首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Abstract 1 Eucalypts are an important part of plantation forestry in Asia but, in south China, productivity is very low. This is due to infertile soils and lack of indigenous symbiotic mycorrhizal fungi. The genus Eucalyptus is unusual because it forms both arbuscular (AM) and ectomycorrhizal (ECM) associations. 2 Eucalyptus urophylla saplings were grown with and without AM (Glomus caledonium) and ECM (Laccaria laccata) fungi in a factorial design. Two experiments were performed: one to simulate nursery conditions and the other to simulate the early stages of plantation establishment. Plant growth was measured over 18 weeks and levels of insect attack were recorded. 3 The AM fungus reduced tree growth in the early stages, but the effect appeared to be transient. No effects of ECM were detected on tree growth, but the ectomycorrhiza reduced colonization by the arbuscular mycorrhiza. AM fungi appear to be rapid invaders of the root system, gradually being replaced by ECM. 4 Both fungal types affected levels of damage by insect herbivores. Most importantly, herbivory by the pest insects Anomala cupripes (Coleoptera) and Strepsicrates spp. (Lepidoptera) was decreased by ECM. 5 It is suggested that mycorrhizal effects on eucalypt insects may be determined by carbon allocation within the plant. Future studies of eucalypt mycorrhizas need to take into account the effects of the fungi on foliar‐feeding insects and also the effects of insect herbivory on mycorrhizal establishment.  相似文献   

2.
Summary Plant species composition in plantation monoculture of the native Gympie Messmate (Eucalyptus cloeziana F. Muell.) was assessed and compared with native eucalypt forest and cleared grazing land in southeast Queensland, Australia. A total of 18 sites (11 in the plantations, four in native eucalypt forests and three on cleared grazing land) were surveyed. The four plantation age classes during the 18‐month survey period were 0.3–1.8 (very young), 2.1–3.8 (young), 15–16.5 (mid‐aged) and 38–40.5 (old) years of age. Significantly more native plant species were recorded in the plantations, regardless of their age, than on cleared grazing land. The number of native plant species in the old plantations was not significantly different from the native eucalypt forests. Native tree and shrub species richness increased significantly with plantation age. Two species (Ricinocarpos speciosus Muell. Arg. and Xanthostemon oppositifolius F. M. Bailey) listed as Vulnerable and one species (Alyxia magnifolia F. M. Bailey) listed as Rare were recorded in the old plantations. Two Rare species (A. magnifolia and Acianthus amplexicaulis (F. M. Bailey) Rolfe) were recorded in the native eucalypt forests. Exotic plant species, consisting mainly of herbs, grasses and shrubs in the plantations, were significantly more abundant in the very young and young plantations. However, the number of exotic species decreased significantly with increasing age of the plantations. The results suggest that even small‐scale plantation can increase landscape heterogeneity and help protect biodiversity.  相似文献   

3.
Giffard B  Corcket E  Barbaro L  Jactel H 《Oecologia》2012,168(2):415-424
According to the associational resistance hypothesis, neighbouring plants are expected to influence both the insect herbivore communities and their natural enemies. However, this has rarely been tested for the effects of canopy trees on herbivory of seedlings. One possible mechanism responsible for associational resistance is the indirect impact of natural enemies on insect herbivory, such as insectivorous birds. But it remains unclear to what extent such trophic cascades are influenced by the composition of plant associations (i.e. identity of ‘associated’ plants). Here, we compared the effect of bird exclusion on insect leaf damage for seedlings of three broadleaved tree species in three different forest habitats. Exclusion of insectivorous birds affected insect herbivory in a species-specific manner: leaf damage increased on Betula pendula seedlings whereas bird exclusion had no effect for two oaks (Quercus robur and Q. ilex). Forest habitat influenced both the extent of insect herbivory and the effect of bird exclusion. Broadleaved seedlings had lower overall leaf damage within pine plantations than within broadleaved stands, consistent with the resource concentration hypothesis. The indirect effect of bird exclusion on leaf damage was only significant in pine plantations, but not in exotic and native broadleaved woodlands. Our results support the enemies hypothesis, which predicts that the effects of insectivorous birds on insect herbivory on seedlings are greater beneath non-congeneric canopy trees. Although bird species richness and abundance were greater in broadleaved woodlands, birds were unable to regulate insect herbivory on seedlings in forests of more closely related tree species.  相似文献   

4.
Australia is unique in having two highly diverse plant genera, Eucalyptus and Acacia, that dominate the vegetation on a continent‐wide scale. The recent shift in plantation forestry away from exotic Pinus radiata to native Eucalyptus species has resulted in much more extensive exchange of biota between native forest and plantation ecosystems than exchange in the past with plantations of exotic species. Growing numbers of hectares are being planted to Eucalyptus globulus across Australia, and plantations are providing resources and corridors for native biota. The present paper focuses on both the benefits and risks of having large‐scale forestry plantations of native species that are closely related to dominant native taxa in local forests. At least 85 species of insects have been recorded as pests of Eucalyptus plantations around Australia; the vast majority of these have been insects using the same host species, or closely related taxa, in native forests. Plantations of native species may also benefit from closely related local forests through the presence of: (i) the diverse array of ectomycorrhizal fungi favourable for tree growth; (ii) natural enemies harboured in native habitats; and (iii) recruitment of other important mutualists, such as pollinators. Exchanges work in two directions: plantations are also likely to influence native forests through the large amount of insect biomass production that occurs in outbreak situations, or through the introduction or facilitation of movements for insects that are not native to all parts of Australia. Finally, older plantations in which trees flower may exchange genes with surrounding forest species, given the high degree of hybridization exhibited by many Eucalyptus species. This is an aspect of exchange for which few data have been recorded. In summary, because of Australia’s unique biogeography, plantation forestry using eucalypt species entails exchanges with natural habitats that are unparalleled in scale and diversity in any other part of the world. More exchanges are likely as plantations occupy greater area, and as the time under cultivation increases.  相似文献   

5.
Abstract Foliar insect damage levels on woody sprouts in the ground layer of two tropical eucalypt forest communities on Melville Island were between 7.8 and 43.2%. Of eight common tree species, Eucalyptus confertiflora was damaged most by insects and Buchanania obovata and Terminalia ferdinandiana the least. Seasonal trends in insect damage were not consistent between plant species and were not always consistent between vegetation types for a particular plant species. The results of this study are not consistent with hypotheses suggesting that insect grazing is a critical determinant of tree species dominance or woody sprout dormancy.  相似文献   

6.
Allelopathy of the eucalypt has been considered as an important mechanism for the biodiversity reduction in the eucalypt plantation. To understand the allelopathic potential of the eucalypt (Eucalyptus grandis) roots and rhizosphere soil along a chronosequence (2, 4, 6, 8, 10 years), the germination and growth characteristics of three plant species (Raphanus sativus, Phaseolus aureus, and Lolium perenne) growing nearby or beneath the eucalypt plantations were measured. The results showed that aqueous extract of E. grandis root suppressed the germination and early seedling growth of the target plants. The younger E. grandis exhibited a comparatively stronger allelopathic potential. The highest dose root extracts from 4 years old E. grandis showed the strongest inhibitory effects on the germination rates of the target species, the inhibitory rates were about 48, 51.2, and 56.56% for R. sativus, P. aureus, and L. perenne, respectively. However, present biotests of rhizosphere soils from 6, 8, and 10-year-old plantations exhibited a remarkable stimulative effect on L. perenne, which indicated that the soil might neutralize or dilute allelopathic agents with the increase of plantation age. In addition, according to GC–MS analysis, more allelopathic potential compounds were found in the rhizosphere soil and roots of younger E. grandis plantation. Moreover, more allelochemicals were obtained from soil than from roots. The allelopathic compounds in roots and rhizosphere soil may play important roles in allelopathy of E. grandis plantation. More attention should be paid to the younger E. grandis plantations for the relative higher allelopathic effects.  相似文献   

7.
Abstract Sucking insects constituted 79% of all phytophagous insects collected from woody sprouts in the ground layer of a tropical eucalypt forest. Mobile insect groups such as non-psyllid Hemiptera and Orthoptera were relatively frequent in this environment compared to temperate, Eucalyptus-dominated vegetation. The high fire frequency of the tropical eucalypt forest may favour mobile insect groups. The capture of sucking insects and caterpillars peaked in dry season samples. Other patterns of abundance of phytophagous insect groups showed little consistency in their seasonal trends between host species or between vegetation types within host species. Disparities between chewing insect abundance in daytime samples and the damage chewing insects cause, may result from disproportionate consumption by large, mainly nocturnal insects, such as members of the Orthoptera. In this study, 21% of insect species were specialists on single plant species. This study suggested that insect abundance reflected the growth patterns of woody sprouts after regular burning, rather than that plant growth and development were tuned to the pressures of insect herbivory.  相似文献   

8.
Plant area index (PAI) measured with a LI-COR LAI-2000 plant canopy analyser (PCA) was calibrated with leaf area index (LAI) in a young stand of Eucalyptus grandis in the KwaZulu-Natal Midlands, South Africa. Destructive sampling and allometric equations were used to estimate LAI at 2 and 3 years after planting. Significant correlations (P<0.001) were found between LAI and PAI for each age with different equations being generated for the two ages (LAI=1.0594(PAI)−0.892 at 2 years of age, and LAI=1.0393(PAI) at 3 years of age). The equations differed from those reported in other eucalypt studies, as the PCA in this study over-predicted LAI at 2 years, and slightly under-predicted at 3 years, of age. It is argued that the stage of growth influenced this calibration, as the canopy and foliar structure may have been different in the young stands, affecting the basic assumptions for the PCA. A broad conversion from PCA derived PAI to LAI may not necessarily be valid for young, short rotation eucalypt plantations.  相似文献   

9.
Abstract We examined the potential of forest plantations to support communities of forest‐using insects when planted into an area with greatly reduced native forest cover. We surveyed the insect fauna of Eucalyptus globulus (Myrtaceae) plantations and native Eucalyptus marginata dominated remnant woodland in south‐western Australia, comparing edge to interior habitats, and plantations surrounded by a pastoral matrix to plantations adjacent to native remnants. We also surveyed insects in open pasture. Analyses focused on three major insect orders: Coleoptera, Lepidoptera and Hymenoptera. Plantations were found to support many forest‐using insect species, but the fauna had an overall composition that was distinct from the remnant forest. The pasture fauna had more in common with plantations than forest remnants. Insect communities of plantations were different from native forest both because fewer insect species were present, and because they had a few more abundant insect species. Some of the dominant species in plantations were known forestry pests. One pest species (Gonipterus scutellatus) was also very abundant in remnant forest, although it was only recently first recorded in Western Australia. It may be that plantation forestry provided an ecological bridge that facilitated invasion of the native forest by this nonendemic pest species. Plantation communities had more leaf‐feeding moths and beetles than remnant forests. Plantations also had fewer ants, bees, evanioid wasps and predatory canopy beetles than remnants, but predatory beetles were more common in the understory of plantations than remnants. Use of broad spectrum insecticides in plantations might limit the ability of these natural enemies to regulate herbivore populations. There were only weak indications of differences in composition of the fauna at habitat edges and no consistent differences between the fauna of plantations adjacent to remnant vegetation and those surrounded by agriculture, suggesting that there is little scope for managing biodiversity outcomes by choosing different edge to interior ratios or by locating plantations near or far from remnants.  相似文献   

10.
The plant stress hypothesis suggests that some herbivores favour stressed plants, whereas the plant vigour hypothesis proposes that other herbivores prefer vigorous plants. The effects of a prior stress, that of frost damage, were examined on the subsequent growth of Eucalyptus globulus globulus and on the response of insect herbivores. Frost damage affected tree growth by reducing new leaf area and increasing specific leaf area (SLA). However, herbivore abundance was not affected by prior frost damage. Two feeding trials using Anoplognathus chloropyrus and Hyalarcta huebneri and a morphometric study of Ctenarytaina eucalypti were conducted to assess the performance of herbivores on trees that had suffered more or less frost damage. Consumption by A. chloropyrus and H. huebneri was unaffected by foliage origin (damaged versus healthy). Hyalarcta huebneri grew faster when fed leaves from previously damaged trees, and C. eucalypti from previously damaged trees were larger than those from healthy trees. Enhanced insect performance on frost damaged plants may have resulted from the high specific leaf area (most likely thinner) leaves. The herbivore abundance data did not support the hypothesis that previously frost damaged plants are preferred by insects. However, increased growth of H. huebneri and larger body size of C. eucalypti on damaged trees indicates that previously stressed trees may produce leaves of higher nutritional value.  相似文献   

11.
Abstract Eucalypts from the subgenus Monocalyptus tend to be more abundant and dominate species from the subgenus Symphyomyrtus where they occur together in the mixed species stands of southeastern Australia. The differential impacts of herbivory by phytophagous insects has been postulated as a causal mechanism in the creation and maintenance of such stands. This research aimed to quantify phytophagous insect abundance and herbivory in mixed species juvenile regrowth of Eucalyptus globulus, E. viminalis (Symphyomyrtus), E. obliqua and E. pulchella (Monocalyptus} southwest of Hobart, Tasmania. Monocalyptus experienced a higher level of herbivory than Symphyomyrtus. However, mean damage levels were relatively low at less than 11% throughout. Furthermore, due to the positively skewed nature of herbivory data the mean was an inappropriate measure of central tendency; median damage levels ranged from 4.9% to 8.4%. Patterns of herbivory tended to be different for each eucalypt species: E. obliqua was particularly prone to chewing damage, E. pulchella and E. globulus suffered higher levels of distortion while E. viminalis was least affected by insect attack. Even though some trends in insect community structure seemed apparent at the level of eucalypt subgenus, closer examination revealed patterns of abundance were characteristic of each Eucalyptus species. The composition of foliar damage corresponded with the prominence of particular insect groups. Sucking insects tended to dominate the fauna except on E. obliqua where chewing insects in general, and chrysomelids in particular, were most prevalent. Both the distribution and magnitude of herbivory suggested that phytophagous insects had a negligible effect on competition between coexisting juvenile eucalypts and were unlikely to be responsible for the dominance of Monocalyptus or the maintenance of mixed species stands.  相似文献   

12.
Chile has more than 330 000 ha of eucalypt plantations, predominantly in the eighth to the tenth region (approximately 34 to 41°S). Eucalyptus globulus ssp. globulus is the principal eucalypt planted, but Eucalyptus nitens, Eucalyptus camaldulensis, Eucalyptus delegatensis and Eucalyptus viminalis are also grown. There are four main insect pests that have been detected attacking these eucalypts in Chile: the defoliator Gonipterus scutellatus, the bark borers Phoracantha semipunctata and Phoracantha recurva and the native wood borer Chilecomadia valdiviana. More recently, Thyrinteina arnobia and Ctenarytaina eucalypti have been detected. Gonipterus scutellatus and P. recurva have been discovered in Chile within the last 2 years and it is hoped they may still be eliminated using a combination of biological control and chemical control of local populations. Phoracantha recurva and P. semipunctata are not considered a problem because attack only occurs in areas of water deficit, away from current eucalypt plantations. Chilecomadia valdiviana can damage plantations of E. nitens but rarely attacks other eucalypts.?Chilecomadia valdiviana may cause future problems through further host shifts. Thyrinteina arnobia has only been detected during quarantine surveillance in the port of Valparaiso. Ctenarytaina eucalypti, recently detected in August 1999, had an initial limited distribution in the first region. However, since then, this insect has expanded its distribution south up to the tenth region. None of the insects recorded on eucalypts in Chile to date currently presents a threat to the eucalypt industry. It is also essential that additional resources are made available for their continued monitoring and control, particularly given that the 44% of plantations are held by small to medium property owners that would otherwise be unable to control a serious outbreak because of economic restrictions.  相似文献   

13.
  • 1 High productivity in plantations of exotic tree species is achieved by management for fast growth in the absence of the full complex of co‐evolved insect herbivores. In the case of Eucalyptus, silvicultural selection for desirable wood traits is concomitant with a trade‐off against defence and a reduction of chemical and genetic diversity. These factors, combined with accidental introductions, rapid insect evolution and the emergence of new pests, increase the likelihood that future plantations will need insect pest management to maintain productivity.
  • 2 Forestry researchers have suggested that selecting for resistant genotypes may be beneficial in insect control. There are, however, significant differences between long‐lived trees and annual crops that make this approach unlikely to be successful. This is illustrated using several examples of research into resistance to insect herbivores in trees.
  • 3 Selection for resistance to insects in trees requires an assessment of trial plantations for heritable variation in insect damage and then a determination of the effect of variation in resistance on insect population parameters. Identifying rare resistant genotypes using markers is difficult because many factors interact to produce a resistant phenotype, and phytophagous insects have less intimate relationships with their host than pathogens, resulting in weak associations with genetic loci.
  • 4 If resistant genotypes are identified, their widespread deployment in plantations might not provide satisfactory management of insect pests when the use of extensive monocultures is continued. In this paper, experiments are suggested that would explore the effectiveness of polycultures or chemotype mixtures with respect to ameliorating the damage of insects on plantation productivity. In addition, mitigating the effects of some insects on plantation productivity by maintaining vigour of fast‐growing eucalypts should be considered.
  相似文献   

14.
Intensive sampling of tree canopies for phytophagous insects was carried out in three contrasting eucalypt forest types comprised of species widely distributed in sub-alpine forests in Victoria and New South Wales (Eucalyptus delegatensis, E. dives, and E. pauciflora). The number of phytophagous insects present in the canopies of these forest types was low, with a seasonal average of 20 individuals per kg of foliage (dry weight). Numbers were much lower than expected from past literature reporting‘chronically high’levels of defoliation in eucalypt forests. Microlepidoptera, Geometridae, Chrysomelidae, and Curculionidae were the major leaf-chewing groups recorded. Most sap-feeders were either leafhoppers (Cercopidae and Cicadellidae) or in the superfamily Fulgoroidea. Psyllidae and gall-making species were rare. Leafhoppers made up a very large portion of the phytophagous insect communities in each forest type, particularly in the E. dives forest. Microlepidoptera was the most commonly encountered defoliator group in all three forest types making up 33-44% of the total count. Non-phytophagous arthropods accounted for 44-48% of all individuals encountered. The density of insect defoliators was greater in the lower crown than upper crown. The E. dives canopy supported many more phytophagous insects per unit weight of foliage, as well as more per hectare, than the other two forest types. The greatest number of phytophagous species was also encountered in E. dives canopy. The E. delegatensis canopy supported the lowest number of phytophagous insects per unit weight of foliage as Well as numbers per hectare. Abundance of insect defoliators in the eucalypt forest types in this study was similar to published figures of insect defoliators in northern temperate forests.  相似文献   

15.
元谋干热河谷不同人工林中鞘翅目甲虫多样性比较   总被引:9,自引:0,他引:9  
在元谋干热河谷采用网扫法调查了云南松林、桉树林、新银合欢林、桉树+新银合欢林、印楝林及多树种混交的人工林鞘翅目昆虫多样性。结果表明,鞘翅目甲虫标本925号,计71种,分属18个科,其中叶甲科种类最丰富,象甲科数量最丰富。人工林鞘翅目昆虫群落物种丰富度在7~23,Shannon—Wiener多样性指数在1.249~2.562,昆虫多样性总体较低。各样地鞘翅目群落之间为不相似水平。云南松林鞘翅目昆虫群落物种丰富度、Shannon—Wiener指数、Simpson指数及Pielou指数分别为20、2.562、0.104和0.855,其多样性最高,多树种混交林较高,印楝林较低,而桉树林、新银合欢林、桉树+新银合欢林多样性极低。多树种混交的恢复对昆虫多样性提高有显著促进作用。  相似文献   

16.
Question: What is the effect of frequent low intensity prescribed fire on foliar nutrients and insect herbivory in an Australian eucalypt forest? Location: Lorne State Forest (Bulls Ground Frequent Burning Study), mid‐north coast, New South Wales, Australia. Methods: Eighteen independent sites were studied representing three experimental fire regimes: fire exclusion (at least 45 years), frequently burnt (every 3 years for 35 years) and fire exclusion followed by the recent introduction of frequent burning (two fires in 6 years). Mature leaves were collected from the canopy of Eucalyptus pilularis trees at each site and analysed for nutrients and damage by invertebrate herbivores. Results: Almost 75% of all leaves showed some signs of leaf damage. The frequency of past fires had no effect on carbon and nitrogen content of canopy leaves. These results were consistent with assessments of herbivore damage where no significant differences were found in the amount of invertebrate herbivory damage to leaves across fire treatments. Conclusions: This eucalypt forest displayed a high degree of resilience to both frequent burning and fire exclusion as determined by foliar nutrients and damage by insect herbivores. Fire frequency had no detectable ecological impact on this aspect of forest health.  相似文献   

17.
18.
Herbivory modifies the genetic structure of birch populations   总被引:1,自引:0,他引:1  
We studied the effects of selective herbivory on genetic diversity in seedling populations of silver birch ( Betula pendula ), a light-demanding pioneer tree species. The experimental populations consisted of 20 families competing with each other in dense stands. The seedling stands were randomly assigned to insect and vole exposure and fertilization treatments. The study covered the first two growing seasons, during which considerable thinning occurred within the experimental populations. We compared the observed mortality to a simulated control representing random mortality. Our results show that mortality resulted in decreased diversity compared to the simulated control. When insect and vole herbivory and nutrient enrichment treatments were compared to each other, taking into account differences in mortality due to the treatments, vole herbivory led to increased diversity among the tallest seedlings (i.e. canopy layer). This is noteworthy, since the canopy layer includes those with the best prospects of surviving in competition for light. When mortality was accounted for, 2-year natural exposure to insects had no effect on diversity; but cluster analysis showed that insect herbivory changed the genetic composition of the experimental populations. Our results demonstrate the importance of herbivores in shaping the genetic structure of plant populations during the thinning phase.  相似文献   

19.
Abstract The influence of soil moisture content on leaf dynamics and insect herbivory was examined between September 1991 and March 1992 in a river red gum (Eucalyptus camaldulensis) forest in southern central New South Wales. Long-term observations of leaves were made in trees standing either within intermittently flooded waterways or at an average of 37. 5m from the edge of the waterways. The mean soil moisture content was significantly (P≤0.05) greater in the waterways than in the non-flooded areas. Trees in the higher soil moisture regime produced significantly larger basal area increments and increased canopy leaf area. This increase in canopy leaf area was achieved, in part, through a significant increase in leaf longevity and mean leaf size. Although a greater number of leaves was initiated and abscissed per shoot from the non-flooded trees, more leaves were collected from litter traps beneath the denser canopies of the flooded trees. Consumption of foliage by insects on the trees subjected to flooding compared to the non-flooded trees was not significantly different. However, the relative impact of insect herbivory was significantly greater on the non-flooded trees. Leaf chewing was the most common form of damage by insects, particularly Chryso-melidae and Curculionidae. No species was present in outbreak during this study. Leaf survival decreased as the per cent area eaten per leaf increased. In addition, irrespective of the level of herbivory, leaf abscission tended to be higher in E. camaldulensis under moisture deficit. The influence of soil moisture content on the balance between river red gum growth and insect herbivory is discussed.  相似文献   

20.
昆虫唾液成分在昆虫与植物关系中的作用   总被引:13,自引:4,他引:9  
近年来,人们对于植食性昆虫唾液的深入研究,揭示出其在昆虫与植物的相互关系和协同进化中起到非常重要的作用。植食性昆虫唾液中含有的酶类和各种有机成分,能诱导植物的一系列生化反应,而且这些反应有很强的特异性,与为害的昆虫种类甚至龄期有关。鳞翅目幼虫口腔分泌物(或反吐液)中含有的β-葡糖苷酶、葡萄糖氧化酶等酶类和挥发物诱导素等有机成分,已经证明可以诱导植物的反应; 刺吸式昆虫的取食也可以刺激植物产生反应,但其唾液内的酶类,如烟粉虱的碱性磷酸酶, 蚜虫的酚氧化酶、果胶酶和多聚半乳糖醛酸酶, 蝽类的寡聚半乳糖醛酸酶等是否发挥作用,目前还没有直接的证据。寄主植物对昆虫的唾液成分也有很大的影响,可能是昆虫对不同植物营养成分和毒性成分的适应方式。对昆虫唾液蛋白的分析表明,具有同样类型口器、食物类型接近的昆虫,唾液成分有更多的相似性。研究植食性昆虫的唾液成分,对于阐明昆虫和植物的协同进化关系、昆虫生物型的形成机理、害虫的致害机理,以及指导害虫防治等,有着一定的理论和实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号