首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
The interaction between bacteria and phytoplankton is increasingly becoming recognised as an important factor in the physiology of toxin production and the dynamics of harmful algal blooms (HABs). Bacteria can play a direct or indirect role in the production of biotoxins once solely attributed to microalgae. Evidence implicating bacteria as an autonomous source paralytic shellfish poisoning biotoxins raises the question of autonomous bacterial toxigenesis of the neurotoxin domoic acid (DA), the cause of amnesic shellfish poisoning. Here, we examine whether the previously observed bacterial enhancement of DA production by Pseudo-nitzschia multiseries (Hasle) Hasle may be attributable to independent biotoxin production by the extra-cellular bacteria associated with this diatom. The growth and toxicity of six cultures of xenic P. multiseries clone CLN-1 were followed for 24 days. Up to day 14 (mid-stationary phase), DA production was not statistically different among culture flasks. On day 14, P. multiseries cells were removed by gentle filtration from a set of triplicate flasks, leaving the bacteria in the filtrate. Following the removal of the algal cells, DA in the filtrate ceased to increase. Instead, DA levels continuously declined. A follow-up experiment determined that this was likely caused by photodegradation rather than by bacterial degradation. We conclude that after removing P. multiseries cells, the extra-cellular bacteria remaining in the filtrate were incapable of autonomous DA toxigenesis, even in the presence of P. multiseries exudates. However, scanning electron microscopy revealed that P. multiseries cells harboured epiphytic bacteria, the importance of which can still not be ruled out in DA production.  相似文献   

2.
In 1987, there was an episode of shellfish poisoning in Canada with human fatalities caused by the diatom Pseudo-nitzschia multiseries, which produced the toxin domoic acid. In order to examine whether domoic acid in this diatom serves as a grazing deterrent for copepods, we compared feeding rates, egg production rates, egg hatching success and mortality of the calanoid copepods Acartia tonsa and Temora longicornis feeding on unialgal diets of the toxic diatom P. multiseries and the similarly-sized non-toxic diatom Pseudo-nitzschia pungens. Copepods were collected in summers of 1994, 1995 and 1996 from Shediac Bay, New Brunswick, Canada, near Prince Edward Island, the site of the 1987 episode of domoic acid shellfish poisoning. Rates of ingestion of the toxic versus the non-toxic diatom by A. tonsa and T. longicornis were similar, with only one significantly different pair of values obtained in 1994, for which A. tonsa had a higher mean rate of ingestion of the toxic than the non-toxic diatom. Thus, domoic acid did not appear to retard grazing. Analyses of copepods with high performance liquid chromatography (HPLC) revealed that copepods accumulated domoic acid when feeding on P. multiseries. Egg production rates of copepods when feeding on P. multiseries and P. pungens were very low, ranging from 0 to 2.79 eggs female–1 d–1. There did not appear to be differential egg production or egg hatching success on diets of the toxic and non-toxic diatoms. Mortality of females on the toxic diet was low, ranging from 0 to 20%, with a mean of 13%, and there was no apparent difference between mortality of copepods feeding on toxic versus non-toxic diatoms. Egg hatching success on both diets, although based on few eggs, ranged between 22% and 76%, with a mean percentage hatching of 45%. Diets of the non-toxic diatom plus natural seawater assemblages supplemented with dissolved domoic acid, revealed similar rates and percentages when compared to previous experiments. In summary, none of the variables measured indicated adverse effects on copepods feeding on the toxic compared to the non-toxic diatom.  相似文献   

3.
Comparison of two domoic acid-producing diatoms: a review   总被引:1,自引:1,他引:0  
Villac  M.C.  Roelke  D.L.  Villareal  T.A.  Fryxell  G.A. 《Hydrobiologia》1993,269(1):213-224
In the past five years, awareness of domoic acid has increased from localized problems in Canada to outbreaks along both North American coasts. The phycotoxin domoic acid causes Amnesic Shellfish Poisoning (ASP) in humans and can be fatal. The known species of phytoplankton responsible for production of domoic acid include some pennate diatom species of the genus Nitzschia, sensu latu, which form stepped chains typical of the Pseudonitzschia. These diatoms are widely distributed, but their life histories and population dynamics are poorly understood. This review addresses histories of occurrences, morphology, geographical distributions, seasonal patterns, growth requirements, domoic acid production, and trophic interactions, with emphasis on a comparison of Pseudonitzschia pungens f. multiseries (Hasle) Hasle and Pseudonitzschia australis Frenguelli. Through continued research it will become possible to provide guidelines for regulatory agencies that protect both the consumer and the seafood industry.  相似文献   

4.
A flow cytometer coupled to a scanning monochromator and a fluorescence microscope were used to characterize the fluorescence spectrum of Pseudo‐nitzschia multiseries (Hasle) Hasle, a pennate diatom that produces the neurotoxin domoic acid, a lethal amnesic. In this research, we characterize the fluorescence spectrum of P. multiseries in vivo over the wavelength range of 360 to 850 nm and show that this diatom autofluoresces blue when excited with UV light (350–365 nm). The autofluorescence characterization of Pseudo‐nitzschia may provide new methods for rapid in situ monitoring of diatom populations and reiterates the usefulness of flow cytometry in the analysis and study of marine phytoplankton.  相似文献   

5.
Production of domoic acid (DA), a neurotoxin, by the diatom Pseudo-nitzschia multiseries (previously Nitzschia pungens f. multiseries) Hasle and its cellular chemical composition were studied in phosphate-limited chemostat continuous cultures and in subsequent batch cultures. Under steady-state chemostat conditions, DA production increased from 0.01 to 0.26 pg DA · cell?1· d?1 as the growth rate decreased. When the nutrient supply was discontinued (to produce a batch culture), DA production was enhanced by a factor of ca. 3. DA production was temporarily suspended upon addition of phosphate to the batch cultures but resumed 1 d later at a higher rate coincident with the decline of phosphate uptake. In both steady-state continuous culture and batch culture, more DA was produced when alkaline phosphatase activity (APA) was high. The association of high DA production with high levels of APA and high cellular N:P ratios strongly suggests that phosphate limitation enhances DA production. Also, DA production was high when other primary metabolism (e.g. uptake of carbon, nitrogen, phosphorus and silicon, and cell division) was low, but chlorophyll a and adenosine triphosphate were generally high. This suggests that the synthesis of DA requires a substantial amount of biogenic energy.  相似文献   

6.
Clonal cultures of plankton are widely used in laboratory experiments and have contributed greatly to knowledge of microbial systems. However, many physiological characteristics vary drastically between strains of the same species, calling into question our ability to make ecologically relevant inferences about populations based on studying one or a few strains. This study included 19 non-axenic strains of three species of the diatom Pseudo-nitzschia isolated primarily from the mid-Atlantic coastal region of the United States. Toxin (domoic acid) production and growth rates were measured in cultures using different nitrogen sources (NH4+, NO3 and urea) and growth irradiances. The strains exhibited broad differences in growth rate and toxin content even between strains isolated from the same water sample. The influence of bacteria on toxin production was not investigated. Both P. multiseries clones produced toxin, yet preferentially used different nitrogen sources. Only two of nine P. calliantha and two of five P. fraudulenta isolates were toxic and domoic acid content varied by orders of magnitude. All three species had variable intraspecies growth rates on each nitrogen source, but P. fraudulenta strains had the broadest range. Light-limited growth rate and maximum growth rate in P. fraudulenta and P. multiseries varied with species. These findings show the importance of defining intra- and interspecies variability in ecophysiology and toxicity. Ecologically relevant functional diversity in the form of ecotypes or cryptic species appears to be present in the genus Pseudo-nitzschia.  相似文献   

7.
One of the shortcomings in studies of bivalve grazing has been the difficulty of culturing and making available sufficient quantities of algae. This was overcome using a 2501 capacity vat incubator with immersion core illumination (VIICI) in connection with experiments involving the diatom Nitzschia pungens f. multiseries, which produces domoic acid, the cause of amnesic shellfish poisoning. Nitzschia cultures grown in this incubator yielded maximum cell concentrations of 158–166 × 106 cells 1−1, a peak intracellular domoic acid level of 2.0 pg cell−1 and a maximum division rate of 0.3 d −1. The VIICI design is ideally suited for laboratory mass culture of phytoplankton, and has potential for wide application in phycotoxin, toxicological and environmental research, as well as for aquaculture.  相似文献   

8.
Some, but not all, marine pennate diatoms of the genus Pseudo-nitzschia H. Peragallo are associated with the production of domoic acid, a naturally occurring amino acid responsible for amnesic shellfish poisoning. Distinguishing between potentially toxic and nontoxic representatives of this genus is time-consuming and difficult because it demands scanning electron microscopy of cleaned frustules. The objective of this work is to speed and ease identification of these organisms by using whole-cell (in situ) hybridization and species-specific large-subunit ribosomal RNA (LSU rRNA)-targeted oligonucleotide probes. Toward that end, cultures of P. australis Frenguelli, P. pungens (Grunow) Hasle, P. multiseries (Hasle) Hasle, P. fraudulenta (P. T. Cleve) Heiden, P. heimii Manguin, P. delicatissima (P. T. Cleve) Heiden, P. pseudo-delicatissima (Hasle) Hasle, and P. americana (Hasle) Fryxell were screened with a suite of 15 putative species-specific probes. Of those, a subset of eight probes was found that distinguished each species tested. In addition, Pseudo-nitzschia chloroplasts were labeled with a probe directed against a eubacterial-conserved sequence. Identification of new cultures based on their reactivity toward a set of probes agreed with species designations as defined by morphological criteria. Whole-cell hybridization is a rapid, simple, and cost-effective technique for discriminating among cultured Pseudo-nitzschia species.  相似文献   

9.
Domoic acid (DA), the neurotoxin produced by diatoms such as Pseudo-nitzschia multiseries is water-soluble and can bioaccumulate, causing mass death of birds and marine mammals worldwide. Humans eating contaminated shellfish most commonly suffer from memory loss but mortalities have been recorded. The fate of particulate and dissolved DA released from the cells or added as standards was studied when incubated with different bacterial abundances, copepod faecal pellets, mussel pseudo-faeces and bottom sediment. Strains of P. multiseries from Canada and Brazil were grown in non-axenic continuous monocultures with different nutrient conditions, or in a follow-up mesocosm experiment. Incubation lasted up to 75 days in the dark under quiescent conditions after the cells had been killed. Release of DA from decaying cells did not depend on bacterial abundance when the bacterial source was cultures of P. multiseries, and the dissolved toxin was stable with bacteria from P. multiseries cultures (at least 20 days with 1× or 4× bacterial concentration), or with a naturally occurring density of bacteria from surface waters of a known P. multiseries bloom area (35 days). However, four-fold concentration of the natural bacterial consortium from the bloom site reduced the onset of DA degradation to 16 days. Thus, this study suggests that when testing toxin degradation by bacteria, it is important to use bacterial consortia from known bloom areas of Pseudo-nitzschia. Copepod faecal pellets did not affect DA degradation, whereas the presence of mussel pseudo-faeces and bottom sediment rapidly removed most of the toxin. We believe that the rapid removal of DA in the two latter treatments was due to higher bacterial abundance and the presence of enzymes from the mussels and/or associated bacteria that are important for the degradation process. The mechanisms underlying the observed effects on DA degradation with mussel pseudo-faeces and sediment require further research, but suggest interesting possibilities as a potential future mitigation technique.  相似文献   

10.
The genetic structure of phytoplankton populations is largely unknown. In this study we developed nine polymorphic microsatellite markers for the domoic acid–producing marine diatom Pseudo‐nitzschia multiseries (Hasle) Hasle. We then used them in the genotyping of 25 physiologically diverse field isolates and six of their descendants: 22 field isolates originated from eastern Canadian waters, two from European waters, and one from Russian waters. The numbers of alleles per locus ranged from three to seven and the observed heterozygosities from 0.39 to 0.70. A substantial degree of genetic variation was observed within the field isolates, with 23 different genotypes detected. The Russian isolate was the most genetically distinct, although there was also evidence of genetic differentiation at a more local scale. Mating experiments demonstrated that alleles were inherited in a Mendelian manner. Pseudo‐nitzschia multiseries primer pairs were tested on DNA from four congeners: P. calliantha Lundholm, Moestrup et Hasle; P. fraudulenta (P. T. Cleve) Hasle; P. pungens (Grunow ex P. T. Cleve) Hasle; and P. seriata (P. T. Cleve) H. Peragallo. Cross‐reactivity was only observed in P. pungens. Our results are a first step in understanding the genetic variation present at the Pseudo‐nitzschia“species” level and in determining the true biogeographic extent of Pseudo‐nitzschia species.  相似文献   

11.
The domoic acid-producing diatom Nitzschia pungens Grunow f. multiseries Hasle, which is responsible for amnesic shellfish poisonings in Prince Edward Island, Canada, underwent gametogenesis when senescent cells (i.e. in stationary growth phase for more than 290 days) were subcultured into fresh FE medium and light intensity was increased from 33 to 530 μE · m?2· s?1. The number of gametes produced varied with the salinity of the medium, with a maximum at 23.5‰. Cells in the exponential growth phase (0.8 div · d?1) did not produce gametes, nor did senescent cells when transferred without change in light intensity. Anisogamous gametes, probably haploid, were isolated by combining conventional microscopy with flow cytometry. Zygotes resulting from syngamy yielded cigar-shaped naviculoid cells, morphologically different from parent cells (heteromorphism). These cells, with a division rate of 1.9 div · d?1, could serve as a seed population and explain the origin and rapid progression of the toxic blooms of red-water proportions that have been a public health problem in Eastern Canada. Production of domoic acid by postexponential and moribund cells but not by gametes, zygotes, or immediately resulting cells, provides an insight into the dependence of toxicity on the developmental history of this diatom.  相似文献   

12.
The occurrence of three glutamate agonists — glutamic acid, D-homocysteic acid and kainic acid — in a spontaneous mutant of Palmaria palmata is reported. Glutamic acid and D-homocysteic acid, but not kainic acid, were found in the wild-type plant. The closely related glutamate agonist, domoic acid, was found in the red alga Chondria baileyana and in the diatom Nitzschia pungens forma multiseries. In the diatom, domoic acid can build up to high levels in excess of 3% (dry wt.), making N. pungens a potential commercial source of this neuroactive amino acid. Information is also presented on the distribution, chemistry and biological activity of neuroactive amino acids from algae, and a possible biogenic relationship among kainoid metabolites is discussed. author for correspondence  相似文献   

13.
Large epiphytic and epilithic diatom species hosting other diatoms were observed in several fresh‐ and brackish water sites in Southern California. The most commonly encountered hosts were species forming long filaments attached to rocks or macroalgae, Hydrosera whampoensis (Schwarz) Hendey, Melosira varians Agardh, Pleurosira laevis (Ehrenberg) Compere and Terpsinoe musica Ehrenberg. These large diatoms often had smaller diatoms attached, usually to the girdle bands and occasionally to the mucilage pads connecting the cells. For example, cells of T. musica were observed supporting growth of a diverse diatom assemblage composed of species of the genera Achnanthes, Achnanthidium, Amphora, Cocconeis and Tabularia; Synedra sp. was attached to M. varians and B. paxillifer; and Cocconeis placentula was seen on H. whampoensis. Thus, large epiphytic and epilithic diatoms seem to provide suitable sites for attachment of small epiphytic diatom species, and it appears that this phenomenon is more common than previously thought.  相似文献   

14.
Pseudonitzschia pungens f.multiseries was cultured in 20-L polycarbonate carboys, 350-L fibreglass columns and 500-L plastic bags to determine the effects of medium enrichment and scale of culture on cell yield, production of cellular domoic acid and formation of fatty acids, particularly the potential tracer acid 16:4n-1. Cell concentrations were highest in seawater enriched with stock levels of nitrate and phosphate, but with double the stock level of silicate, at all scales of culture. Cellular toxin in 20, 350 and 500-L cultures averaged 0.32, 0.04 and 2.56 pg cell-1 and was independent of medium used. The order of magnitude difference in levels of cellular toxin was considered to reflect the varying levels of irradiance within the culture vessels. Support was given to this by the significant difference in content of total cellular fatty acids, due principally to the algal storage acid 16: 1n-7, which is known to be influenced by irradiance. Levels of cellular domoic acid correlated significantly with total fatty acids in 350 and 500-L cultures. Bag cultures producing significantly higher levels of cellular domoic acid provided lower relative proportions of 16:4n-1, which limited its use as a tracer for food-web studies.  相似文献   

15.
16.
A bloom of the pennate diatom Pseudonitzschia australis Frenguelli (= Nitzschia pseudoseriata Hasle) occurring in Monterey Bay, California, in early September 1991 coincided with an episode of mortality in brown pelicans (Pelicanus occidentalis) and Brandt's cormorants (Phalacrocorax penicillatus). High levels of domoic acid (DA), the amnesic shellfish poisoning toxin, were recorded in the plankton samples. Furthermore, high levels of DA, as well as numerous remnants of P. australis frustules, were found in the stomach contents of affected birds and in the visceral contents of local anchovies, a principal food source of seabirds. This is the first confirmed report of DA poisoning since the original 1987 episode in Atlantic Canada caused by Nitzschia pungens Grunow forma multiseries Hasle. It suggests another species of planktonic pennate diatom is capable of producing DA and that herbivorous finfish can act as vectors for this toxin.  相似文献   

17.
18.
The qualitative and quantitative composition of phytoplankton in the area of a sea farm in Vostok Bay (Sea of Japan) was investigated from July 2001 to May 2002. The overall numbers of phytoplankton were 0.008 to 5.3 million cells/liter, and the biomass was 0.02 to 20.5 g/m3. The maximum density and biomass of phytoplankton were observed in summer, fall, and winter. Ten species known to be toxic were recorded. Of these, Pseudo-nitzschia multiseries (Hasle) Hasle, Alexandrium acatenella (Whedon et Kofoid) Balech, and Chattonella marina (Subrahmanyan) Hara et Chihara were found in Vostok Bay for the first time. For the diatom Skeletonema costatum (Greville) Cleve, which is an indicator of extremely eutrophic waters, the cell density was positively correlated with the area of the culture site.Original Russian Text Copyright © 2005 by Biologiya Morya, Morozova, Orlova.  相似文献   

19.
Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation.  相似文献   

20.
Large-subunit ribosomal RNA-targeted probes for Pseudo-nitzschia australis Frenguelli, P. multiseries (Hasle) Hasle, P. pseudodelicatissima (Hasle) Hasle, and P. pungens (Grunow) Hasle were applied to cultured and natural samples using whole-cell and sandwich hybridization. Testing of the latter method is emphasized here, and technique refinements that took place during 1996–1997 are documented. Application of the sandwich hybridization test showed that the signal intensity obtained for a given number of target cells remained constant as batch cultures of these organisms progressed from active through stationary growth phases. This suggests that cellular rRNA content for each target species remained relatively stable despite changes in growth state. Application of whole-cell and sandwich hybridization assays to natural samples showed that both methods could be used to detect wild P. australis, P. pseudodelicatissima, and to a lesser degree P. multiseries, but detection of P. pungens was prone to error. A receptor-binding assay for domoic acid (DA) enabled detection of this toxin activity associated with a particulate fraction of the plankton and provided a context in which to view results of the rRNA probe tests. In one case, the probe for P. australis cross-reacted with P. cf. delicatissima. The sample that contained the latter species also contained a low amount of DA activity. Under certain field conditions, results of whole-cell and sandwich hybridization tests disagreed. Detailed analysis of selected field samples illustrates how such situations arose. Collectively, the rRNA probe and toxin analyses suggest that manifestation of DA in the environment is possible in the absence of readily recognizable intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号