首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drinking water reservoirs in agricultural dominated watersheds are particularly vulnerable to cyanobacterial blooms. A major byproduct of cyanobacteria is the production of objectionable taste and odor compounds such as geosmin. During May 1997 to September 1998, we studied spatial and temporal patterns of cyanobacterial abundance and composition with respect to a series of physical and chemical properties in Clinton Lake, located in east central Kansas, USA. Our results suggest that nutrients (in particular TN, NO3–N concentrations), turbidity, and hydrologic regime all played potentially important roles in regulating cyanobacterial production. Specifically, low levels of nitrogen coupled with the internal release of phosphorus from the lake sediment under brief periods of anoxia may have helped promote cyanobacterial blooms. There was also a strong association between cyanobacterial blooms, geosmin production, and most taste and odor events in Clinton Lake. Anabaena circinalis appeared to be the source for geosmin production as a result of senescing algal cells just after the primary die-off of cyanobacteria.  相似文献   

2.
Amoebophrya is a marine parasite recently found to infect and kill bloom-forming dinoflagellates in the California Current System (CCS). However, it is unknown whether parasitism by Amoebophrya can control dinoflagellate blooms in major eastern boundary upwelling systems, such as the CCS. We quantified the abundance of a common bloom-forming species Akashiwo sanguinea and prevalence of its parasite (i.e., % infected cells) in surface water samples collected weekly from August 2005 to December 2008 at the Santa Cruz Wharf (SCW), Monterey Bay, CA. Additionally, we measured physical and chemical properties at the SCW and examined regional patterns of wind forcing and sea surface temperature. Relative abundance of the net phytoplankton species was also analyzed to discern whether or not parasitism influences net phytoplankton community composition. Epidemic infection outbreaks (>20% parasite prevalence in the host species) may have contributed to the end or prevented the occurrence of A. sanguinea blooms, whereas low parasite prevalence was associated with short-term (≤2 weeks) A. sanguinea blooms. The complete absence of parasitism in 2007 was associated with an extreme A. sanguinea bloom. Anomalously strong upwelling conditions were detected in 2007, suggesting that A. sanguinea was able to outgrow Amoebophrya and ‘escape’ parasitism. We conclude that parasitism can strongly influence dinoflagellate bloom dynamics in upwelling systems. Moreover, Amoebophrya may indirectly influence net phytoplankton species composition, as species that dominated the net phytoplankton and developed algal blooms never appeared to be infected.  相似文献   

3.
Cyanobacterial blooms are common in the Baltic Sea. They are dominated by Aphanizomenon flos-aquae and Nodularia spumigena and take place in July–August. Investigations of bloom development using different approaches have been carried out in the Gulf of Finland during recent years. The ship-of-opportunity technique allows to observe the upper layer dynamics from meso- to basin-wide scale with high temporal and spatial frequency at low cost. Unattended measurements on board a commercial ferry along a transect between Tallinn and Helsinki have been conducted for 3 years (1997–1999). The influence of weather conditions—temperature and wind—on the cyanobacterial bloom development was investigated. The formation of cyanobacterial blooms was favoured by warm and calm weather, while in cold and windy conditions other species formed mass occurrences. Water temperature has been found to be the main factor controlling the initiation of the bloom, in general, while vertical stratification appeared to be the critical factor determining the intensity of the bloom at species level. The spatial distribution of the cyanobacterial bloom was determined rather by the wind-forced advection than by the possible vertical transport of nutrients in the areas of the observed upwelling events.  相似文献   

4.
A fuzzy logic model to describe the seasonal evolution of Nodularia spumigena blooms in the Gulf of Finland was built and calibrated on the basis of monitoring data. The model includes three phosphate sources: excess phosphate after the annual spring bloom and parameterised phosphate transport to the upper mixed layer by turbulent mixing and upwelling events. Surface layer temperature and wind mixing form the physical conditions controlling the growth of N. spumigena. Model simulations revealed that phosphate input caused by turbulent mixing and upwelling have to be taken into account to achieve the best fit with observed data. Testing the fuzzy model for early prediction of maximum N. spumigena biomass about a month before the usual occurrence of blooms, gave good results. The potential use of the model for prediction of bloom risk at a certain location along the Estonian or Finnish coast was tested. The bloom transport velocities used in the fuzzy model were pre-calculated by a 3D numerical circulation model for different wind regimes.  相似文献   

5.
Blooms of cyanobacteria are a recurrent phenomenon in the Baltic Sea, including the Gulf of Finland. The spatial extension, duration, intensity and species composition of these blooms varies widely between years. Alg@line data collected regularly from ferries as well as weather service and marine monitoring data from 1997 to 2005 are analysed to determine the main abiotic factors influencing the intensity and species composition of cyanobacterial blooms in the Gulf of Finland. It is demonstrated that the development of the Nodularia spumigena Mertens bloom is highly dependent on weather conditions such as photosynthetically active radiation and water temperature. Nutrient conditions, especially the surplus of phosphorus (according to Redfield ratio) related to the pre-bloom upwelling events in the Gulf, affect the intensity of Aphanizomenon sp. (L.) Ralfs blooms. Differences in bloom timing and duration indicate that, if the preconditions (like nutrient ratio/concentration and weather conditions) for bloom formation are favourable, then the Aphanizomenon bloom starts earlier, the overall bloom period is longer and the Nodularia peak might appear in a wider time window. Handling editor: K. Martens  相似文献   

6.
Satellite pictures and in situ observations indicate strong phytoplankton blooms including harmful algae blooms (HABs) during southwest (SW) summer monsoon in the Vietnamese upwelling area. In this period, nutrients are provided by coastal upwelling and by the very high river runoff from the Mekong River. During SW monsoon, in general two circulation patterns exist which allow the prediction of advection and diffusion of HAB patches. A Lagrangian HAB model that is driven by a circulation model and applied to HABs in Vietnamese waters is presented. Advection which is the most complicated part in modelling transport of passive substances is validated with a Lagrangian sediment trap experiment. The model produces realistic results compared to in situ observations and satellite images and might be used for real time forecast in the future.  相似文献   

7.
Role of Predatory Bacteria in the Termination of a Cyanobacterial Bloom   总被引:10,自引:0,他引:10  
Changes in cyanobacterial abundance and in the occurrence of bacteria of bacteria capable of lysing cyanobacteria were monitored over a period of 6 months (May to October 1998) in eutrophic Brome Lake (Quebec, Canada), in which dense cyanobacterial blooms recur regularly. By screening lake water, we isolated two strains of lytic bacteria, from the family Cytophagaceae. When tested on 12 cyanobacteria and 6 heterotrophic bacteria, strain 1 lysed only Anabaena flos-aquae and strain 2 lysed only Synechococcus cedorum, Synechococcus leopoliensis, Synechococcus elongatus, and Anacystic nidulans: both liquid and agar-grown cultures of these cyanobacteria were lysed. The number of plaque forming units of bacteria increased dramatically during the decline of the bloom. The results are consistent with an important role for these host-specific lytic bacteria in control and elimination of cyanobacterial blooms in this lake.  相似文献   

8.
Yan Q  Yu Y  Feng W  Pan G  Chen H  Chen J  Yang B  Li X  Zhang X 《Microbial ecology》2009,58(1):47-55
Using artificial systems to simulate natural lake environments with cyanobacterial blooms, we investigated plankton community succession by polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting and morphological method. With this approach, we explored potential ecological effects of a newly developed cyanobacterial blooms removal method using chitosan-modified soils. Results of PCR-DGGE and morphological identification showed that plankton communities in the four test systems were nearly identical at the beginning of the experiment. After applying the newly developed and standard removal methods, there was a shift in community composition, but neither chemical conditions nor plankton succession were significantly affected by the cyanobacteria removal process. The planted Vallisneria natans successfully recovered after cyanobacteria removal, whereas that in the box without removal process did not. Additionally, canonical correspondence analysis indicated that other than for zooplankton abundance, total phosphorus was the most important environmental predictor of planktonic composition. The present study and others suggest that dealing with cyanobacteria removal using chitosan-modified soils can play an important role in controlling cyanobacterial blooms in eutrophicated freshwater systems.  相似文献   

9.
In this study, we analyse the spatial distribution of cyanobacterial summer blooms in a large subtropical reservoir located in the Uruguay River, from 2007 to 2011; these extraordinary algal growth events are mainly represented by scum-forming and nitrogen-fixing eco-strategists of the Dolichospermum and Microcystis genera. The use of the eco-strategists approach, based on ecophysiological work and field observations, allowed us to explain the differences in the distribution pattern and temporal dynamics of both cyanobacterial complexes. Spatial differences were produced due to much higher and fluctuating cyanobacterial abundances at the right margin of the reservoir and at the littoral areas closer to the dam. Satellite imagery (LANDSAT 5 TM) clearly depicted the stronger algal development in the reservoir arms and in the section closer to the dam. The Microcystis spp. complex achieved higher density than the Dolichospermum spp. complex. We hypothesise that the hydrological cycle explains the inter-annual fluctuations of the intensity and frequency of cyanobacterial blooms, and that spatial differences in cyanobacterial presence between the reservoir arms, its margins and the main channel is mainly a response to morphometrical and hydrological characteristics.  相似文献   

10.
Physicochemical attributes were measured and aquatic macroinvertebrates were collected from six wetlands near Perth, Western Australia at three weekly intervals over a 13 month period from August 1988 to September 1989. The six wetlands encompassed a range of depths, pH, concuctivities, nutrient concentrations and colours. Temporal changes in the macroinvertebrate communities appeared to be related to seasonal changes in the physical and chemical characteristics of the wetlands. Community composition differed more between the less enriched wetlands then the higly enriched wetlands where communities were generally similar. High species richness was associated with seasonal drying. High macro invertebrate abundance appeared to be associated with the presence of either green algal or cyanobacterial blooms in the enriched wetlands. The highest macroinvertebrate biomass was recorded in wetlands with both cyanobacterial blooms and abundant macrophytes present.  相似文献   

11.
Cyanobacterial blooms have increased in freshwater ecosystems worldwide in the last century, mostly resulting from eutrophication and climate change. These blooms represent serious threats to environmental and human health because of the production of harmful metabolites, called cyanotoxins. Like many countries, Egypt has been plagued with cyanobacterial blooms in most water sources, including the Nile River, irrigation canals, lakes and fishponds. However, the data about cyanotoxins produced in these blooms are limited. Only two types of cyanotoxins, microcystins and cylindrospermopsin, have been identified and characterised, mainly from Microcystis and Cylindrospermopsis blooms. The data revealed the presence of microcystins in raw and treated drinking waters at concentrations (0.05–3.8 µg l?1), exceeding the WHO limit (1 µg l?1) in some drinking water treatment plants. In addition, Nile tilapia Oreochromis niloticus caught from ponds containing heavy cyanobacterial blooms have accumulated considerable amounts of cyanotoxins in their edible tissues. The data presented here could be the catalyst for the establishment of a monitoring and management programme for harmful cyanobacteria and their cyanotoxins in Egyptian fresh waters. This review also elucidates the important research gaps and possible avenues for future research on cyanobacterial blooms and cyanotoxins in Egypt.  相似文献   

12.
Stream inlets into shallow bays of reservoirs and lakes may be ‘hot‐spots’ for toxic cyanobacterial bloom initiation. These ‘hot‐spots’ may be connected with the permanent inflow of high nutrient concentrations from the catchment, optimal physical conditions (wind protected areas) that occur in shallow areas and/or ineffective top‐down control. Four sampling sites along a transect from stream to reservoir in a shallow bay of Sulejow Reservoir (Poland) were studied to test the above hypothesis, comprising a transition zone between lotic and pelagic habitats. Investigations showed that stream inlet into shallow bay acted as incubator for Microcystis blooms. The nutrient level, especially phosphorus, was identified as the major cause of cyanobacterial bloom growth. The increase of Microcystis biomass strongly correlated with increasing microcystin concentrations, however, a relationship with microcystin content was not observed. Toxicity of bloom demonstrated seasonal variability, reaching its maximum at the initial phase of bloom. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Dinoflagellate blooms in coastal upwelling systems are restricted to times and places with reduced exchange and mixing. The Rías Baixas of Galicia are four bays in the NW Iberian upwelling with these characteristics where harmful algal blooms (HABs) of dinoflagellates are common. These blooms are especially recurrent at the end of the upwelling season, when autumn downwelling amplifies accumulation and retention through the development of a convergence front in the interior of Rías. Because oceanic water enters the Rías during downwelling, it has been hypothesised that dinoflagellate blooms originate by the advection and subsequent accumulation of allochthonous populations. To examine this possibility, we studied the microplankton succession in relation to hydrographic variability in the Ría de Vigo (one of these four bays) along an annual cycle making use of a high sampling frequency. The results indicated that upwelling lasted from May to August, with downwelling prevailing in winter. Microplankton during upwelling, although dominated by diatoms, evidenced a progressive increase in the importance of dinoflagellates, which achieved maximum abundance at the end of the upwelling season. Thus, diatoms characterised the spring bloom, while diatoms and autochthonous dinoflagellates composed the autumn bloom. Diatoms dominated during the first moments of the autumn downwelling and dinoflagellates were more abundant later, after stronger downwelling removed diatoms from the water column. Since the dinoflagellates selected by downwelling belonged to the local community, it is concluded that advection of alien populations is not required to explain these autumn blooms.  相似文献   

14.
Toxic cyanobacterial blooms can strongly affect freshwater food web structures. However, little is known about how the patchy occurrence of blooms within systems affects the spatial distribution of zooplankton communities. We studied this by analysing zooplankton community structures in comparison with the spatially distinct distribution of a toxic Microcystis bloom in a small, shallow, eutrophic lake. While toxic Microcystis was present at all sites, there were large spatial differences in the level of cyanobacterial biomass and in the zooplankton communities; sites with persistently low cyanobacterial biomass displayed a higher biomass of adult Daphnia and higher zooplankton diversity than sites with persistently high cyanobacterial biomass. While wind was the most likely reason for the spatially distinct occurrence of the bloom, our data indicate that it was the differences in cyanobacterial biomass that caused spatial differences in the zooplankton community structures. Overall, our study suggests that even in small systems with extensive blooms ‘refuge sites’ exist that allow large grazers to persist, which can be an important mechanism for a successful re-establishment of the biodiversity in an ecosystem after periods of cyanobacterial blooms.  相似文献   

15.
Tadpoles of Rana grylio were raised as edible frogs in fishponds of Guanqiao in Wuhan City, Hubei, China, during cyanobacterial blooms from June to October. The dominant cyanobacterial species was Microcystis, which was found to be lethally toxic by intraperitoneal (i.p.) mouse bioassay. Little is known about the effect of tadpoles on toxic cyanobacterial blooms. To evaluate the potential of the tadpoles to graze on cyanobacterial blooms, the tadpoles were fed on Microcystis collected from the field in the laboratory. The Microcystis cells decreased from 1.19 × 107 cells mL?1 to 3.23 × 106 cells mL?1, with a sharp reduction of 73% of the initial Microcystis population observed in the first 24 h after introduction of the tadpoles. The ponds containing tadpoles had a markedly lower density of Microcystis than those lacking tadpoles. Tadpoles exposed to either cultured Microcystis aeruginosa (NIES–90, 2.768 µg microcystins mg–1 dw–1) cells or lysed M. aeruginosa cells grew well, however, indicating that they were unaffected by Microcystis toxins. We found a significant increase in tadpole body weight after feeding on either field Microcystis or cultured M. aeruginosa. The mean increase in individual body weight was 20 mg day?1 when fed on Microcystis from the pond, and 7 mg day?1 when fed on M. aeruginosa from culture. Our study strongly suggested that there is a direct trophic relationship between R. grylio tadpoles and toxic Microcystis blooms and they possess the potential to graze on toxic Microcystis. The results imply that R. grylio tadpoles may play an important ecological role in reducing toxic cyanobacterial blooms caused by Microcystis.  相似文献   

16.
 Toxic cyanobacterial blooms have occurred in the near-shore waters of the North Basin of Lake Biwa, Japan, since 1994, and have been attributed to deterioration of water quality in the enriched littoral zone of the lake. From 1997 onwards, the bloom-forming cyanobacteria have been observed with increasing frequency in the deep offshore waters of the North Basin. In the present study, we examined the mechanisms responsible for these bloom populations in the main body of the lake. Specifically, we addressed the hypothesis that buoyant, nutrient-replete colonies of cyanobacteria are generated inshore, are advected offshore by large-scale horizontal transport processes, and subsequently accumulate in the downwelling center of large surface gyres that characterize the overall circulation pattern in the epilimnion of the North Basin. Diel variations of Microcystis biomass at the center and the edge of the Lake Biwa gyre were monitored at 6-h intervals on August 23–24, 2000, and the horizontal distribution of buoyant Microcystis was determined on October 6. The hydrodynamic structure of the first gyre was determined over the preceding 2 days by an on-board Acoustic Doppler Current Profiler (ADCP). The gyre was characterized by a counterclockwise horizontal current that could potentially advect material large distances offshore, a downwelling current near the center of the gyre, and an upwelling current at the edge of the gyre, caused by the radial pressure gradients. The biomass of Microcystis near the water surface was greater at the center than at the edge of the gyre, and the biomass at 5 m depth at the edge of the gyre was greater than that at the water surface or at the thermocline near the edge of the gyre. The results are consistent with the gyre-Microcystis hypothesis, and show the potential for accumulation of large concentrations of cyanobacteria in deep offshore lake environments that are normally considered unsuitable for cyanobacterial blooms. Received: July 16, 2001 / Accepted: March 6, 2002  相似文献   

17.
The biological, physical and chemical properties of Lake Elphinstone were studied during a dense, toxic cyanoprokaryote bloom dominated by Microcystis. Decreases in total abundance and richness in macroinvertebrate communities coincided with increases in Microcystis toxicity. Water quality was characterized by high light attenuation values caused by abiogenic turbidity and shading and absorbance from thick algal scums. The study highlights the potential for multidimensional environmental impacts associated with toxic cyanoprokaryote blooms, and the consequent implications for the management of shallow, inland and tropical lakes that are susceptible to toxic blooms.  相似文献   

18.
Cyanobacterial blooms are predicted to become more prominent in the future as a result of increasing seawater temperatures and the continued addition of nutrients to coastal waters. Many benthic marine cyanobacteria have potent chemical defenses that protect them from top down pressures and contribute to the persistence of blooms. Blooms of benthic cyanobacteria have been observed along the coast of Florida and within the Indian River Lagoon (IRL), a biodiverse estuary system that spans 250 km along Florida’s east coast. In this study, the cyanobacterial bloom progression at three sites within the central IRL was monitored over the course of two summers. The blooms consisted of four unique cyanobacterial species, including the recently described Okeania erythroflocculosa. The cyanobacteria produced a range of known bioactive compounds including malyngolide, lyngbyoic acid, microcolins A–B, and desacetylmicrocolin B. Ecologically-relevant assays showed that malyngolide inhibited the growth of marine fungi (Dendryphiella salina and Lindra thalassiae); microcolins A–B and desacetylmicrocolin B inhibited feeding by a generalist herbivore, the sea urchin Lytechinus variegatus; and lyngbyoic acid inhibited fungal growth and herbivore feeding. These chemical defenses likely contribute to the persistence of cyanobacterial blooms in the IRL during the summer growing period.  相似文献   

19.
Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis-aggregate-associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co-occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.  相似文献   

20.
The recent rise in the awareness of the occurrence of toxic cyanobacterial blooms in aquatic environments, with associated human health problems and animal deaths, has increased the need for rapid, reliable and sensitive methods of determining cyanobacterial toxicity. A luminescent bacterial toxicity test was assessed as a complement to the established mouse bioassay. Seventeen samples including pure cyanobacterial microcystin-LR hepatotoxin, laboratory isolates and natural blooms of cyanobacteria were tested and toxicity data compared with mouse LD50 values. Microcystin-LR and all five microcystin-containing cyanobacterial samples, hepatotoxic by mouse test gave EC50 values of less than 0.46 mg/ml in bioluminescence-based Microtox assays. Of 11 samples non-toxic by mouse bioassay, only two gave an EC50 of less than 0.98 mg/ml by bioluminescence assay. It is suggested that the Microtox bioluminescence assay may prove useful in the preliminary screening of cyanobacterial blooms for microcystin-based toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号