首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study explores whether differences in germination ability shape habitat distributions among closely related epiphytic species, particularly in the context of the ability to colonize disturbed habitats. We compared the germination of three epiphytic bromeliad species differing in their ability to colonize secondary arboreal vegetation in natural forests, and in old and young coffee plantations. We asked if germination is related to their distribution within the canopy and between habitats, and the extent to which the substrate (branch) or microclimate affects germination success. Tillandsia viridiflora, a species that is largely restricted to closed forests, had highest germination success in natural forests, Tillandsia juncea, a pioneer species, germinated best in young coffee plantations, and Tillandsia heterophylla, an intermediate species, equally in forests and young plantations. Surprisingly germination rates of all three species were lowest in old plantations. Bryophyte cover on branches had a positive effect on germination of T. viridiflora and T. heterophylla, but T. juncea germination rates were largely independent of climate and substrate. These results show that germination can limit the ability of species to colonize disturbed habitats and also contributes to within‐canopy distribution. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

2.
In the Bromeliaceae, hybrids have been engineered for horticultural purposes; in addition, hybrids have been observed in natural habitats. We investigated the hybridization potential of three sympatric species of Tillandsia inhabiting secondary forests and shaded coffee plantations in the central mountains of Veracruz, Mexico. The studied species (T. juncea, T. polystachia and T. variabilis) show overlap in flowering phenology and are believed to share pollinators. We compared the floral morphology of the species, performed controlled intra- and interspecific pollinations, and recorded pollen tube growth, fruit and seed set, as well as seed germination. Flower size differed among the species, but stamen and stigma heights were similar between pairs of species, which would facilitate interspecific pollen exchange. Pollen tubes reached the ovary in interspecific crosses. The three species showed interspecific cross-compatibility, as all crosses resulted in development of mature fruit and viable seeds. Tillandsia juncea achieved the highest fruit set, whereas T. variabilis showed the highest seed set. Seed set as a result of agamospermy, autogamy, geitonogamy and interspecific cross-pollination did not differ among the species. The findings suggest that pre- and post-pollination barriers are weak among the three species of Tillandsia, which thus could potentially hybridize in natural sympatric populations.  相似文献   

3.
The mycorrhizal status of epiphytic, rupicolous, and terrestrial bromeliad species from the Brazilian Atlantic Rain Forest has been examined. Roots of 13 species of bromeliads were analyzed for the presence of mycorrhizal structures such as arbuscules, hyphae, and vesicles as well as other fungal structures. Rhizosphere soil was sampled to identify arbuscular mycorrhizal fungal (AMF) species associated only with terrestrial bromeliad species. Most specimens collected were epiphytic bromeliads in the genera Aechmea, Bilbergia, Nidularium, Tillandsia, and Vriesea. Differentiating structures of AMF were found in only three species of bromeliads. The pattern of mycorrhizal colonization was mainly internal, and external mycelium and arbuscules were observed only in the terrestrial Nidularium procerum. Root endophytes with dark brown septate mycelium, thin external hyphae, and Rhizoctonia-like sclerotia were also detected in some root segments. A total of ten spore morphotypes were recovered from the rhizosphere of N. procerum, with Acaulospora mellea, A. foveata, and Glomus sp. being the most common species recovered. Our study demonstrated that most of the epiphytic species are not associated with AMF. We attribute this mainly to the exposed bare root conditions found in epiphytic bromeliads.  相似文献   

4.
Studies of geographic distribution and physiological adaptations in theBromeliaceae of coastal Chile and Peru provide insights into the ecological patterns of habit selection and speciation. The hyperarid coastal Atacama and Peruvian Deserts along the Pacific coast of South America contain a surprisingly rich flora of bromeliad species. These include representatives of all threeBromeliaceae subfamilies: two terrestrialBromelioideae and two terrestialPitcairnioideae, all with rooted growth morphologies, and 14 species ofTillandsioideae (allTillandsia) with epiphytic and unrooted, terrestraial representatives. TheBromelioideae are represented by two species ofPuya Molina, one each in Peru and Chile. ThePitcairnioideae are represented by two genera,Deuterocohnia andPitcairnia, with one species each. The 14Tillandsia species are distributed in five subgenera which have successfully invaded the coastal deserts, and include both widespread and local endemics with xeromorphic adaptations. All theTillandsia species are epiphytic in the broad sense, but in addition to growing on plants, they are found growing on rocks (i.e. saxicolous or epilithic). Six species (T. purpurea, T. latifolia, T. capillaris, T. marconae, T. werdermanii, andT. landbeckii) have evolved a highly specialized substrate ecology where they grow essentially unrooted on sand (i.e. epiarenic). Nowhere in the world are bromeliads more dominant or have more biomass than in these coastal species growing on sand. Many of these species grow at the absolute limits of vascular plant tolerance, with the entire community consisting of a singleTillandsia species. Rooted, terrestrial bromeliads in the coastal lomas formations (allPitcairnioideae) include CAM, C3, and C3-CAM flexible taxa in their metabolic systems, the CAM species growing in the most arid sites along the coast and C3 species growing in the most mesic habitats within the center of the coastal fog belt where fog moisture input is highest. All of the epiphyticTillandsia species of the coastal desert region utilize CAM metabolism entirely or in part. At least two species,T. latifolia andT. tragophoba, utilize a flexible C3-CAM mode of carbon fixation. Whereas most of the desert-inhabitingTillandsia species have relatively narrow leaves covered by water absorbing trichomes on their surface,T. multiflora in northern Peru andT. tragophoba in northern Chile are tank-forming species where the bases of the leaves form a water-containing reservoir. The occurrence of the latter as a local endemic in hyperarid northern Chile is remarkable since it occurs thousands of kilometers south of its closest potential relatives in the central Andes.  相似文献   

5.
Abstract: While atmospheric species of bromeliads have narrow leaves, densely covered with water‐absorbing trichomes throughout their life cycles, many tank bromeliads with broad leaves, forming phytotelmata, go through an atmospheric juvenile phase. The effect of the different habits and the phase change in tank‐forming bromeliads on water and nutrient relations was investigated by analysing the relationship between plant size, C/N ratios and the natural abundance of 13C and 15N in five epiphytic bromeliad species or morphospecies of a humid montane forest in Xalapa, Mexico. The atmospheric species Tillandsia juncea and T. butzii exhibited full crassulacean acid metabolism, with δ13C values (mean ‐ 15.3 ‰ and ‐ 14.7 ‰, respectively) independent of size. In Tillandsia species with C3 photosynthesis, δ13C decreased with increasing plant size, indicating stronger drought stress in juveniles. The increase of the C/N ratio with size suggests that, at least in heteroblastic bromeliads, the availability of water is more limiting during early growth, and that limitations of nitrogen supply become more important later on, when water stored in the tank helps to bridge dry periods, reducing water shortage. δ15N values of the two atmospheric species were very negative (‐ 12.6 ‰ and ‐ 12.2 ‰, respectively) and did not change with plant size. Tank‐forming bromeliads had less negative δ15N values (c ‐ 6 ‰), and, in species with atmospheric juveniles and tank‐forming adults, δ15N values increased significantly with plant size. These differences do not appear to be an effect of the isotopic composition of N sources, but rather reflect N availability and limitation and stress‐induced changes in 15N discrimination.  相似文献   

6.
Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata, is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron, is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.  相似文献   

7.
Abstract This article deals with the physiological ecology of the Bromeliaceae, a large neotropical family containing both terrestrial and epiphytic forms, as well as many species with crassulacean acid metabolism (CAM). The article is in two parts. In the first, we review what is known of the occurrence of CAM and C3 species in the Bromeliaceae. The photosynthetic pathways are discussed in the context of the major taxonomic divisions within the family and the great diversity of bromeliad life-forms. Of the three subfamilies, the Pitcairnioideae contain both C3 and CAM species and are essentially all terrestrial. In contrast, the Tillandsioideae are entirely epiphytic or saxicolous, with CAM species being restricted to the genus Tillandsia, And in the Bromelioideae all species show CAM, but terrestrial and epiphytic forms are found in about equal numbers. The evidence suggests that both CAM and the epiphytic habit arose more than once in the family's evolutionary history. In the second part we consider the photosynthetic ecology of the various bromeliad life-forms in more detail using the specific example of Trinidad (West Indies). CAM bromeliads tend to be centred on the drier regions of the island and C3 forms on the wetter areas. However, at any one site there is a marked vertical stratification of species within the forest profile. Based on the known habitat preferences of the bromeliads, six contrasting sites were selected for field studies in Trinidad. These ranged from arid coastal scrub to montane rain forest, the vegetational and climatic characteristics of which are described here. The constancy of δ13C values (carbon-isotope ratios) for individual CAM species in these markedly different habitats emphasized the need for ecophysiological studies to characterize environmental effects on CO2 assimilation and transpiration. The following papers in this series present the results of a comparative investigation of gas exchange and leaf water relations of CAM and C3 bromeliads in situ at the various sites.  相似文献   

8.
Epiphytes generally occupy arboreal perches, which are inherently unstable environments due to periodic windstorms, branch falls, and treefalls. During high wind events, arboreal bromeliads are often knocked from the canopy and deposited on the forest floor. In this study, we used a common epiphytic tank bromeliad, Guzmania berteroniana (R. & S.) Mez, to determine if fallen bromeliads can survive, grow, and reproduce on the forest floor and evaluate the potential impact of adult dispersal on plant and soil nutrient pools. Bromeliads were transplanted to and from tree stems and the forest floor and monitored intensively for six months; survival, growth, and impacts on ecosystem nutrient pools were followed on a subset of plants for 16 months. Six months after transplanting, bromeliad mortality was low (3%), and 19 percent of study individuals had flowered and produced new juvenile shoots. Mortality on the subset of plants followed for 16 months was 14–30 percent. Although survival rates were relatively high in all habitats, bromeliads transplanted to trees grew significantly more root length (x?± SE: 189 ± 43 cm) than those moved to the forest floor (53 ±15 cm) and experienced lower rates of leaf area loss. All transplanted bromeliads rapidly altered the substrate they occupied. Individuals transplanted to and among trees rapidly decreased base cation concentrations but significantly increased P concentrations of their underlying substrate. On the ground, bromeliads increased C, N, and P concentrations within nine months of placement. Our results suggest that in this montane tropical forest, bromeliads respond rapidly to displacement, locally modify their substrates, and can access the resources needed for survival regardless of habitat.  相似文献   

9.
Much of the remaining “forest” vegetation in eastern Chiapas, Mexico is managed for coffee production. In this region coffee is grown under either the canopy of natural forest or under a planted canopy dominated by Inga spp. Despite the large differences in diversity of dominant plant species, both planted and rustic shade coffee plantations support a high overall diversity of bird species; we recorded approximately 105 species in each plantation type on fixed radius point counts. We accumulated a combined species list of 180 species on repeatedly surveyed transects through both coffee plantation types. These values are exceeded regionally only by moist tropical forest. Of the habitats surveyed, shade coffee was second only to acacia groves in the abundance and diversity of Nearctic migrants. The two plantation types have similar bird species lists and both are similar in composition to the dominant woodland—mixed pine-oak. Both types of shade coffee plantation habitats differ from other local habitats in supporting highly seasonal bird populations. Survey numbers almost double during the dry season—an increase that is found in omnivorous migrants and omnivorous, frugivorous, and nectarivorous resident species. Particularly large influxes were found for Tennessee warblers (Vermivora peregrina) and northern orioles (Icterus galbula) in Inga dominated plantations.  相似文献   

10.
Many members of the family Bromeliacae are able to adopt epiphytic lifestyles and colonize trees throughout the Neotropics. Bromeliacae do not extract nutrients from their hosts and confer relatively minor costs on their host plants. We suggest that bromeliads, however, may benefit their hosts by providing habitat for predators of host plant herbivores. We report a correlation between bromeliad presence and a reduction in herbivore damage in orange trees, an effect that is increased when bromeliads are colonized by ants. Our results may have important implications for agricultural systems in the Neotropics, where bromeliads are often removed in the belief they are parasitic. We instead demonstrate that bromeliads may impart a benefit to their hosts, and speculate that under particular circumstances they may be part of a three‐species mutualism.  相似文献   

11.
Forest structure and species composition were described in abandonedshade and sun coffee plantations and abandoned pastures in Puerto Rico. Foreststructural characteristics were similar to older forest sites afterapproximately 30 yr of recovery. The historical presence of shadecoffee plantations as the dominant agricultural activity in the region hasresulted in the homogenization of secondary forest composition. The continuousdominance of Coffea arabica and species used for shade inabandoned shade coffee contributed to a slower rate of species compositionchange in comparison to abandoned pastures. Abandoned pastures were initiallycolonized by a group of light demanding and/or wind dispersed species and thenby shade tolerant species characteristic of abandoned shade coffee plantations,suggesting that the secondary forests of abandoned shade coffee plantation arethe major source of species in this landscape. The presence of a few isolatedbig trees in sun coffee plantations appeared to facilitate colonization ofwoodyspecies similar in composition to abandoned shade coffee plantations. In amultivariate analysis, time since abandonment and elevation were the variablesthat explained the majority of variability in species composition among sites.However, a few native species (e.g. Guarea guidonia,Casearia sylvestris, Ocotealeucoxylon) were common regardless of land use history or elevation.In contrast, important old forest species (e.g. Sloaneaberteriana, Dacryodes excelsa,Manilkara bidentata) were rare or absent from most of thesecondary forest stands suggesting the need to reintroduce these species. Landmanagement and conservation efforts can be improved by incorporating theeffectsof land use history on secondary forest dynamics.  相似文献   

12.
Abstract. Vascular epiphytes were studied in forests at altitudes from 720 to 2370 m on the Atlantic slope of central Veracruz, Mexico. The biomass of all trees of each species > 10 cm diameter at breast height within plots between 625 and 1500 m2 was estimated. The number of species per plot ranged between 22 and 53, and biomass between 9 and 249 g dry weight/m2. The highest values, both of species and biomass, were found at an intermediate altitude (1430 m). Habitat diversity may contribute to epiphyte diversity in humid forests, but the importance of this effect could not be distinguished from the influence of climate. A remarkably high number of bromeliads and orchids grew in relatively dry forests at low altitudes. In wet upper montane forests, bromeliads were replaced by ferns, while orchids were numerous at all sites, except for a pine forest. The number of epiphytic species and their biomass on a tree of a given site were closely related to tree size. According to Canonical Correspondence Analysis, the factor determining the composition of the epiphytic vegetation of a tree was altitude and to some extent tree size, whereas tree species had practically no influence. The only trees which had an evidently negative effect on epiphytes were pines, which were particularly hostile to orchids and to a lesser degree to ferns, and Bursera simaruba, which generally had few epiphytes due to its smooth and defoliating bark.  相似文献   

13.
Forest fragmentation alters plant-animal interactions, including herbivory. Relying manipulative experiments, we test if the reduction in insect herbivory associated with forest fragmentation translates into increased seedling growth and survival of three tree common species (Aristotelia chilensis, Cryptocarya alba and Persea lingue) in forest fragments and continuous forests in coastal Maulino forest, central Chile. Furthermore, we test if after protecting seedlings from herbivorous insects, plant performance is increased regardless of forest fragmentation. Nursery grown seedlings were transplanted into four forest fragments and a continuous forest during 2002. Insects, important herbivores in this forest, were excluded from half the seedlings by repeated applications of insecticides. Compared to continuous forests, in forest fragments, herbivory was reduced in all three species, seedling growth was greater in A. chilensis and C. alba but not in P. lingue, and survivorship was unaffected by herbivory or fragmentation in all three species. Protecting seedlings from insects reduced herbivory in the continuous forest to similar levels attained in the forest fragments. No change in herbivory results from by protecting seedlings in forest fragments. These results confirm that insects are important herbivores in the Maulino forest and also support the hypothesis that fragmentation can have strong indirect effects on plant communities as mediated through trophic interactions.  相似文献   

14.
Arbuscular mycorrhizal fungi influence the growth, morphology, and fitness of a variety of plant species, but little is known of the arbuscular mycorrhizal (AM) fungal associations of plant species in forest canopies. Plant species' associations with AM fungi are most often elucidated by examining the roots for fungal structures; however, morphological data may provide a limited resolution on a plant's mycorrhizal status. We combined a traditional staining technique with a molecular marker (the 18S ribosomal gene) to determine whether or not a variety of epiphytic bromeliads form arbuscular mycorrhizal fungal associations. Using these methods we show that the epiphytic bromeliad Vriesea werkleana forms arbuscular mycorrhizal fungal associations with members of the genus Glomus. AM fungal sequences of this plant species formed three distinct clades nested within a larger Glomus clade; two of the clades did not group with any previously sequenced lineage of Glomus. Novel clades may represent novel species. Although Vriesea werkleana is associated with multiple AM fungal species, each individual plant is colonized by a single lineage. The combination of morphological and molecular methods provides a practical approach to the characterization of the mycorrhizal status of epiphytic bromeliads, and perhaps other tropical epiphytes.  相似文献   

15.
Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897–1.060) and T. punctulata λ = 0.967 (0.815–1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.  相似文献   

16.
In this paper it is argued that concepts developed in ecologically derived insect–plant interaction models can contribute directly to the management of insect herbivory in eucalypt plantations. Common to most species of commercially planted eucalypt is their genetic potential for early rapid growth. Several plant defence theories predict that intrinsically fast growing plants are able to tolerate relatively high levels of herbivory. The risk of this strategy failing increases when plants are exposed to external stressful factors that reduce canopy growth and vigour. Results from a young Eucalyptus camaldulensis plantation stressed by moisture deficit and two young Eucalyptus dunnii plantations, stressed by flooding and weed competition, respectively, are summarized. In all three cases, the stress‐inducing agents reduced canopy growth rates and architecture so that the proportion of leaf tissue damaged by insects increased and the tree’s ability to tolerate this damage decreased. Therefore, alleviating tree stress through improved silvicultural practices or improved site selection techniques may indirectly reduce the impact of insect herbivory. In resource‐limiting environments, an alternative approach may be to plant eucalypt species that although slower growing, are predicted to have better defended foliage. Manipulation of these natural antiherbivore plant strategies are not exclusive of other management approaches, such as the need for routine surveillance of key pest insects or the genetic selection of natural insect resistance and selective chemical control techniques, but should be viewed as an overarching concept for plantation health.  相似文献   

17.
Tree bark characteristics influence epiphyte establishment and survival and consequently the way in which epiphytes are distributed on trees. Tree species with peeling bark have been reported as poor epiphyte hosts. We analyzed the distribution and seedling mortality of two Tillandsia species (Bromeliaceae) in relation to rate of bark peeling of Bursera fagaroides (Burseraceae). The highest peeling rate (0.12% per day) took place on the trunk and the lowest rate on twigs (0.04% per day; branches ≤2 cm in diameter). The highest proportion of Tillandsia plants appeared on twigs. The distributions of juvenile and adult plants on twigs were higher than those expected based on the distribution of first-year seedlings, suggesting that on twigs, survival could be greater than on trunks and branches, canopy areas where peeling is faster. On the trunk and branches, in contrast, the proportion of juveniles and adults were similar to or less than that expected for first-year seedlings. The main cause of mortality was peeling and the area of minor overall mortality was the trunk, suggesting that this area should be favored as the main distribution area for the Tillandsia species but is not. Our results show that the peeling rate of B. fagaroides depends on branch size and suggest that the Tillandsia distribution depends not only on peeling rate but also on seed dispersion. We suggest that to colonize B. fagaroides epiphytes would either have adaptations to counteract the peeling rate or should occur in the areas of lowest peeling rate located in the exterior crown of trees.  相似文献   

18.
Logging in tropical forests may create large canopy openings. These gaps provide suitable conditions for some opportunistic shrubs and herbs to take advantage of the surge in resources and rapidly colonize disturbed sites. This dense plant cover may limit forest regeneration by interfering with tree seedling establishment, growth, and survival by altering the light and nutrients available to seedlings, modifying herbivore behavior, or a number of other factors. In Kibale National Park (Uganda), old logging sites are mainly covered by dense stands of Acanthus pubescens Engl., which appear to inhibit tree regeneration. We wanted to identify the ecological processes underlying this regeneration collapse. To do so, we designed a factorial experiment to evaluate the influences of herbivory and vegetation cover on the growth and survival of tree seedlings. We compared the survival and growth of transplanted tree seedlings in A. pubescens stands and logged forests, in the presence or absence of the understory vegetation layer (logged forest) or vegetation cover (A. pubescens), and with or without herbivory. We found no evidence to support the hypothesis that herbivory is significantly higher under dense A. pubescens cover. Seedling survival was not influenced by the environment. Seedling growth, however, was positively influenced by the removal of A. pubescens, suggesting that changes in resource availability associated with the presence of A. pubescens, may be important for regeneration. Our results suggest that sustained cutting of A. pubescens cover could foster the growth of established seedlings and could lead to tree regeneration and habitat restoration.  相似文献   

19.
Species of Tillandsia L. are widely distributed in Brazilian ecosystems, and in the state of Bahia they can be found in the Atlantic Forest, Caatinga and Cerrado biomes. Studying the reproductive aspects of these species can support their management and conservation. In particular, stigma morphology is a conserved trait of Bromeliaceae and stigma receptivity can influence the success of pollination. The objective of this study was to characterize the morphoanatomy and classify the stigma types of Tillandsia species by means of light and scanning electron microscopy, as well as to evaluate the stigma receptivity by different methods and at three floral development stages. A total of 21 Tillandsia species found in Bahia were evaluated. The stigma receptivity was assessed with hydrogen peroxide (3%) and a solution of α-naphthyl acetate. Four stigma types were observed: conduplicate-spiral for the species of the Tillandsia subgen. Tillandsia, simple-erect for species of T. subgen. Diaphoranthema, and simple-truncate for the species of T. subgen. Phytarrhiza. The species of the T. subgen. Anoplophytum had three morphological types, conduplicate-spiral, conduplicate-patent and simple-erect. All the species had trifid stigmas, monostratified epidermis, numerous idioblasts containing raphides in the fundamental parenchyma and an individual vascular bundle for each carpel. In all the species studied by the two methods of stigma receptivity the highest enzyme activity was observed during anthesis. The morphoanatomy of the stigma and style provides important information for the taxonomy of Tillandsia and the data on stigma receptivity can support studies of the reproduction and conservation of these species.  相似文献   

20.
We investigated avian nest distribution and success in understoryforest, sun coffee plantations, and pasture in southern Costa Rica. Nestsearching occurred in plantations and forest in 1999 and 2000 and in pastures in2000. Nests were monitored until they failed or fledged young. Antbirds(Thamnophilidae) were the most common understory forest nesters and were notfound nesting in the plantations or pastures. Common nesting species in theplantations included Turdidae, Tyrannidae, Cardinalidae, and Thraupidae, many ofwhich are typical of forest edge/canopy or open, scrubby habitats. Two speciesassociated with forest interior, Henicorhina leucostictaand Buarremon brunneinucha, were found nesting in theplantations. Pastures supported similar types of nesting species as theplantations, with the exception of the forest-interior species. Daily mortalityrates (DMRs) for above-ground cup-nesting species in plantations and pastureswere similar to those for species nesting in forest at our site and a site inPanama. The results indicate that conversion from forest to pastures and suncoffee plantations diminishes nesting habitat for forest-interior species, whilenumerous forest edge/canopy species and open-country species are able to nest inthese agricultural land-cover types. As a group, species nesting in theplantations and pastures do not have unusually high nest mortality rates,although species-specific studies are lacking. Nesting species distributionsacross habitat types and DMRs at our study site may be influenced by the largeamount of forest in the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号