首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
The korB gene is a major regulatory element in the replication and maintenance of broad host-range plasmid RK2. It negatively controls the replication gene trfA, the host-lethal determinants kilA and kilB, and the korA-korB operon. Here, we present the nucleotide sequence of an 1167 base-pair region that encodes korB. Using sequence data from korB mutants, we identified the korB structural gene. The predicted polypeptide product is negatively charged and has a molecular weight of 39,015, which is considerably less than that estimated by its electrophoretic mobility in SDS/polyacrylamide gels. Secondary-structure predictions of korB polypeptide revealed three closely spaced helix-turn-helix regions with significant homology to similar structures in known DNA-binding proteins. The korB gene, like all other sequenced RK2 genes, shows a strong preference for codons ending in a G or C residue. This is similar to codon usage by genes of Klebsiella and Pseudomonas, the original hosts for RK2 and some closely related plasmids. We also sequenced the site of transposon Tn76 insertion in the host-range mutant pRP761 and found it to be located immediately upstream from korB in the incC gene. Finally, we report the presence of sequences resembling a replication origin within the korB structural gene: a cluster of four 19 base-pair direct repeats and a nearby potential binding site for Escherichia coli dna A replication protein.  相似文献   

4.
The incC and korB genes of IncP-1 plasmid RK2 encode homologues of ubiquitous ParA and ParB partitioning proteins of bacterial plasmids and chromosomes. Using immunofluorescence microscopy, we found that KorB, which binds to 12 widely distributed sites on the genome, is located in symmetrically placed foci in cells containing IncP-1 plasmids. When maintained by the low-copy-number P7 replicon, an RK2 segment including incC, korB and the kla, kle and korC regions encodes an efficient partitioning system that gives a pattern of foci similar to RK2 itself. Symmetrical distribution of KorB foci correlates with segregational stability conferred by either the IncP-1 or P7 partitioning systems; KorB distribution follows plasmid distribution. In the absence of a second partitioning system, incC inactivation resulted in paired or clumped foci that were not symmetrically distributed. At a slow growth rate, position analysis of foci showed a cycle from one central focus to two foci (at one- and three-quarter positions) and back, and at a high growth rate it showed a cycle from two foci to four and back. This pattern fits with the plasmid being coupled to the replication zones in the cell and being moved to successively younger zones by active partitioning, indicating a tight association between replication and partitioning.  相似文献   

5.
6.
7.
8.
KorA and KorB proteins of IncP1 plasmid RK2 are encoded in the central control region (ccr) of the plasmid and act as global regulators of plasmid genes for replication, transfer and stable inheritance. KorA represses seven promoters on RK2, by binding to a defined operator site, OA, which always occurs in promoter regions. KorB recognises another operator, OB, which is found 12 times on the RK2 genome, but not always in promoter regions. At five of the KorA-regulated promoters, an OBsequence is also present. The presence of both KorA and KorB leads to severely decreased promoter activity. By measuring repression at different levels of KorA and KorB alone and in combination, we showed that there is at least 3. 4-fold co-operativity between them at korApin vivo. Testing the ability of previously isolated KorA mutants to act in a co-operative way in the presence of KorB in vivo or in vitro showed that the C-terminal part of KorA between amino acid positions 68 and 83 is required for this co-operativity. This region is part of a segment that is highly conserved between KorA and two other RK2 proteins, TrbA and KlcB. We propose that this conserved region may provide the basis for co-operativity with KorB either indirectly, by modulating DNA structure near the KorB binding site, or directly by serving as the "recognition" patch of each protein by KorB. It may thus serve as a key domain in allowing a sensitive response of the global circuits to changes in repressor concentration and thus modulation of replication, transfer and maintenance.  相似文献   

9.
The ParB family partitioning protein, KorB, of plasmid RK2 is central to a regulatory network coordinating replication, maintenance and transfer genes. Previous immunofluorescence microscopy indicated that the majority of KorB is localized in plasmid foci. The 12 identified KorB binding sites on RK2 are differentiated by: position relative to promoters; binding strength; and cooperativity with other repressors and so the distribution of KorB may be sequestered around a sub-set of sites. However, chromatin immunoprecipitation analysis showed that while RK2 DNA molecules appear to sequester KorB to create a higher local concentration, cooperativity between DNA binding proteins does not result in major differences in binding site occupancy. Thus under steady state conditions all operators are close to fully occupied and this correlates with gene expression on the plasmid being highly repressed.  相似文献   

10.
11.
12.
13.
14.
15.
Plasmid RK2 encodes several kil determinants whose lethal action on Escherichia coli host cells is prevented by RK2 kor genes. Here we show that the mini-RK2 plasmid, pRK248, specifies a kilB component (kilB1) in the region of the replication gene trfA. kilB1 is different from trfA and is completely encoded within the pRK248 HaeII A fragment. Transformation of E. coli cells with hybrid plasmids containing the cloned kilB1 determinant is very inefficient and results in the selection of variant kil- plasmids, many of which show genetic and physical evidence of deletions. If another pRK248 gene (korB1) is present in the cells, kilB1+ plasmids can be established at high efficiency and without any detectable changes. KorB1 is encoded by the trfB region of pRK248 because recombinant plasmids with this region are able to control kilB1 in trans. These results substantiate our earlier explanation for the structure of pRK248 and for the perplexing requirement of the trfB region in this plasmid.  相似文献   

16.
17.
A network of circuits, with KorB and TrbA as key regulators, controls genes for conjugative transfer of broad host range plasmid RK2. To assess the importance of the TrbA regulon, mutational analysis was applied to the TrbA operator at the trbB promoter and then to other TrbA-regulated promoters in the tra region. All identified TrbA operators are submaximal; in the case of trbBp, a G to A transition that made the operator core a perfect palindrome increased repression by about 50% compared to the wild type. When this change was introduced into the RK2 genome, decreases in transfer frequency of up to three orders of magnitude were observed, with bigger effects when Escherichia coli was the donor compared to Pseudomonas putida. Western blotting showed a significant decrease in Trb protein levels. These effects were much greater than the effect of the mutation on repression by TrbA alone. When KorB was introduced into the reporter system, the effects were closer to those observed in the whole RK2 context. These results indicate that co-operativity, previously observed between TrbA and KorB, allows big changes in transfer gene expression to result from small changes in individual regulator activities.  相似文献   

18.
The kilB locus (which is unclonable in the absence of korB) of broad-host-range plasmid RK2 (60 kb) lies between the trfA operon (co-ordinates 16.4 to 18.2 kb), which encodes a protein essential for vegetative replication, and the Tra2 block of conjugative transfer genes (co-ordinates 20.0 to 27.0 kb). Promoter probe studies indicated that kilB is transcribed clockwise from a region containing closely spaced divergent promoters, one of which is the trfA promoter. The repression of both promoters by korB suggested that kilB may also play a role in stable maintenance of RK2. We have sequenced the region containing kilB and analysed it by deletion and insertion mutagenesis. Loss of the KilB+ phenotype does not result in decreased stability of mini RK2 plasmids. However insertion in ORFI (kilBI) of the region analysed results in a Tra- phenotype in plasmids which are otherwise competent for transfer, demonstrating that this locus is essential for transfer and is probably the first gene of the Tra2 region. From the kilBI DNA sequence KilBI is predicted to be 34995 Da, in line with M(r) = 36,000 observed by sodium dodecyl sulphate/polyacrylamide gel electrophoresis, and contains a type I ATP-binding motif. The purified product was used to raise antibody which allowed the level of KilBI produced from RK2 to be estimated at approximately 2000 molecules per bacterium. Protein sequence comparisons showed the highest homology score with VirB11, which is essential for the transfer of the Agrobacterium tumefaciens Ti plasmid DNA from bacteria to plant cells. The sequence similarity of both KilBI and VirB11 to a family of protein export functions suggested that KilBI may be involved in assembly of the surface-associated Tra functions. The data presented in this paper provide the first demonstration of coregulation of genes required for vegetative replication and conjugative transfer on a bacterial plasmid.  相似文献   

19.
We previously reported that broad-host-range plasmid RK2 encodes multiple host-lethal kil determinants (kilA, kilB1, kilB2, and kilC) which are controlled by RK2-specified kor functions (korA, korB, and korC). Here we show that kil and kor determinants have significant effects on RK2 replication control. First, korA and korB inhibit the replication of certain RK2 derivatives, unless plasmid replication is made independent of the essential RK2 gene trfA. Second, kilB1 exerts a strong effect on this interaction. If the target plasmid is defective in kilB1, sensitivity to korA and korB is enhanced at least 100-fold. Thus, korA and korB act negatively on RK2 replication, whereas kilB1 acts in a positive manner to counteract this effect. A mutant RK2 derivative, resistant to korA and korB, was found to have fused a new promoter to trfA, indicating that the targets for korA and korB are at the 5' end of the trfA gene. We constructed a trfA-lacZ fusion and found that synthesis of beta-galactosidase is inhibited by korA and korB. Thus korA, korB, and kilB1 influence RK2 replication by regulating trfA expression. We conclude that the network of kil and kor determinants is part of a replication control system for RK2.  相似文献   

20.
IncC and KorB proteins of broad-host-range plasmid RK2 are members of the ParA-ParB families of proteins needed for stable partitioning of bacterial chromosomes and plasmids. KorB also functions as a global regulator of expression of RK2 genes. It recognises and binds to a palindromic operator, O(B), found 12 times on RK2 DNA (O(B)1-O(B)12). We performed detailed studies on the binding of KorB to the 12 operators and showed that they fall into three groups (A, B, C) based on the binding strength of KorB. The highest affinity site is O(B)10, which occurs in the promoter transcribing genes for replication, trfAp. Purified IncC1 potentiated KorB binding to all O(B) sites except O(B)3, a site involved in partitioning. Using O(B)10 as a test system, we showed that IncC1 increases the stability of the KorB-DNA complex. The 5 bp sequences flanking the 13mer O(B) site were found to affect KorB binding and IncC1 potentiation activity. Study of hybrid operators indicated that flanking sequences on one side only were sufficient to specify the difference between O(B)10 and O(B)3. Replacement of adenine by guanine at positions -8 and -10 from the O(B)10 centre of symmetry was needed to convert it from the highest-affinity group (A) to the medium-affinity group (B) on the basis of KorB binding. These changes also eliminated potentiation by IncC1. The -8 and -10 positions from the centre of O(B)3 symmetry are occupied by guanines and this may provide part of the specificity of IncC1 behaviour on KorB binding. Studies on a series of synthetic operators suggested that KorB contacts O(B) flanking sequences, and that IncC1 may alter the conformation of multimeric KorB so that it is better able to make these contacts, thus stabilising the complexes once formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号