首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of filler used in the pellet cores (ie, waxy cornstarch or lactose) and the enteric film coat thickness on the diffusion and dissolution of a freely soluble drug were studied. Two kinds of pellet cores containing riboflavin sodium phosphate as a model drug, microcrystalline cellulose (MCC) as a basic filler, and waxy cornstarch or lactose as a cofiller were film coated (theoretically weight increase 20% or 30%) with an aqueous dispersion of cellulose acetate phthalate (CAP). The diffusion of riboflavin sodium phosphate in aqueous enteric-coated pellets was investigated using noninvasive confocal laser scanning microscopy (CLSM). The in vitro release tests were performed using a USP apparatus I (basket method). Diffusion of drug from the core to the film coat was found to be greater with lactose-containing pellets than with waxy cornstarch-containing pellets. The dissolution test showed that 30% enteric-coated waxy cornstarch pellets had a good acidic resistance in 0.1 N HCl solution for at least 1 hour, while the other enteric pellet formulations failed the test. The waxy cornstarch-containing enteric pellets dissolved at SIF in less than 10 minutes. Confocal images of film-coated pellets showed that waxy cornstarch-containing pellets had less drug dissolved than respective lactose-containing pellets. The observations were further confirmed by measurement of fluorescence intensity of riboflavin sodium phosphate in the film coat. The dissolution test was consistent with the confocal microscopy results. In conclusion, waxy cornstarch as a cofiller in the pellet cores minimizes premature drug diffusion from the core into the film coat layer.  相似文献   

2.
The cross-linked microspheres using chitosan with different molecular weights and degree of deacetylation have been prepared in presence of sodium hexameta polyphosphate (SHMP) as physical cross-linker. The degree of cross-linking through electrostatic interactions in chitosan microspheres has been evaluated by varying the charge density on chitosan and varying degree of dissociation of sodium hexameta polyphosphate by solution pH. The degree of deacetylation and molecular weight of chitosan has controlled electrostatic interactions between hexameta polyphosphate anions and chitosan, which played significant role in swelling, loading and release characteristics of chitosan microspheres for centchroman. The microspheres prepared by hexameta polyphosphate anions cross-linker were compact and more hydrophobic than covalently cross-linked microspheres, which has been attributed to the participation of all amino groups of chitosan in physical cross-linking with added hexameta polyphosphate anions. The microspheres prepared under different experimental conditions have shown an initial step of burst release, which was followed by a step of controlled release for centchroman. The extent of drug release in these steps has shown dependence on properties of chitosan and degree of cross-linking between chitosan and added polyanions. The degree of swelling and release characteristics of microspheres was also studied in presence of organic and inorganic salts, which shown significant effect on controlled characteristics of microspheres due to variations in ionic strength of the medium. The initial step of drug release has followed first order kinetics and become zero order after attaining an equilibrium degree of swelling in these microspheres. The microspheres prepared using chitosan with 62% (w/w) degree of deacetylation and molecular weight of 1134 kg mol−1 have shown a sustained release for centchroman for 50 h at 4% (w/w) degree of cross-linking with SHMP.  相似文献   

3.
The aim of this study was to analyze the process of tablet formation and the properties of the resulting tablets for 3 N-deacetylated chitosans, with a degree of deacetylation of 80%, 85%, or 90%. Material properties, such as water content, particle size and morphology, glass transition temperature, and molecular weight were studied. The process of tablet formation was analyzed by 3-D modeling, Heckel analysis, the pressure time function, and energy calculations in combination with elastic recovery dependent on maximum relative density and time. The crushing force and the morphology of the final tablets were analyzed. Chitosans sorb twice as much water as microcrystalline cellulose (MCC), the particle size is comparable to Avicel PH 200, a special type of MCC, the particles look like shells, and the edges are bent. Molecular weight ranges from 80 000 to 210 000 kDa, the glass transition temperature (Tg) was not dependent on molecular weight. The chitosans deform ductilely as MCC; however, plastic deformation with regard to time and also pressure plasticity are higher than for MCC, especially for Chit 85, which has the lowest crystallinity and molecular weight. At high densification, fast elastic decompression is higher. 3-D modeling allowed the most precise analysis. Elastic recovery after tableting is higher than for MCC tablets and continues for some time after tableting. The crushing force of the resulting tablets is high owing to a reversible exceeding of Tg in the amorphous parts of the material. However, the crushing force is lower compared with MCC, since the crystallinity and the Tg of the chitosans are higher than for MCC. In summation, chitosans show plastic deformation during compression combined with high elasticity after tableting. Highly mechanically stable tablets result. Published: September 8, 2006  相似文献   

4.
Polymeric nanoparticles have emerged as a promising approach for drug delivery systems. We prepared chitosan (CS)/sodium alginate (SAL) polyelectrolyte complex nanoparticles (CS/SAL NPs) via a simple and mild ionic gelation method by adding a CS solution to a SAL solution, and investigated the effects of molecular weight of the added CS, and the SAL:CS mass ratio on the formation of the polyelectrolyte complex nanoparticles. The well-defined CS/SAL NPs with near-monodisperse particle size of about 160 nm exhibited a pH stable structure, and pH responsive properties with a negatively or positively charged surface. The so-called “electrostatic sponge” structure of the polyelectrolyte complex nanoparticles enhanced their drug-loading capacity towards the differently charged model drug molecules, and favored controlled release. We also found that the drug-loading capacity was influenced by the nature of the drugs and the drug-loading media, while drug release was affected by the solubility of the drugs in the drug-releasing media. The biocompatibility and biodegradability of the polyelectrolytes in the polyelectrolyte complex nanoparticles were maintained by ionic interactions. These results indicate that CS/SAL NPs can represent a useful technique for pH-responsive drug delivery systems.  相似文献   

5.
目的:确定甘草次酸结肠靶向微丸的制剂处方,评价其释药特性。方法:采用挤出-滚圆法制备甘草次酸素丸,利用流化床包衣技术对甘草次酸素丸进行包衣,用浆法评价微丸的体外释药性能。结果:采用微晶纤维素和甘草次酸,同时加入黏合剂羧甲基纤维素钠,经过充分搅拌混合,以30%的乙醇作为润湿剂,通过挤出-滚圆制得甘草次酸素丸。以尤特奇S100为膜控材料,加入适量柠檬酸三乙酯与滑石粉配制包衣液,对甘草次酸素丸进行包衣,制得甘草次酸包衣微丸。释放度实验表明甘草次酸素丸在其增重20%时,在0.1 mo L/L的盐酸溶液中不释放,在p H6.8的磷酸缓冲液条件下6 h内其释放率不到20%。而在p H7.4的磷酸缓冲液条件下2 h内释放率达到80%以上。结论:所制的甘草次酸素丸处方合理,制剂工艺简便,通过流化床包衣技术所制的甘草次酸包衣微丸在模拟的胃液中不释放,在小肠液中释放缓慢,在结肠液中释药良好,具有良好的结肠靶向作用。  相似文献   

6.
Alginate matrix tablet of diltiazem hydrochloride (DTZ), a water-soluble drug, was prepared using sodium alginate (SAL) and calcium gluconate (CG) by the conventional wet granulation method for sustained release of the drug. The effect of formulation variables like SAL/CG ratio, drug load, microenvironmental pH modulator, and processing variable like compression force on the extent of drug release was examined. The tablets prepared with 1:2 w/w ratio of SAL/CG produced the most sustained release of the drug extending up to 13.5 h. Above and below this ratio, the drug release was faster. The drug load and the hardness of the tablets produced minimal variation in drug release. The addition of alkaline or acidic microenvironmental modulators did not extend the release; instead, these excipients produced somewhat faster release of diltiazem. This study revealed that proper selection of SAL/CG ratio is important to produce alginate matrix tablet by wet granulation method for sustained release of DTZ.  相似文献   

7.
The objective of the present study was to develop once-daily sustained-release matrix tablets of nicorandil, a novel potassium channel opener used in cardiovascular diseases. The tablets were prepared by the wet granulation method. Ethanolic solutions of ethylcellulose (EC), Eudragit RL-100, Eudragit RS-100, and polyvinylpyrrolidone were used as granulating agents along with hydrophilic matrix materials like hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose, and sodium alginate. The granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, and in vitro release studies. The granules showed satisfactory flow properties, compressibility, and drug content. All the tablet formulations showed acceptable pharmacotechnical properties and complied with in-house specifications for tested parameters. According to the theoretical release profile calculation, a oncedaily sustained-release formulation should release 5.92 mg of nicorandil in 1 hour, like conventional tablets, and 3.21 mg per hour up to 24 hours. The results of dissolution studies indicated that formulation F-I (drug-to-HPMC, 1∶4; ethanol as granulating agent) could extend the drug release up to 24 hours. In the further formulation development process, F-IX (drug-to-HPMC, 1∶4; EC 4% wt/vol as granulating agent), the most successful formulation of the study, exhibited satisfactory drug release in the initial hours, and the total release pattern was very close to the theoretical release profile. All the formulations (except F-IX) exhibited diffusion-dominated drug release. The mechanism of drug release from F-IX was diffusion coupled with erosion.  相似文献   

8.
Swelling behaviour is one of the important properties for microcapsules made by hydrogels, which always affects the diffusion and release of drugs when the microcapsules are applied in drug delivery systems. In this paper, alginate–chitosan microcapsules were prepared by different technologies called external or internal gelation process respectively. With the volume swelling degree (Sw) as an index, the effect of properties of chitosan on the swelling behaviour of both microcapsules was investigated. It was demonstrated that the microcapsules with low molecular weight and high concentration of chitosan gave rise to low Sw. Considering the need of maintaining drug activity and drug loading, neutral pH and short gelation time were favorable. It was also noticed that Sw of internal gelation microcapsules was lower than that of external gelation microcapsules, which was interpreted by the structure analysis of internal or external gelation Ca–alginate beads with the aid of confocal laser scanning microscope.  相似文献   

9.
In the present study, spherical beads were prepared from a water-soluble chitosan (N,O-carboxymethyl chitosan, NOCC) and alginate with ionic gelation method. Then, swollen calcium–alginate–NOCC beads were coated with chitosan. To prepare drug loaded beads, sulfasalazine (SA) was added to the initial aqueous polymer solution. The effect of coating, as well as drying procedure, on the swelling behavior of unloaded beads and SA release of drug loaded ones were evaluated in simulated gastrointestinal tract fluid. The rate of swelling and drug release were decreased for air-dried and coated beads in comparison with freeze-dried and uncoated ones, respectively. No burst release of drug was observed from whole tested beads. Chitosan coated beads released approximately 40% of encapsulated drug in simulated gastric and small intestine tract fluid. Based on these results, the chitosan coated alginate–NOCC hydrogel may be used as potential polymeric carrier for colon-specific delivery of sulfasalazine.  相似文献   

10.
The objective of this study was to identify polysaccharides with antioxidant properties for use as potential antioxidative compounds for extended-release matrix tablets. The antioxidant properties of five different polysaccharides, high molecular weight alginate (H-ALG), low molecular weight alginate (L-ALG), high molecular weight chitosan (H-chitosan), low molecular weight chitosan (L-chitosan), and pectic acid (PA) were examined using N-centered radicals from 1,1′-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and reducing power, based on their ability to reduce Cu2+. L-chitosan and PA had acceptable scavenging abilities and were good radical scavengers, with good reducing power, but the H-chitosan and alginate derivatives were much less effective. The results suggest that L-chitosan and PA could be useful in combating oxidative stress. A PA and L-chitosan interpolymer complex (IPC) tablet was prepared and evaluated as an extended-release tablet matrix using theophylline (TPH) as a model drug. The release of TPH from the matrix tablet (TPH/PA/L-chitosan = 200 mg:150 mg:50 mg) was slower than that from PA only (TPH/PA/chitosans = 200 mg:200 mg:0 mg) or L-chitosan only (TPH/PA/L-chitosan = 200 mg:0 mg:200 mg) tablet. Turbidity measurements also indicated the optimum complexation ratio for IPC between PA/L-chitosan to be 1/3, indicating an acceptable relationship between the turbidity of the complex and the release ratio of TPH. These results suggest that an L-chitosan/PA complex would be potentially useful in an extended-release IPC tablet with high antioxidant activity.  相似文献   

11.
The aim of the present study was to investigate the use of different grades of microcrystalline cellulose (MCC) and lactose in a direct pelletization process in a rotary processor. For this purpose, a mixed 2- and 3-level factorial study was performed to determine the influence of the particle size of microcrystalline cellulose (MCC), (≈60 and 105 μm) and lactose (≈30, 40, and 55 μm), as well as MCC type (Avicel and Emcocel) on the pelletization process and the physical properties of the prepared pellets. A 1∶4 mixture of MCC and lactose was applied, and granulation liquid was added until a 0.45 Nm increase in the torque of the friction plate was reached. All combinations of the 3 factors resulted in spherical pellets of a high physical strength. The particle size of MCC was found to have no marked effect on the amount of water required for agglomerate growth or on the size of the resulting pellets. An increasing particle size of lactose gave rise to more spherical pellets of a more narrow size distribution as well as higher yields. The MCC type was found to affect both the release of the model drug from the prepared pellets and the size distribution. Generally, the determined influence of the investigated factors was small, and direct pelletization in a rotary processor was found to be a robust process, insensitive to variations in the particle size and type of MCC and the particle size of lactose. Published: October 24, 2005  相似文献   

12.
This research investigated the use of sodium alginate for the preparation of hydrophylic matrix tablets intended for prolonged drug release using ketoprofen as a model drug. The matrix tablets were prepared by direct compression using sodium alginate, calcium gluconate, and hydroxypropylmethylcellulose (HPMC) in different combinations and ratios. In vitro release tests and erosion studies of the matrix tablets were carried out in USP phosphate buffer (pH 7.4). Matrices consisting of sodium alginate alone or in combination with 10% and 20% of HPMC give a prolonged drug release at a fairly constant rate. Incorporation of different ratios of calcium gluconate leads to an enhancement of the release rate from the matrices and to the loss of the constant release rate of the drug. Only the matrices containing the highest quantity of HPMC (20%) maintained their capacity to release ketoprofen for a prolonged time.  相似文献   

13.
Summary When alginate (1.0 g/l) was added to Wasabia japonica cell culture, cell growth was slightly inhibited (11–17%) but both the chitinase production and the specific chitinase productivity increased. Similar results were also observed when chitosan (1.0 g/l), which is well known as an elicitor, was added to the culture. These results suggest that alginate act as a kind of elicitor. Promotion effect of alginate on chitinase production was more remarkable when low molecular weight alginate (oligomer) was used. In comparison with free cells, addition of alginate to W. japonica protoplast culture resulted to 3 times increase in the chitinase productivity.  相似文献   

14.
The bioavailability of therapeutic agents from eye drops is usually limited due to corneal barrier functions and effective eye protective mechanisms. Therefore, the current study aims to enhance ocular bioavailability of brimonidine, a potent antiglaucoma drug, through the preparation of ocular inserts. Solvent casting technique was employed to prepare the inserts using polyvinylpyrrolidone K-90 (PVP K-90) as film-forming polymer blended with different viscosity grades of bioadhesive polymers namely hydroxypropyl methycellulose, carbopol, sodium alginate, and chitosan. The prepared ocular inserts were evaluated for various physicochemical parameters, swelling behavior, and in vitro release patterns. Sodium alginate-based ocular inserts revealed the most sustainment in drug release (99% at 6 h), so it was selected for further modifications via coating it, on one side or dual sides, using hydrophobic film composed of either ethylcellulose or Eudragit RSPO. The obtained in vitro release results for the modified ocular inserts revealed that ethylcellulose is superior to Eudragit RSPO in terms of brimonidine release sustainment effect. Ocular inserts composed of 7% PVP K-90, 1.5% low molecular weight sodium alginate with or without ethylcellulose coat were able to sustain the in vitro release of brimonidine. Their therapeutic efficacy regarding intraocular pressure (IOP) lowering effect when inserted in albino rabbits eyes showed superior sustainment effect compared with that of brimonidine solution. Furthermore, due to both the mucoadhesive property and the drug sustainment effect, the one-side-coated ocular insert showed more IOP lowering effect compared with that of its non-coated or dual-side-coated counterpart.  相似文献   

15.
Small pieces of formalin-fixed tissue are infiltrated first with a 1% and then with a 2% solution of a low viscosity sodium alginate (a salt of a polymannuronic acid obtained from seaweed). This tissue is then transferred to a solution of a high molecular weight sodium alginate containing colloidally dispersed tricalcium phosphate. When a freshly prepared solution of gluconolactone is added, a calcium alginate gel is gradually formed—the lactone slowly hydrolyses to produce the free acid which liberates calcium ions from the colloidal phosphate. A block of gel containing the tissue is then cut out. If desired, it can be further hardened in a buffered calcium acetate solution and its cutting properties improved by soaking in 20% alcohol. At room temperature, enzymes such as the cholinesterases and phosphatases are not affected, but the procedure can be carried out at 0° C if desired. The gel does not crack and makes possible the cutting of coherent, serial frozen sections of many tissues. The alginate preparations used were supplied by Messrs. Alginate Industries Limited, Walter- House, Bedford Street, Strand, London, W.C.2.  相似文献   

16.
The aim of the study was the development of mucoadhesive vaginal tablets designed for the local controlled release of acriflavine, an antimicrobial drug used as a model. The tablets were prepared using drug-loaded chitosan microspheres and additional excipients (methylcellulose, sodium alginate, sodium carboxymethylcellulose, or Carbopol 974). The microspheres were prepared by a spray-drying method, using the drug to polymer weight ratios 1:1 and 1:2 and were characterized in terms of morphology, encapsulation efficiency, and in vitro release behavior, as MIC (Minimum Inhibitory Concentration), MBC (Minimum Bacterial Concentration), and killing time (KT). The tablets were prepared by direct compression, characterized by in vitro drug release and in vitro mucoadhesive tests. The microparticles have sizes of 4 to 12 microm; the mean encapsulation yields are about 90%. Acriflavine, encapsulated into the polymer, maintains its antibacterial activity; killing time of the encapsulated drug is similar to that of the free drug. In vitro release profiles of tablets show differences depending on the excipient used. In particular Carbopol 974, which is highly cross-linked, is able to determine a drug-controlled release from the matrix tablets for more than 8 hours. The in vitro adhesion tests, carried out on the same formulation, show a good adhesive behavior. The formulation containing microspheres with drug to polymer weight ratios of 1:1 and Carbopol 974 is characterized by the best release behavior and shows good mucoadhesive properties. These preliminary data indicate that this formulation can be proposed as a mucoadhesive vaginal delivery system for the controlled release of acriflavine.  相似文献   

17.
Supercritical fluid technology offers several advantages in preparation of microparticles. These include uniformity in particle size, morphology, and drug distribution without degradation of the product. One of the recent advantages is preparation of porous aerogel carrier with proper aerodynamic properties. In this study, we aimed to prepare chitosan aerogel microparticles using supercritical fluid (SCF) technology and compare that with microparticles produced by freeze drying (FD). Loading the prepared carriers with a model drug (salbutamol) was also performed. Comparisons of the particle properties and physicochemical characterizations were undertaken by evaluating particle size, density, specific surface area, and porosity. In vitro drug release studies were also investigated. The effect of many variables, such as molecular weight of chitosan oligomers, concentrations of chitosan, and concentrations of tripolyphosphate on the release, were also investigated. Chitosan aerogels were efficiently produced by SCF technology with an average particle size of 10 μm with a tapped density values around 0.12 g/mL, specific surface area (73–103) m2/g, and porosity (0.20–0.29) cc/g. Whereas, microparticles produced by FD method were characterized as cryogels with larger particle size (64 microns) with clear cracking at the surface. Sustained release profile was achieved for all prepared microparticles of salbutamol produced by the aforementioned methods as compared with pure drug. The results also demonstrates that chitosan molecular weight, polymer concentration, and tripolyphosphate concentration affected the release profile of salbutamol from the prepared microparticles. In conclusion, SCF technology was able to produce chitosan aerogel microparticles loaded with salbutamol that could be suitable for pulmonary drug delivery system.KEY WORDS: aerodynamic, aerogels, chitosan, salbutamol, supercritical fluid technology  相似文献   

18.
Bovine serum albumin-loaded beads were prepared by ionotropic gelation of alginate with calcium chloride and chitosan. The effect of sodium alginate concentration and chitosan concentration on the particle size and loading efficacy was studied. The diameter of the beads formed is dependent on the size of the needle used. The optimum condition for preparation alginate–chitosan beads was alginate concentration of 3% and chitosan concentration of 0.25% at pH 5. The resulting bead formulation had a loading efficacy of 98.5% and average size of 1,501 μm, and scanning electron microscopy images showed spherical and smooth particles. Chitosan concentration significantly influenced particle size and encapsulation efficiency of chitosan–alginate beads (p < 0.05). Decreasing the alginate concentration resulted in an increased release of albumin in acidic media. The rapid dissolution of chitosan–alginate matrices in the higher pH resulted in burst release of protein drug.  相似文献   

19.
The purpose of this research was to investigate the use of polyethylene glycol (PEG) solutions as the primary binder liquid in a 2-step agglomeration process performed in a rotary processor and characterize the resulting granules and their tableting characteristics. This was done by granulation of binary mixtures of microcrystalline cellulose (MCC) and either lactose, calcium phosphate, acetaminophen, or theophylline, in a 1∶3 ratio, using a 50% (wt/wt) aqueous solution of PEG and water as the binder liquid. Formulations containing lactose were agglomerated using 5 different amounts of the PEG binder solution, giving rise to a PEG content in the range of 6% to 43% (wt/wt). The process outcome was characterized according to adhesion, yield, and water requirement, and the prepared granules were characterized according to size, size distribution, and flow properties as well as tableting properties. The agglomeration of all mixtures resulted in high yields of free-flowing agglomerates and gave rise to good reproducibility of the investigated agglomerate characteristics. The process allowed for the incorporation of 42.5% (wt/wt) PEG, which is higher than the percentage of PEG reported for other equipment. Tables of sufficient strength could be prepared with all investigated excipients using 20% wt/wt PEG; higher PEG contents gave rise to adhesion and prolonged disintegration. In conclusion, agglomeration in a torque-controlled rotary processor using solutions of PEG as the primary binder liquid was found to be a robust process, suitable for the incorporation of high contents of PEG and/or drug compounds.  相似文献   

20.
Soybean isoflavone (SIF) has anti-aging properties and many other biological functions; however, SIF is difficult to reach higher blood concentration due to its rapid metabolism. Therefore, it is of great value to design and produce a sustained-release formulation that is able to maintain a stable level of plasma concentrations. In this paper, soybean isoflavone sustained-release microsphere from chitosan and sodium alginate was prepared successfully. The important factors that determined the quality of the microspheres were the sodium alginate concentration in solution B, the ratio of soybean isoflavone to chitosan and the mixing speed. The relative yield, encapsulation efficiency and drug loading capability of SIF were much higher than the existing commercial formulations. In real gastrointestinal conditions, compared with the non-sustained release group, the release rate of SIF slowed down and the reaction time was prolonged. Animal experiments showed that sustained-release microspheres intensified the anti-aging potentials of SIF. Compared with the Non-sustained release (NSR) group mice, oral SIF/CHI microsphere treated mice were better in the Morris Water Maze Test (MWMT), the MDA level in the both plasma and brain of the sustained release(SR) group mice decreased, and SOD content was remarkably improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号