首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract: Recently, a substantial amount of free d -serine has been demonstrated in rat brain, although it has long been presumed that d -amino acids are uncommon in mammals. The anatomical distribution and age-related changes in endogenous d -serine have been examined here to obtain insight into its physiological functions. Free d -serine exclusively occurs in brains, with a persistent high content from birth to at least 86 postnatal weeks. The patterns of the regional variations and the postnatal changes in brain d -serine are closely correlated with those of the N -methyl- d -aspartate (NMDA)-type excitatory amino acid receptor. Because d -serine potentiates NMDA receptor-mediated transmission by selective stimulation of the strychnine-insensitive glycine site of the NMDA receptor, it is proposed that d -serine is a novel candidate as an intrinsic ligand for the glycine site in mammalian brain.  相似文献   

2.
The endosymbiont most likely to have given rise to mitochondria is an aerobic bacterium belonging to the α subdivision of the so-called purple bacteria such as Rickettsia, Bradythizobium and Agrobacterium [1 and 2]. Contents of the -enantiomers of serine, alanine, proline, glutamate and aspartate in rat liver whole mitochondria, mitochondrial outer membranes, inner membranes and matrix, soluble proteins and free amino acids were detected. These values for -amino acid content were compared with those in soluble proteins and free amino acids from the purple bacteria Paracoccus denitrificans, Pseudomonas aeruginosa and Escherichia coli, members, respectively of the α, β, and γ subdivisions, to find any similarity between mitochondria and these purple bacteria. A similarity was observed in protein -amino acid contents which were low (<1.5%, D-type/D-type+L-type) both in the membrane and soluble protein fractions from mitochondria and in soluble protein from bacteria. Oddly, substantial amounts of free -serine and free -aspartate (around 2%) were found for the first time in mitochondria. The contents of -serine and -aspartate were higher than those of -alanine, -proline and -glutamate. In purple bacteria, the concentration of -serine (<2%) was the lowest of the five amino acids examined, and those of -alanine (27–32%) and -glutamate (7–26%) were high. Therefore, no similarity was shown in the free -amino acid content between mitochondria and any of the three purple bacteria.  相似文献   

3.
In mammalian brains, -amino-acid oxidase activity is absent or scarce in the forebrain, is confined to the brain stem and cerebellum, and its localization is extended to the spinal cord. The oxidase-containing cells are astrocytes including Bergmann glial cells. Neither neurons, endothelial cells, oligodendrocytes nor ependymal cells show the oxidase activity. Free -serine, a potent activator of the N-methyl- -aspartate (NMDA) receptor, is in high levels in the forebrain (ca. 0.4 μmol/g wet weight), and in low levels in the hindbrain. Thus, the localization of the oxidase activity is inversely correlated with the distribution of -serine in mammalian brains. This inverse correlation is generally found in vertebrate brains. These results indicate that -amino-acid oxidase decomposes -amino acids including -serine in vertebrate brains, and that the magnitude of its activity is important in determining the regional concentrations of -amino acids in the steady states.  相似文献   

4.
In an in vivo dialysis experiment, the intra-medial frontal cortex infusion of a system A and Asc-1 transporter inhibitor, S-methyl-l-cysteine, caused a concentration-dependent increase in the dialysate contents of an endogenous coagonist for the N-methyl-d-aspartate (NMDA) type glutamate receptor, d-serine, in the cortical portion. These results suggest that these neutral amino acid transporters could control the extracellular d-serine signaling in the brain and be a target for the development of a novel threapy for neuropsychiatric disorders with an NMDA receptor dysfunction.  相似文献   

5.
The concurrent determination of free amino acid enantiomers and non-chiral amino acids in rat brain and serum was accomplished by high-performance liquid chromatography with fluorimetric detection after derivatization with N-tert.-butyloxycarbonyl- -cysteine and o-phthaldialdehyde. The method revealed the presence of a large amount of free -serine (0.22 μmol/g of tissue; + RATIO = 0.25) in the brain whereas -aspartate and -alanine were established to be at trace levels. These results further support the presence of -serine in adult brain tissues as demonstrated by recent work using gas chromatography.  相似文献   

6.
Abstract— Glycine was a substrate for d -amino acid oxidase purified from extracts of cat spinal cord and sheep cerebellum. d -Aspartate and N -methyl- d -aspartate were oxidized at a rate similar to that of glycine by the purified sheep cerebellum extract; d -α-alanine and d -serine were oxidized appreciably faster than glycine, while GABA and d -glutamate were not oxidized at a measurable rate. p -Mercuribenzoate and kojate inhibited the oxidation of glycine by the purified sheep cerebellum extract.
d -Amino acid oxidase activity was higher in the grey than in the white matter of cat spinal cord, while the reverse was true for the cerebral cortex; the activity in the cord and cerebral cortex was much lower than that in the cerebellum.  相似文献   

7.
Abstract: Using a brain microdialysis technique, we have shown in the rat that local infusion of a selective and competitive N -methyl- d -aspartate (NMDA) receptor antagonist, cis -4-phosphonomethyl-2-piperidine carboxylic acid (CGS-19755), into the medial frontal cortex via dialysis tubing caused a concentration-related increase in the extracellular release of dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid in the cortical region. Coinfusion of a sodium channel blocker, tetrodotoxin, completely inhibited the ability of the NMDA antagonist to augment frontal dopamine metabolism. These findings suggest that dopamine neurons projecting to the frontal cortex might be under a tonic transsynaptic inhibition exerted by excitatory amino acid neurotransmission via the NMDA receptor at the level of dopamine terminal fields.  相似文献   

8.
Abstract: To obtain an insight into the metabolic pathways of endogenous d -serine in mammalian brains, we have investigated in the infant rat the effects of systemic administration of l -serine, d -serine, and related amino acids, including glycine and threonine, on the amino acid contents in the cerebral cortex. Intraperitoneal injection of l -serine induced a rapid and transient elevation of the levels of l -serine itself in the neocortex, with its peak at 3 h post injection, and a delayed and prolonged increase in d -serine contents from 1.5 h to at least 24 h thereafter. Similarly, a significant augmentation in cerebral d -serine contents was observed 6 h after intraperitoneal administration of glycine, which also elevated the cortical l -serine levels. In contrast, l -threonine injection affected the concentrations of neither d - nor l -serine in the cortex of the pups. d -Serine given systemically, in turn, increased the neocortical contents of l -serine as well as d -serine itself, but failed to alter those of glycine and l -threonine. These in vivo data suggest the possible link between metabolic pathways of d - and l -serine in the cerebral cortex of the rat.  相似文献   

9.
Abstract— d -Aspartate oxidase activity has been measured in water extracts of acetone powders prepared from cat forebrain, cerebellum and spinal cord, rat brain, hog brain and sheep brain stem, and compared with that found in rabbit and cat kidney. The results suggest that the brain enzyme has very similar properties to the n-aspartate oxidase ( d -aspartate: oxygen oxidorcductase (deaminating), EC 1.4.3.1) of kidney. Crude extracts (ammonium sulphate fractions of water extracts of acetone powders) displayed little activity without added FAD. FMN could not replace FAD. With oxygen as electron acceptor, the enzyme oxidized d -aspartate much more rapidly than d -glutamate, and displayed quite high activities with N -substituted derivatives of d -aspartate as substrates. Those amino acids susceptible to oxidation by d -amino acid oxidase were not oxidized by the d -aspartate oxidase. The regional distribution of the d -aspartate oxidase activity within the CNS differed from that of d -amino acid oxidase. As has been previously observed for kidney d -aspartate oxidase activity, dicarboxylic acids competitively inhibited this enzymic activity in brain extracts, while sodium benzoate and sodium barbitone, inhibitors of d -amino acid oxidase, were without effect.  相似文献   

10.
Changes in Free Amino Acid Levels in Developing Human Foetal Brain Regions   总被引:1,自引:1,他引:0  
The levels of free amino acids were determined in human foetal brain regions during prenatal development. Variation in the distribution of amino acids and their rate of change in five segments of the CNS at different stages of ontogeny was observed. Striking developmental changes were found in the levels of aspartic acid in medulla-pons and spinal cord, glycine in the spinal cord, gamma-aminobutyric acid in the cerebral cortex, glutamic acid in the cerebral cortex, midbrain, and spinal cord, and taurine in the medulla-pons and spinal cord. At a late gestational period, glutamic acid was found most abundantly over all the brain regions, whereas the level of taurine was highest at an early gestational stage but not in spinal cord.  相似文献   

11.
Uptake and Release of N-Methyl-d-Aspartate by Rat Brain Slices   总被引:2,自引:0,他引:2  
Abstract: The excitant amino acid, N -methyl- d -aspartate, was actively taken up by slices of rat cerebral cortex. This uptake was Na+ - and temperature-dependent, but was relatively inefficient (Km 3 MM, Vmax 0.07 μmol/g/min) compared with that of other acidic amino acids. The uptake of N -methyl- d -aspartate does not appear to have a rate-limiting influence on the time course of N -methyl- d -aspartate-induced excitation since potent uptake inhibitors, such as threo-3-hydroxy- l -aspartate, do not influence the excitant action of N -methyl- d -aspartate. The relatively prolonged excitant action of this acidic amino acid may be the result of relatively slow dissociation of the activated receptor complex. Reloaded N -methyl- d -aspartate can be released from rat brain slices by stimulation with K+ ions. Such K+-stimulated release appeared to be Ca2+-independent, unlike the K+-stimulated release of preloaded d -aspartate. These findings suggest that N -methyl- d -aspartate may be a weak but selective substrate for a glial acidic amino acid uptake system.  相似文献   

12.
Abstract: To explore target sites for endogenous d -serine that are different from the glycine site of the N -methyl- d -aspartate (NMDA) type glutamate receptor, we have studied the binding of d -[3H]serine to the synaptosomal P2 fraction prepared from the rat brain and peripheral tissues in the presence of an excess concentration (100 µ M ) of the glycine site antagonist 5,7-dichlorokynurenate (DCK). Nonspecific binding was defined in the presence of 1 m M unlabeled d -serine. Association, dissociation, and saturation experiments indicated that d -[3H]serine bound rapidly and reversibly to a single population of recognition sites in the cerebellar P2 fraction in the presence of DCK, with a K D of 614 n M and a B max of 2.07 pmol/mg of protein. d -Serine, l -serine, and glycine produced a total inhibition of the specific DCK-insensitive d -[3H]serine binding to the cerebellum with similar K i values. Strychnine and 7-chlorokynurenate failed to inhibit the binding at 10 µ M . The profiles of displacement of the DCK-insensitive d -[3H]serine binding by various amino acids and glutamate and glycine receptor-related compounds differ from those of any other defined recognition sites. DCK-insensitive d -[3H]serine binding was at high levels in the cerebral cortex and cerebellum but very low in the kidney and liver. The present findings indicate that the DCK-insensitive d -[3H]serine binding site could be a novel candidate for a target for endogenous d -serine in mammalian brains.  相似文献   

13.
Rhesus monkeys given pre- and postnatal diets deficient in n-3 essential fatty acids develop low levels of docosahexaenoic acid (22:6 n-3, DHA) in the cerebral cortex and retina and impaired visual function. This highly polyunsaturated fatty acid is an important component of retinal photoreceptors and brain synaptic membranes. To study the turnover of polyunsaturated fatty acids in the brain and the reversibility of n-3 fatty acid deficiency, we fed five deficient juvenile rhesus monkeys a fish oil diet rich in DHA and other n-3 fatty acids for up to 129 weeks. The results of serial biopsy samples of the cerebral cortex indicated that the changes of brain fatty acid composition began as early as 1 week after fish oil feeding and stabilized at 12 weeks. The DHA content of the phosphatidylethanolamine of the frontal cortex increased progressively from 3.9 +/- 1.2 to 28.4 +/- 1.7 percent of total fatty acids. The n-6 fatty acid, 22:5, abnormally high in the cerebral cortex of n-3 deficient monkeys, decreased reciprocally from 16.2 +/- 3.1 to 1.6 +/- 0.4%. The half-life (t 1/2) of DHA in brain phosphatidylethanolamine was estimated to be 21 days. The fatty acids of other phospholipids in the brain (phosphatidylcholine, -serine, and -inositol) showed similar changes. The DHA content of plasma and erythrocyte phospholipids also increased greatly, with estimated half-lives of 29 and 21 days, respectively. We conclude that monkey cerebral cortex with an abnormal fatty acid composition produced by dietary n-3 fatty acid deficiency has a remarkable capacity to change its fatty acid content after dietary fish oil, both to increase 22:6 n-3 and to decrease 22:5 n-6 fatty acids. The biochemical evidence of n-3 fatty acid deficiency was completely corrected. These data imply a greater lability of the fatty acids of the phospholipids of the cerebral cortex than has been hitherto appreciated.  相似文献   

14.
d -Serine, the endogenous ligand for the glycine modulatory binding site of the NMDA receptor, and serine racemase, the enzyme that converts l -serine to d -serine, have been reported in vertebrate retina; initial reports suggested that localization was restricted to Müller glial cells. Recent reports, in which d -serine and serine racemase were detected in neurons of the brain, prompted the present investigation of neuronal expression of d -serine and serine racemase in retina and whether expression patterns were developmentally regulated. RT-PCR, in situ hybridization, western blotting, immunohistochemistry, and immunocytochemical methods were used to localize d -serine and serine racemase in intact retina obtained from 1 to 3 day, 3 week, and 18 week mouse retinas and in primary ganglion cells harvested by immunopanning from neonatal mouse retina. Results of these analyses revealed robust expression of d -serine and serine racemase in ganglion cells, both in intact retina and in cultured cells. The levels appear to be developmentally regulated with d -serine levels being quite high in ganglion cells of neonatal retinas and decreasing rapidly postnatally. Serine racemase levels are also developmentally regulated, with high levels detected during the early postnatal period, but diminishing considerably in the mature retina. This represents the first report of neuronal expression of d -serine and serine racemase in the vertebrate retina and suggests an important contribution of neuronal d -serine during retinal development.  相似文献   

15.
Abstract The plasmodium of Physarum polycephalum exhibited positive chemotaxis towards l -alanine, l -aspartate, l -asparagine, l -glutamate, glycine, l -leucine, l -serine, and l -threonine and negative chemotaxis towards l -tryptophan. All attractant amino acids, except l -serine and l -threonine competed with each other; l -serine and l -threonine competed with the other amino acids but did not interfere with the response to each other. Cyclic nucleotides were attractants and cyclic 3',5'- or 2',3'-phosphate derivatives of either adenine or guanine were active, wheras compounds lacking the ring structure generally were not. Folic acid was an attractant whereas certain aromatic compounds were either inactive or repellent.  相似文献   

16.
A potential role for d-amino acids in motor neuron disease/amyotrophic lateral sclerosis (ALS) is emerging. d-Serine, which is an activator/co-agonist at the N-methyl-d-aspartate glutamate receptor subtype, is elevated both in spinal cord from sporadic cases of ALS and in an animal model of ALS. Furthermore, we have shown that a mutation in d-amino acid oxidase (DAO), an enzyme strongly localized to spinal cord motor neurons and brain stem motor nuclei, is associated with familial ALS. DAO plays an important role in regulating levels of d-serine, and its function is impaired by the presence of this mutation and this may contribute to the pathogenic process in ALS. In sporadic ALS cases, elevated d-serine may arise from induction of serine racemase, its synthetic enzyme, caused by cell stress and inflammatory processes thought to contribute to disease progression. Both these abnormalities in d-serine metabolism lead to an increase in synaptic d-serine which may contribute to disease pathogenesis.  相似文献   

17.
Developmental changes in the levels of the excitatory amino acids l-glutamate (Glu) and l-Aspartate (Asp) and inhibitory amino acids glycine (Gly) and γ-amino butyric acid (GABA), as well as taurine and its related amino acids l-methionine (Met), l-cysteine (Cys) and l-serine (Ser) in the brain and pectoralis muscle at various embryonic stages and hatch in broiler and layer type chickens were determined. Brain concentrations of Asp, GABA and taurine were higher than those in the muscle, but the difference in the two types was small. The concentrations of the precursors of taurine including Met, Cys and Ser were lower than that of taurine. In conclusion, the synthesis of some amino acids and their metabolites such as Asp, GABA and taurine in the chick embryo is very high in order to support brain development.  相似文献   

18.
The concentrations and composition of free amino acids in phloem sap from two cultivars of oats and barley, both susceptible to the aphid Rhopalosiphum padi, were determined by means of high performance liquid chromatography. Sap was collected from excised aphid stylets at three developmental stages (seedlings, tillering plants and plants undergoing stem elongation) from plants given or not given fertiliser and grown outdoors. In connection, the growth of individual R. padi nymphs was estimated at the same phenological stages on plants grown in the greenhouse. The content of free amino acids was consistently higher in seedlings than in plants at the early tillering stage. Only in seedlings did the addition of fertiliser increase amino acid levels. Barley phloem sap contained more free amino acids than that of oats when fertiliser was added and at later developmental stages. Phloem sap of oats and barley showed similar patterns in their composition of free amino acids at the seedling stage, but as the plants grew older the patterns became increasingly different. Plants given fertiliser had higher amounts of dicarboxylic amino acids (glutamic and aspartic acid) than unfertilised plants. The concentrations of γ-amino butyric acid, glycine, histidine, and methionine were very low in all treatments. The relative growth rates of R. padi nymphs were low when amino acid content was low and vice versa. The results are discussed in relation to host plant suitability and plant resistance mechanisms.  相似文献   

19.
The prenatal and postnatal human ontogeny of the central benzodiazepine receptor was investigated in six different brain regions between week 24 postconception and age 14 years. Binding studies, which were performed with [3H]flunitrazepam [( 3H]FNZ), revealed a steep increase in receptor density postnatally in frontal cortex and cerebellum. Bmax values were higher in medulla oblongata, pons, and thalamus than in cortex and cerebellum up to week 26. After that, receptor densities declined significantly in medulla and olive. The same tendency was apparent in pons, whereas receptor density remained unchanged in thalamus. The early ontogeny of the benzodiazepine receptor was also evaluated in fluorographs [( 3H]FNZ) and immunoblots using the alpha 1-subunit-specific monoclonal antibody (mAb) bd-24. Specific radiolabeled proteins with molecular weights of 53K and 59K were visible in cortical membranes from gestational week 8, the earliest time investigated. During further development, the intensity of the 53K band increased without changes in the 59K band. As in other species, postmortem proteolysis in human brain led to a specifically labeled peptide of 47K. The mAb bd-24 immunolabeled only the 53K protein and the 47K peptide.  相似文献   

20.
Summary This study was undertaken to evaluate water stress effects during vegetative, flowering, and podfilling stages of cowpea plants (Vigna unguiculata L.) grown under natural field conditions in southern California on seed yield and protein and free amino acid content of the cowpea seeds. The lowest concentration of N was found in the seeds of the control treatment plants while the seed yield from these treatments was the highest as compared with the N concentration and yield of seeds from plants subjected to water stress during flowering and podfilling stages. The concentration of N in the seeds was inversely related to the seed dry weight yield. Protein arginine,-threonine,-serine,-cystine,-valine,-methionine, and-isoleucine were significantly affected by water stress at the three growth stages. There was no consistent pattern in the effect of water stress on the individual amino acids. The sum of protein amino acids in the cowpea seeds was not significantly influenced by the various treatments since some of the protein amino acids increased and others decreased producing an averaging effect on the figures comprising the sums of the amino acids. Water stress during the flowering and pod-filling stages increased the free amino acid pool, and at the same time, inhibited incorporation of the amino acids into the protein chain-thus lowering the protein amino acid fraction simultaneously. With the exception of methionine plus cystine, the essential amino acids in the seeds were present at concentrations equal to or greater than recommended by the World Health Organization and FAO. It is of particular importance to note that the concentration of lysine in the cowpeas was substantially higher than that found in wheat grain. It is also important to note that the amount of essential amino acids per gram of protein was not measurably affected by the water stress treatments during any of the growth stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号