首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renal prostaglandins may be important in the modulation of compensatory renal growth. Reductions in renal mass are associated with increased synthesis of these substances by the remaining kidney, and inhibition of prostaglandin synthesis diminishes renal function in partially nephrectomized animals and in patients with reduced functioning renal mass. We examined the effects of uninephrectomy and treatment with indomethacin on renal prostaglandin E2 and 6-keto prostaglandin F1 alpha concentrations in adult male Sprague Dawley rats. The renal content of these prostaglandins was significantly increased in the remaining kidney two days following uninephrectomy (p less than 0.01). Treatment with 5 mg/kg/day of indomethacin over this period abolished the compensatory increase in renal prostaglandin synthesis and significantly attenuated compensatory increases in renal mass, protein and RNA concentrations (p less than 0.05). No alterations in kidney weight, protein or RNA concentrations were found in intact animals treated with the same dose of indomethacin. These findings suggest renal prostaglandins may participate in the biological events leading to compensatory renal growth.  相似文献   

2.
Compensatory growth of the kidney occurs in response to a partial reduction in renal mass. This compensatory renal growth may be regulated by a circulating renotropic factor. Prostaglandin synthesis has been shown to be increased in kidneys undergoing compensatory renal growth in vivo. In the present study we observed that the addition of rabbit sera obtained after uninephrectomy enhanced DNA synthesis in primary cultures of rabbit kidney cells compared to sera obtained prenephrectomy. The stimulated kidney cells produced more prostaglandin E2 than control cells. Furthermore, the addition of prostaglandin E2 to rabbit kidney cells in the presence of control sera also stimulated DNA synthesis. These results provide further evidence that prostaglandins may participate in the biological events which regulate renal growth in response to a circulating renotropic factor.  相似文献   

3.
To determine whether the renal vascular effect of arginine vasopressin (AVP) is modulated by renal prostaglandin E2 (PGE2) were determined during the infusion of AVP in dogs during control conditions and after the administration of the inhibitor of prostaglandin synthesis, indomethacin. During control conditions, intrarenal administration for 10 min of a dose of AVP calculated to increase arterial renal plasma AVP concentration by 75 pg/ml produced a slight renal vasodilation (p<0.01) and an increase in renal venous plasma concentration of PGE2. Renal venous PGE2 concentration during control and AVP infusion averaged 33 ± 7 and 52 ± 12 pg/ml (p<0.05), respectively. After administration of indomethacin, the same dose of AVP induced renal vasoconstriction (p<0.05) and failed to enhance renal venous PGE2 concentration (9 ± 1 to 8 ± 1 pg/ml). Intrarenal administration of 20 ng/kg. min of AVP for 10 min induced a marked renal vasoconstriction (p<0.01) and increased renal venous plasma PGE2. Renal venous PGE2 during control and AVP infusion averaged 31 ± 10 and 121 ± 31 pg/ml (p<0.01), respectively. Administration of the same dose of AVP following indomethacin produced a significantly greater and longer lasting renal vasoconstriction (p<0.01) and failed to increase renal venous plasma PGE2 (10 ± 1 to 9 ± 1 pg/ml). These results indicate that a concentration of AVP comparable to that observed in several pathophysiological conditions induces a slight renal vasodilation which is mediated by renal prostaglandins. The results also indicate that higher doses of AVP induce renal vasoconstriction and that prostaglandin synthesis induced by AVP attenautes the renal vasoconstriction produced by this peptide.  相似文献   

4.
Stimulation of prostaglandin synthesis by a material with coronary vasoconstrictor activity extracted from blood plasma was examined. The vasoactive material decreased the Km for arachidonate in the overall synthesis of prostaglandins by rabbit renal microsomal preparations but did not change Vmax. Increases in prostaglandin synthesis caused by the vasoactive material and L-tryptophan or L-epinephrine were additive or synergistic, whereas increases produced by the vasoactive material and hemin or hemoglobin were not. However, hemin and hemoglobin stimulated synthesis of all prostaglandins equally whereas the active material increased the synthesis of prostaglandin F at the expense of other prostaglandins, both in the presence and absence of heme compounds. The increase in prostaglandin F with respect to the other prostaglandins occurred in the presence of reduced glutathione. The vasoactive material attenuated inhibition of prostaglandin synthesis induced by indomethacin or aspirin but not that produced by 5,8,11,14-eicosatetraynoic acid. The interaction of the vasoactive material and indomethacin was competitive whereas hemin attenuated the effects of only low concentrations of indomethacin. Epinephrine enhanced indomethacin inhibition. These data indicate that mode of action of the vasoactive material in prostaglandin synthesis is unlike that of glutathione, aromatic amines, or heme containing compounds.  相似文献   

5.
We examined the potential role of prostaglandins in the development of analgesic nephropathy in the Gunn strain of rat. The homozygous Gunn rats have unconjugated hyperbilirubinemia due to the abscence of glucuronyl transferase, leading to marked bilirubin deposition in renal medulla and papilla. These rats are also highly susceptible to develop papillary necrosis with analgesic administration.We used homozygous (jj) and phenotypically normal heterozygous )jJ) animals. Four groups of rats (n = 7) were studied: jj and jJ rats treated either with aspirin 300 mg/kg every other day or sham-treated. After one week, slices of cortex, outer and inner medulla from one kidney wre incubated in buffer and prostaglandin synthesis was determined by radioimmunoassay. The other kidney was examined histologically.A marked corticomedullary gradient of prostaglandin synthesis was observed in all groups, PGE2 synthesis was significantly higher in outer medulla, but not cortex or inner medulla, of jj (38 ± 6 mg/mg prot) than jJ rats (15 ± 3) (p<0.01). Aspirin treatment reduced PGE2 synthesis in all regions, but outer medullary PGE2 remained higher in jj (18 ± 3) than jJ rats (9 ± 2) (p<0.05). PGE2α was also significantly higher in the outer medulla of jj rats with and without aspirin administration (p<0.05). The changes in renal prostaglandin synthesis were accompanied by evidence of renal damage in aspirin-treated jj but not jJ rats as evidenced by: increased incidence and severity of hematuria (p<0.01); increased serum creatinine (p<0.05); and increase in outer medullary histopathologic lesions (p<0.005 compared to either sham-treated jj or aspirin-treated jJ).These results suggest that enhanced protaglandin synthesis contributes to maintenance of renal function and morphological integrity, and that inhibition of protaglandin synthesis may lead to pathological renal medullary lesions and deterioration of renal function.  相似文献   

6.
The effect of suppression of prostaglandin synthesis on renal sodium handling and microsomal Na---K ATPase was studied in control and indomethacin treated intact rats maintained on a normal sodium diet (series A) and chronically salt loaded (series B). Indomethacin administration resulted in a decreased GFR and a significantly depressed urinary excretion and an increased fractional reabsorption of sodium in animals fed the normal sodium diet or chronically salt loaded. In rats maintained on a nomral Na diet, the activity of the renal medullary Na---K ATPase after indomethacin was 206.3±6.4 ug Pi./mg protein, i.e. significantly higher as compared with the enzyme activity in the medullary renal fraction from control animals in which it averaged 148±7.79 ug Pi/mg protein (p<0.001). While after chronic salt load a similar increment in the activity of renal medullary Na---K ATPase was observed, no additional stimulation was elicited by subsequent indomethacin administration. The addition of exogenous PGE2, mM to microsomal fractions obtained from kidneys of normal rats, was associated with a moderate suppression of the medullary Na---K---ATPase activity, from a basal level of 170±16 to 151.3±13 umol Pi/mg protein/hr (p<0.005. In isolated segments of medullary thick ascending limb of Henle's loop (MTAL) addition of PGE2 to the incubation medium resulted in a significant inhibition of Na---K--- ATPase from 37.2±2 to 21.25 ± 1.17 × 10−11 mol/mm/min (p<0.0001.These findings suggest that the increased renal Na reabsorption after inhibition of PG synthesis might be related, at least partly, to stimulation of medullary Na---K ATPase. In parallel, the reported natriuretic effect of prostaglandins might imply a direct inhibitory effect of these mediators on renal Na---K ATPase.  相似文献   

7.
Mouse calvaria were maintained in organ culture without serum additives. Basal active resorption, as measured by 45Ca and hydroxyproline release, was significantly inhibited to 74% control levels by indomethacin (1.4 × 10−7 M). Prostaglandin F and prostaglandin E2 production, determined by radioimmunoassay, were both significantly lowered by this concentration of indomethacin. DNA, protein and hydroxyproline synthesis, as indices of cell toxicity, were unaffected by low concentrations of indomethacin, while concentrations of 1.4 × 10−6M inhibited protein synthesis (p<0.005). In the presence of indomethacin (1.4 × 10−7M) both PGE2 and PGF stimulated resorption in a dose-dependent manner, with PGE2 being the more potent. Neither prostaglandin affected hydroxyproline synthesis at low concentrations, but PGE2 had a marked inhibitory action at a higher concentration (10−6M). In combination, the effects of PGE2 and PGF showed no evidence of synergism or any antagonistic action. The study shows that in vitro calcium and hydroxyproline resorption in the unstimulated mouse calvaria are inhibited by indomethacin at concentrations measured in serum during human therapy. The decreased PGF and PGE2 production associated with this decreased bone resorption in the presence of non-toxic concentrations of indomethacin would suggest a role for these prostaglandins in maintaining the basal resorption of cultured bone.  相似文献   

8.
The aim of this investigation was to examine the action of parenteral indomethacin and oral prostaglandin E2 on cell proliferation in the rat oxyntic mucosa. Groups of Sprague Dawley rats were treated with either 1.5 mg/kg indomethacin subcutaneously, 5 mg/kg oral prostaglandin E2 or placebo, twice daily during 5 days. All rats were killed exactly 4 hours after mitotic arrest with vincristine, and a biopsy specimen from the oxyntic mucosa was processed for routine microscopic evaluation.Mitotic figures were distributed cluster-like along the oxyntic mucosa alternating with mitosis-free areas. The total number of mitotic figures in 8 mm of mucosa was significantly reduced by administration of indomethacin (p<0.05). In rats given indomethacin, 32.5% of the examined mucosa did not have mitotic figures, which is significantly higher than 14.3% as observed in placebo-treated rats (p<0.05). Both rats treated with indomethacin and with prostaglandin E2 had fewer microscopic fields containing 5–6 mitotic figures than placebo-treated animals (p<0.05). The maximal length of mitosis-free areas was 0.6 (0.6–0.9) mm in rats given indomethacin which is significantly larger than 0.4 (0.2–0.4) mm observed in controls (p<0.05). Indomethacin produced epithelial atrophy as shown by a significant reduction of the epithelial height observed in those rats compared to controls (p<0.05).The inhibition of cell proliferation observed in the oxyntic mucosa of rats treated with the cyclooxygenase blocker indicates that an important physiological role of endogenous prostaglandin is to maintain the proliferative activity of the epithelium at a high level.  相似文献   

9.
The present study was undertaken to assess the role of prostaglandin system in the compensatory response to reduced nephron population, respective to renal function and electrolyte excretion. Intact and nephrectomized rats were divided in 4 groups: 1) rats pretreated with indomethacin, 2) rats pretreated with the vehicle of indomethacin, 3) rats pretreated with sulindac, and 4) rats pretreated with the vehicle of sulindac.In normal rats, indomethacin administration resulted in a mild decrease in creatinine clearance and a significant reduction of the urinary Na excretion. In the rats with reduced renal mass treated with indomethacin, the creatinine clearance did not differ from that in the control group. The 24 h urinary sodium excretion and the fractional excretion of sodium, however, were significantly lower in the indomethacin treated animals than in the control rats. No change in the creatinine clearance or in the sodium excretion was observed in all groups pretreated with sulindac.The urinary PGE2 and thromboxane excretion was significantly lower in the indomethacin treated intact rats and the rats with reduced renal mass. Sulindac induced a slight decrease in urinary excretion of PGE2 in intact rats. No significant change in urinary excretion of PGE2 or thromboxane was seen after sulindac in the rats with reduced renal mass.The antinatriuretic effect of indomethacin was dissociated from changes in urine flow in all groups of animals, suggesting that the increase in Na reabsorption tool place in a water impermeable segment of nephron.These results suggest that the compensatory increase in urinary Na excretion per nephron in rats with reduced nephron population at least partly depends on an intact prostaglandin synthesis.  相似文献   

10.
The effects of the prostaglandin system on renal hemodynamics were studied by treating rats with a single intraperitoneal dose of indomethacin, an inhibitor of prostaglandin synthesis. Medullary plasma flow was significantly reduced 30–45 minutes after indomethacin, but was elevated 3–6 hours after indomethacin. These changes in medullary plasma flow correlated well with circulating levels of prostaglandins A and E. Total renal blood flow decreased following indomethacin treatment, but returned to normal levels within an hour. These results indicate that the inhibition of prostaglandin synthesis following a single intraperitoneal dose of indomethacin is short-lived and is followed by a significant elevation in prostaglandin synthesis. It is likely that prostaglandin levels play an important role in the control of renal medullary plasma flow.  相似文献   

11.
In a series of studies designed to test the role of renal “work” in compensatory kidney growth we examined the relationship between absolute sodium reabsorption—which constitutes the bulk of renal energy expenditure, and growth of the remaining kidney at various intervals after contralateral nephrectomy.The increase in weight of the remaining kidney preceded the rise in sodium reabsorption and these two processes took place at different rates between 24 hours and 21 days after uninephrectomy.Absolute sodium reabsorption did not change during the first hours after contralateral nephrectomy, at a time when biochemical alterations are known to occur.The rate of [14C] choline incorporation into renal phospholipid, an early biochemical indicator of compensatory kidney growth, increased significantly one hour after contralateral nephrectomy but remained unchanged after sham-nephrectomy, regardless of the magnitude or direction of the concomitant change in absolute sodium reabsorption (“kidney work”).These results indicate that renal work expended in the reabsorption of glomerular filtrate is neither the initiating, nor the primary controlling factor, of the compensatory kidney growth that follows unilateral nephrectomy.  相似文献   

12.
The ability of prostaglandin E2 (PGE2) to initiate luteinization was demonstrated using a system of in vitro incubation of ovarian follicles followed by transplantation. Follicles from diestrous rats were incubated with 0.05 to 50 μg/ml PGE2, 10 μg/ml luteinizing hormone (LH), or alone in Krebs-Ringer bicarbonate buffer plus glucose for 2 hr. Then follicles were transplanted under the kidney capsules of hypophysectomized recipients, with follicles exposed to PGE2 on one side and those exposed to LH or buffer only on the other side. As determined at autopsy 4 days later and confirmed by histological examination, follicles exposed to PGE2 at concentrations of 0.5 μg/ml or greater, or to LH, transformed into corpora lutea, but control follicles regressed. Incubation of follicles with LH in the presence of indomethacin, an inhibitor of prostaglandin synthesis, significantly reduced the incidence of luteinization. Prostaglandin E2 (10 μg/ml) was able to override the inhibition of luteinization by indomethacin (150 μg/ml). The prostaglandin analogue 7-oxa-13-prostynoic acid (100 μg/ml) failed to prevent luteinization in response to either 5 μg/ml LH or 1 μg/ml PGE2. Results with PGE2 and with indomethacin suggest a role for prostaglandins in the luteinizing action of LH.We have reported previously that in vitro exposure of diestrous rat follicles to luteinizing hormone (LH) will result in transformation of the follicles to corpora lutea following transplantation under the kidney capsules of hypophysectomized rats. Dibutyryl cyclic AMP (DBC) mimics this effect of LH, and transplants produce progesterone in measurable amounts after both LH and DBC exposure when prolactin is administered in vivo to recipients.Kuehl et al. have suggested that prostaglandins may act as obligatory intermediates in the effect of LH on the ovary, acting between LH and adenylate cyclase. Preliminary results indicated that prostaglandin E2 (PGE2) could induce luteinization in our system. The extent of prostaglandin involvement in luteinization was further investigated in this work, using two reported antagonists of prostaglandin action, indomethacin and 7-oxa-13-prostynoic acid. Indomethacin has been found to inhibit synthesis of prostaglandins E2 and F; 7-oxa-13-prostynoic acid, which acts as a competitive antagonist of prostaglandins, prevented the effect of LH and prostaglandins E1 and E2 on cyclic AMP production in mouse ovaries.  相似文献   

13.
Renal compensatory hypertrophy is studied in age matched euthyroid and radiothyroidectomized female rats. 7 days after uninephrectomy, the hypertrophy of the remaining kidney is equally small in both groups. But 60 days after this operation, the hypothyroid animals show only a 12% increase in the wet weight of the remaining kidney whereas the euthyroid controls increase this weight by 21%. The excretion of water, Na and K are determined in the urine excreted in 5 h after a small water load. The results are related to 1 gram of kidney wet weight. These outputs increase in all animals after uninephrectomy. They are significantly higher in the hypothyroid rats than in the euthyroid controls as well before than 60 days after uninephrectomy. The reduction in tubular Na reabsorption found in the hypothyroid rat may account for the impairment of compensatory renal hypertrophy in hypothyroidism.  相似文献   

14.
Potassium-deficiency was induced in rats by dietary deprivation of potassium. The animals became polyuric and urine osmolality decreased more then three-fold compared to controls. Urinary excretion of prostaglandin E2 (PGE2) and prostaglandin F (PGF) did not increase during 2 weeks of potassium depletion. Partial inhibition of renal prostaglandin synthesis by meclofenamate did not increase the urine osmolality after water deprivation. These results make unlikely the hypothesis that the polyuria of potassium-deficiency, is the result of enhanced renal synthesis of prostaglandins with subsequent antagonism of the hydro-osmotic effect of vasopressin. Male animals consistently excreted less PGE2 than female animals.  相似文献   

15.
Incorporation of 32P into phospholipids, RNA and DNA was studied in adult male C57BL/GoZgb mice. Left nephrectomy was performed under diethyl ether anesthesia, and the remaining right kidney was excised 10 min to 28 days later. Sham-operated animals were used as controls. 2 h before killing, animals were injected intraperitoneally with 37 kBq (1 microCi) 32P (as sodium orthophosphate) per g of body weight. In the right kidney, incorporation of 32P into total phospholipids, and five phospholipid fractions (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, diphosphatidylglycerol and sphingomyelin) was increased by 25-35% between 20 and 72 h after uninephrectomy. The incorporation of 32P into RNA showed a similar pattern. However, incorporation of 32P into phosphatidylinositol and phosphatidic acid was already increased 20 min after uninephrectomy, reached a peak about 110-120% above control values 4 h after uninephrectomy, and then slowly returned to the control value at about 84-96 h. These results indicate that an early alteration in phospholipid metabolism, particularly of inositol lipids, may play a role in initiation of compensatory renal growth.  相似文献   

16.
The urinary prostaglandin E2 excretion was measured daily for 28 days in 15 patients (10 men and 5 women) after renal allotransplantation. Patients with acute oliguric renal failure immediately after the transplantation showed high urinary PGE2 concentrations, but no or minimal increase in the total excretion rates. The median PGE2 excretion was 211 μg/24 h after establishment of stable renal function, but with great individual variations. Rejection crises were characterized by a two-fold increase in PGE2 excretion, with a subsequent fall induced by the steroid treatment. The PGE2 excretion correlated better with urinary sodium excretion than diuresis.The pathophysiological role of the renal prostaglandin ssynthesis remains incompletely defined. The prostaglandin E2 (PGE2) appears to act as a modulator of the renal salt and water excretion (1,2) and prostaglandins are important mediators of the immunresponses (3,4). The eraly renal allograft rejection is an event characterized by salt and water retention together with decreasing renal function (5). Antibodies against renal tissue as well as cytotoxic leukocytes (“killer cells”) are active in the process (6,7) and many hormonal systems are involved, among them renin and vasopressin (8). Both hormones are known to stimulate the synthesis of prostaglandin in the kidneys and interact with its effect (9,10,11). The present material was therefore designed to study the urinary excretion of PGE2 in the kidney allografts before and during rejection crises.  相似文献   

17.
Prostaglandin E2 and F were measured in ejaculates from 10 fertile and 55 infertile men. Prostaglandin F was negatively correlated with motility (r=0.77; p<0.01) in normal men. In patients with disturbed fertility, prostaglandin F was always higher than in the controls, while prostaglandin E2 was elevated only in patients with persisting varicocele and in those with very low sperm counts and severely impaired motility. There was neither synthesis of prostaglandins in spermatozoa nor were binding sites for prostaglandin E2 and F detectable. Inactivation of seminal prostaglandins by incubation with prostaglandin 15-hydroxydehydrogenase resulted in a dramatic fall in motility. The results suggest that prostaglandin F act on motility, but the action is not mediated by receptors.  相似文献   

18.
The ipsilateral kidney was removed from a rabbit 48h after unilateral partial renal-vein-constriction and was perfused with Krebs–Henseleit media at 37°C. Hourly administration of a fixed dose of bradykinin to the renal-vein-constricted kidney demonstrated a marked time-dependent increase in the release of bioassayable prostaglandin E2 and thromboxane A2 into the venous effluent as compared with the response of the contralateral control kidney. The renal-vein-constricted kidney produced up to 60 times more prostaglandin E2 in response to bradykinin after 6h of perfusion as compared with the contralateral kidney; thromboxane A2 was not demonstratable in the contralateral kidney. Inhibition of protein synthesis de novo in the perfused renal-vein-constricted kidney with cycloheximide lessened the hormone-stimulated increase in prostaglandin E2 by 94% and in thromboxane A2 by 90% at 6h of perfusion. Covalent acetylation of the renal cyclo-oxygenase by prior oral administration of aspirin to the rabbit inhibited initial bradykinin-stimulated prostaglandin E2 biosynthesis 71% at 1h of perfusion. However, there was total recovery from aspirin in the renal-vein-constricted kidney by 2h of perfusion after bradykinin stimulation. Total cyclo-oxygenase activity as measured by [14C]arachidonate metabolism to labelled prostaglandins by renal cortical and renal medullary microsomal fractions prepared from 6h-perfused kidneys demonstrated that renal-vein-constricted kidney-cortical cyclo-oxygenase activity was significantly greater than the contralateral-kidney-cortical conversion, whereas medullary arachidonate metabolism was comparable in both the renal-vein-constricted kidney and contralateral kidney. These data suggest that perfusion of a renal-vein-constricted kidney initiates a time-dependent induction of synthesis of prostaglandin-producing enzymes, which appear to be primarily localized in the renal cortex. The presence of the synthetic capacity to generate very potent vasodilator and vasoconstrictor prostaglandins in the renal cortex suggests that these substances could mediate or modulate changes in renal vascular resistance in pathological states.  相似文献   

19.
The conversion of prostaglandins E2 and F to their 19- and 20-hydroxy metabolites by various tissues has been measured by gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring. A number of different tissues of the pregnant rabbit possess prostaglandin 20-hydroxylase activity (lung > liver > fetal placenta > maternal placenta ≈ uterus > renal cortex > renal medulla ≈ placental membranes). With the exception of the liver, prostaglandins E2 and F are metabolized at equal rates by the 20-hydroxylases of different tissues. Only lung and liver microsomes possess high levels of prostaglandin 20-hydroxylase in non-pregnant rabbits and only liver microsomes have appreciable 19-hydroxylase activity. Pulmonary prostaglandin 20-hydroxylase is induced in male rabbits by treatment with progesterone. On the basis of substrate specificity studies and the effects of a cytochrome P-450 inhibitor, SKF-525A, the prostaglandin 20-hydroxylases of lung and liver microsomes from pregnant rabbits appear to be different enzymes. In pregnant rats and hamsters, liver and kidney are the only tissues in which we detected prostaglandin ω-hydroxylase activity.  相似文献   

20.
We have investigated in vitro prostaglandin synthesis by human isolated glomeruli and papillary homogenates and compared the results with those obtained in parallel studies using rat material. Prostaglandins were measured by two methods, namely radiometric high performance liquid chromatography after incubation with 14C arachidonic acid and radioimmunoassay. The relative abundance of various prostaglandins synthesized by glomeruli was different in man (6 keto PGF > TXB2 > PGF > PGE2) and in the rat (PGE2 TXB2 > 6 keto PGF1α). Unidentified peaks eluting between 6 keto PGF and TXB2 were observed only in rat glomeruli. These peaks were suppressed by indomethacin. Direct radioimmunoassay of prostaglandins in the incubation medium of human glomeruli confirmed the predominance of 6 keto PGF synthesis and showed its stimulation by arachidonic acid, its progressive decrease with time and its linear relationship with glomerular protein at low concentrations. On the contrary, the profile of prostaglandin synthesis by the papilla was similar in man and in the rat, PGE2 and PGF being the major products in both species. However, related to one mg of protein, papillary synthesis of these two prostaglandins was greater in the rat. These results show that PGI2 is the major prostaglandin synthesized in human glomeruli and suggest a role for this prostaglandin in glomerular physiology in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号