK activation. Ebselen inhibited TNF-alpha-induced TNF receptor-associated factor 2 (TRAF2)-ASK1 complex formation and phosphorylation of stress-activated protein kinase ERK kinase 1 (SEK1), which is an upstream signaling molecule of JNK. Finally, TNF-alpha-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation and resultant intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions were inhibited by ebselen. Specific inhibitors for JNK and NF-kappaB also inhibited TNF-alpha-induced ICAM-1 and VCAM-1 expressions in HUVEC. These findings suggest that ebselen prevents TNF-alpha-induced EC activation through the inhibition of TRAF2-ASK1-SEK1 signaling pathway, which leads to JNK activation. Inhibition of JNK by ebselen may imply its usefulness for the prevention of atherosclerosis relevant to EC activation.  相似文献   

15.
The oncogenic latent membrane protein 1 (LMP1) of the Epstein-Barr virus recruits tumor necrosis factor-receptor (TNFR)-associated factors (TRAFs), the TNFR-associated death domain protein (TRADD) and JAK3 to induce intracellular signaling pathways. LMP1 serves as the prototype of a TRADD-binding receptor that transforms cells but does not induce apoptosis. Here we show that TRAF6 critically mediates LMP1 signaling to p38 mitogen-activated protein kinase (MAPK) via a MAPK kinase 6-dependent pathway. In addition, NF-kappaB but not c-Jun N-terminal kinase 1 (JNK1) induction by LMP1 involves TRAF6. The PxQxT motif of the LMP1 C-terminal activator region 1 (CTAR1) and tyrosine 384 of CTAR2 together are essential for full p38 MAPK activation and for TRAF6 recruitment to the LMP1 signaling complex. Dominant-negative TRADD blocks p38 MAPK activation by LMP1. The data suggest that entry of TRAF6 into the LMP1 complex is mediated by TRADD and TRAF2. In TRAF6-knockout fibroblasts, significant induction of p38 MAPK by LMP1 is dependent on the ectopic expression of TRAF6. We describe a novel role of TRAF6 as an essential signaling mediator of a transforming oncogene, downstream of TRADD and TRAF2.  相似文献   

16.
《Cellular signalling》2014,26(4):683-690
Tumour necrosis factor (p55 or p60) receptor (TNFR) 1 is the major receptor that activates pro-inflammatory signalling and induces gene expression in response to TNF. Consensus is lacking for the function of (p75 or p80) TNFR2 but experiments in mice have suggested neuro-, cardio- and osteo-protective and anti-inflammatory roles. It has been shown in various cell types to be specifically required for the induction of TNFR-associated factor-2 (TRAF2) degradation and activation of the alternative nuclear factor (NF)-kappaB pathway, and to contribute to the activation of mitogen-activated protein kinases (MAPK) and the classical NF-kappaB pathway. We have investigated the signalling functions of TNFR2 in primary human and murine macrophages. We find that in these cells TNF induces TRAF2 degradation, and this is blocked in TNFR2−/− macrophages. TRAF2 has been previously reported to be required for TNF-induced activation of p38 MAPK. However, TRAF2 degradation does not inhibit TNF-induced tolerance of p38 MAPK activation. Neither TNF, nor lipopolysaccharide treatment, induced activation of the alternative NF-kappaB pathway in macrophages. Activation by TNF of the p38 MAPK and NF-kappaB pathways was blocked in TNFR1−/− macrophages. In contrast, although TNFR2−/− macrophages displayed robust p38 MAPK activation and IkappaBα degradation at high concentrations of TNF, at lower doses the concentration dependence of signalling was weakened by an order of magnitude. Our results suggest that, in addition to inducing TRAF2 protein degradation, TNFR2 also plays a crucial auxiliary role to TNFR1 in sensitising macrophages for the ligand-induced activation of the p38 MAPK and classical NF-kappaB pro-inflammatory signalling pathways.  相似文献   

17.
18.
Chen C  Chou C  Sun Y  Huang W 《Cellular signalling》2001,13(8):543-553
TNF-alpha induced an increase in intercellular adhesion molecule-1 (ICAM-1) expression in human A549 epithelial cells and immunofluorescence staining confirmed this result. The enhanced ICAM-1 expression was shown to increase the adhesion of U937 cells to A549 cells. Tyrosine kinase inhibitors (genistein or tyrphostin 23) or phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor (D 609) attenuated TNF-alpha-induced ICAM-1 expression. TNF-alpha produced an increase in protein kinase C (PKC) activity and this effect was inhibited by D 609. PKC inhibitors (staurosporine, Ro 31-8220, calphostin C, or Go 6976) also inhibited TNF-alpha-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression, this effect was inhibited by genistein or tyrphostin 23. Treatment of cells with TNF-alpha resulted in stimulation of p44/42 MAPK, p38, and JNK. However, TNF-alpha-induced ICAM-1 expression was not affected by either MEK inhibitor, PD 98059, or p38 inhibitor, SB 203580. A cell-permeable ceramide analog, C(2) ceramide, also stimulated the activation of these three MAPKs, but had no effect on ICAM-1 expression. NF-kappaB DNA-protein binding and ICAM-1 promoter activity were enhanced by TNF-alpha and these effects were inhibited by D 609, calphostin C, or tyrphostin 23, but not by PD 98059 or SB 203580. TPA also stimulated NF-kappaB DNA-protein binding and ICAM-1 promoter activity, these effects being inhibited by genistein or tyrphostin 23. TNF-alpha- or TPA-induced ICAM-1 promoter activity was inhibited by dominant negative PKCalpha or IKK2, but not IKK1 mutant. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by Ro 31-8220 or tyrphostin 23. These data suggest that, in A549 cells, TNF-alpha activates PC-PLC to induce activation of PKCalpha and protein tyrosine kinase, resulting in the stimulation of IKK2, and NF-kappaB in the ICAM-1 promoter, then initiation of ICAM-1 expression and neutrophil adhesion. However, activation of p44/42 MAPK, p38, and JNK is not involved in this event.  相似文献   

19.
Spleen tyrosine kinase (Syk), a nonreceptor protein kinase initially found to be expressed only in hemopoietic cells, has now been shown to be expressed in nonhemopoietic cells and to mediate signaling of various cytokines. Whether Syk plays any role in TNF signaling was investigated. Treatment of Jurkat T cells with TNF activated Syk kinase but not ZAP70, another member of Syk kinase family, and the optimum activation occurred at 10 s and with 1 nM TNF. TNF also activated Syk in myeloid and epithelial cells. TNF-induced Syk activation was abolished by piceatannol (Syk-selective inhibitor), which led to the suppression of TNF-induced activation of c- JNK, p38 MAPK, and p44/p42 MAPK. Jurkat cells that did not express Syk (JCaM1, JCaM1/lck) showed lack of TNF-induced Syk, JNK, p38 MAPK, and p44/p42 MAPK activation, as well as TNF-induced IkappaBalpha phosphorylation, IkappaBalpha degradation, and NF-kappaB activation. TNF-induced NF-kappaB activation was enhanced by overexpression of Syk by Syk-cDNA and suppressed when Syk expression was down-regulated by expression of Syk-small interfering RNA (siRNA-Syk). The apoptotic effects of TNF were reduced by up-regulation of NF-kappaB by Syk-cDNA, and enhanced by down-regulation of NF-kappaB by siRNA-Syk. Immunoprecipitation of cells with Syk Abs showed TNF-dependent association of Syk with both TNFR1 and TNFR2; this association was enhanced by up-regulation of Syk expression with Syk-cDNA and suppressed by down-regulation of Syk using siRNA-Syk. Overall, our results demonstrate that Syk activation plays an essential role in TNF-induced activation of JNK, p38 MAPK, p44/p42 MAPK, NF-kappaB, and apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号