首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
Only tail tendon (TT) collagen has a sharp X-ray diffraction pattern, so that packing models for the equatorial arrangement of molecules in collagen fibrils have been developed primarily for TT collagen. A more general structure is developed applicable to all type I collagen tissues. Comparison of water content-equatorial diffraction spacing plots of several collagens shows all have essentially the same dry state diffraction spacing but differ as water content increases. TT collagen has the least spacing and the sharpest pattern. The interplanar spacing of the Hulmes-Miller quasi-hexagonal model for TT collagen was used to calculate the intermolecular spacing, which matched the observed diffraction spacing for bone matrix collagen. It is inferred that wet bone matrix collagen packs in a rectangular pattern because of the interaction between the many intermolecular crosslinks and the water absorbed on the collagen molecules. This argument also indicates that TT collagen packs into a quasi-hexagonal scheme because there are fewer intermolecular crosslinks than in bone matrix collagen.  相似文献   

2.
Low-angle X-ray diffraction shows that, despite the well-defined regular axially projected structure, there is no long-range lateral order in the packing of molecules in native (undried) or dried elastoidin spicules from the fin rays of the spurhound Squalus acanthias. The equatorial intensity distribution of the X-ray diffraction pattern from native elastoidin indicates a molecular diameter of 1.1 nm and a packing fraction for the structure projected on to a plane perpendicular to the spicule (fibril) axis of 0.31 (the value for tendon is much higher at around 0.6). Density measurements support this interpretation. When the spicule dries the packing fraction increases to 0.43 but there is still no long-range order in the structure. The X-ray diffraction patterns provide no convincing evidence for any microfibrils or subfibrils in elastoidin. Gel electrophoresis shows that the three chains in the elastoidin molecule are identical. The low packing fraction for collagen molecules in elastoidin explains the difference in appearance between electron micrographs of negatively stained elastoidin and tendon collagen. In elastoidin, but not in tendon collagen, an appreciable proportion of the stain is able to penetrate between the collagen molecules.  相似文献   

3.
Calcified leg flexor tendons in which the inorganic phase content had been lowered by progressive demineralization were studied by small angle X-ray diffraction and thermogravimetry. The X-ray diffraction results agree very well with the data previously obtained on calcified turkey tendon indicating that the method used to decalcify tendons provides good correspondence with the process of calcification. Up to five thermal processes can be detected in the thermogravimetric scans: (1) water release; (2) collagen decomposition; (3 and 4) combustion of the residual organic components; (5) carbonate removal from the apatitic phase. The temperature of collagen decomposition decreases at lower inorganic phase content in agreement with the higher thermal stability of calcified collagen fibrils compared with uncalcified ones. The decrease of collagen thermal stability upon decalification is paralleled by a decrease of the structural order of the collagen fibrils as indicated by small angle X-ray diffraction data. Decalcification down to about 40% wt of inorganic phase does not significantly alter the inorganic blocks that are regularly arranged inside the gap zone of the collagen. Further removal of inorganic phase down to about 15% wt provokes a variation of the intensity distribution of the small angle meridional reflections that can be ascribed to a reduction of the mean height of the inorganic blocks. At inorganic phase contents below 15% wt the gap region is more free to contract upon air drying as a result of the reduction of the mean length of the inorganic blocks.  相似文献   

4.
The wall of the egg case of the dogfish,Scyliorhinus canicula, contains a network-forming collagen assembled into a regular three-dimensional (3D) structure. It accomplishes supportive, protective and filtering functions for the embryo contained within it. The collagen molecules in the egg case are organized into a body-centred unit cell of dimensions (mean ± s.d.) (11.6 ± 1.0) nm X (11.6 ± 1.0) nm X (81.6 ± 3.2) nm, which belongs to the I422 space group. At a higher hierarchical level, the collagen molecules assemble into parallel arrays of fibrils, ca. 100 nm in diameter, which aggregate to form laminae ca. 0.5 μm thick. These laminae are organized into a plywood-like structure and account for 98% of the thickness of the wall of the egg case. X-ray diffraction patterns of the wall of the egg case were taken along mutually perpendicular directions, one being perpendicular to the surface of the egg case. Three different kinds of diffraction pattern were observed. One of the patterns was characteristic of an X-ray direction perpendicular to the laminae in the egg case (along the x-direction). The two other patterns were obtained with the X-rays directed parallel to the plane of the laminae, either along the capsule long axis (z) or perpendicular to this (y). These two patterns were observed interchangeably in either of the x- or y-directions depending on the specimen. The diffraction patterns were analysed and interpreted taking into consideration the 3D electron microscope data of the egg case. The results confirm and extend previous findings from transmission electron microscopy and low-angle X-ray diffraction and they suggest that there is only one major type of ordered collagen arrangement in the wall of the egg case.  相似文献   

5.
The structure and distribution of collagen fibres in Metridium senile mesoglea has been investigated using high and small angle X-ray diffraction techniques on conventional and synchrotron sources. The mesoglea collagen axial spacing appears very close to that of rat tail tendon, which is at variance with the values previously obtained from electron microscopic observations. The different intensity distribution of the small angle X-ray diffraction maxima recorded for mesoglea and rat tail tendon indicates a different distribution of electron density inside the repeating period. Furthermore the absence of the first order, the weak second order and the strong third and sixth orders in the patterns of wet and dry mesogleal collagen could explain that only a periodicity of 20–22 nm corresponding to one-third of the true axial period observed in the electron micrographs. The analysis of the reflections at 0.29 and 1.1–1.4 nm characteristics of the collagen molecular structure have been used to determine the distribution and orientation of the collagen fibres in unstretched and stretched samples  相似文献   

6.
The intermolecular space of reconstituted collagen fibrils   总被引:6,自引:0,他引:6  
The extent, geometry and heterogeneity of the intermolecular space of hydrated, purified and reconstituted steer skin collagen fibrils has been characterized. The extent of the space has been assessed experimentally by an X-ray diffraction method and a new physical chemical technique, and found to be 1.14 ml per gram collagen. A theoretical model relating the intermolecular space to X-ray diffraction parameters has been presented, and this suggests that the geometry of the intermolecular space arises from a near-hexagonal packing of the collagen molecules. On the basis of an assumed microfibrillar packing model and a geometric construction of the shape of a collagen molecule, the distribution of the space within reconstituted collagen fibrils has been characterized as follows: 0.13 ml of the intermolecular space/g collagen can be attributed to the helical groove of the collagen molecules per se and 1.01 ml/g is interstitial; 0.66 ml/g is present in the form of “pores” (hexagonally-closed packed spaces), whereas 0.48 ml/g is present in the form of “holes” (hexagonal volume defects); 0.73 ml/g of the intermolecular space is associated with a region of the collagen fibrils where holes are localized and 0.41 ml/g is attributable to the regions of the fibril in which pores only are present.  相似文献   

7.
Structural genomics discovery projects require ready access to both X-ray diffraction and NMR spectroscopy which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large multi acre synchrotron facilities for data collection. In this paper we report on the development and use of the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam.  相似文献   

8.
X-ray diffraction photographs of a nucleoprotein preparation from Escherichia coli show the A-type pattern of crystalline deoxyribonucleic acid (DNA). This suggests that a large part of the DNA is free from protein. In higher organisms DNA does not exist in this form but is closely bound to protein.  相似文献   

9.
The near-equatorial region of the medium-angle X-ray diffraction pattern from native rat tail tendon contains sharp reflections which indicate that the collagen molecules are arranged in a crystalline manner within the fibrils. A successful indexing of these reflections would indicate that crystallographic unit cell in the fibrils while the intesities of the reflections are determined by the arrangement of the collagen molecules within a unit cell. It is shown that the quasi-hexagonal model proposed by Hulmes and Miller1 with slight modifications accounts for the positions of the reflections [i.e. their (R, Z) values]. Previous models used mainly the R-values of the reflections published by Miller and Parry2. This model gives a better account of the R-values of the reflections than previous models and, in addition, accounts for the Z-values and the intensities of the reflections. This represents the determination of the three-dimensional structure of the collagen in a native animal tissue, rat tail tendon, to 1 nm resolution.  相似文献   

10.
To extend the practical applications of collagen, alternatives to mammalian sources are needed. In this study, acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted from the cuticle of Perinereis nuntia (Savigny), and their physicochemical features and structures were examined. The yields of ASC and PSC were 3.89% and 6.74%, respectively. The glycine contents of both collagens accounted for approximately one-third of the total amino acid residues, and the sum totals of proline and hydroxyproline in ASC and PSC were 212 and 214 residues/1000 residues, respectively. However, the proline hydroxylation rates of ASC and PSC were 84.0% and 83.6%, respectively. The maximum absorption peaks of both ASC and PSC were detected at 233 nm. Zeta potential studies indicated that ASC and PSC have a net zero charge at pH 4.89 and 4.95, respectively. Fourier-transform infrared spectroscopy, circular dichroism, and X-ray diffraction confirmed the triple helical structure of the collagen. The denaturation temperatures (Td) of ASC and PSC were 36.5 °C and 33 °C, respectively. Moreover, the collagens appeared to be loose, fibrous, and porous by scanning electron microscopy. These results suggested that collagen from the cuticle of Perinereis nuntia (Savigny) has potential commercial applications in the food, nutraceutical, and pharmaceutical industries.  相似文献   

11.
The distribution and orientation of collagen fibrils, and apatite crystals, in the scales of a bony fish (Leuciscus cephalus) were investigated by X-ray diffraction. The small-angle diffraction patterns obtained with a microfocus scanning setup from most of the examined areas exhibit a distribution of intensity of the collagen reflections according to five preferential orientations, at 36 degrees from one another. It is suggested that the peculiar small-angle X-ray diffraction pattern is due to a plywood arrangement of collagen fibrils in successive layers parallel to the surface of the scale. The fibrils are strictly aligned in each layer and the alignment rotates by 36 degrees in successive layers, according to a discontinuous twist that generates a symmetric plywood pattern. The large spread of the wide-angle reflections does not allow one to distinguish the five directions of orientation in the intensity distribution of the 002 reflection of apatite. However, the patterns recorded from the less ordered regions of the scales display two different orientations of the 002 reflection and allow one to infer a preferential distribution of the apatite crystals with their c-axes parallel to the collagen fibrils. Although much electron microscopic evidence of plywood arrangements in calcified, as well as uncalcified, tissues has been reported, these are the very first diffraction data which unambiguously confirm the presence of these peculiar structures and suggest that this kind of investigation represents a powerful tool with which to study plywood arrangements in biological tissues.  相似文献   

12.
A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T2) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T2 values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T2 values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 ± 0.02 for control strips to a maximum value of 0.31 ± 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils.  相似文献   

13.
The appearance in the electron microscope of mechanically-dispersed corneal collagen has been observed after positive staining with phosphotungstic acid and/or uranyl acetate and after negative staining with phosphotungstate ions. The distributions of positive stains (both cationic and anionic) were similar to those observed in other type I collagens (e.g. skin, tendon). A high correlation was found between charge density in the fibril and the distribution of charged amino acids predicted from the sequence of calf skin collagen. This correlation could be improved by including type III sequence data, suggesting the presence of 20% type III collagen within each fibril. Negative staining showed the usual collagen D-periodicity but without a clear gap/overlap structure. Detailed analysis revealed at least six sites where stain penetration was inhibited. Specific staining of glycosides using N,N,N′,N′-tetramethylethylenediamine(TEMED)-osmate suggested that these sites identify the covalent attachment of disaccharides to the collagen. Using synchroton X-ray diffraction from TEMED-osmate stained corneas we have determined the locations of the stain ions (and hence the glycosides) in the moist tissue. The results demonstrate that even though the detailed charge distribution and axial molecular packing in corneal collagen are similar to other type I collalgens, carbohydrate material, probably disaccharide, is attached at fairly regular intervals. This does not occur in other type I collagens. In particular, the presence of glycoside in the overlap region may play a role in producing the narrow uniform fibrils which are essential for the transparency of the cornea.  相似文献   

14.
The aim of this paper was to identify pre-slaughter factors that modify total and insoluble collagen contents in bovine muscle to construct a model of collagen dynamics. The meta-analyses were performed with primary data of total (n = 1165) and insoluble (n = 1145) collagen contents from INRA experiments obtained from different muscles in young bulls, cows and steers. According to both the bibliography and meta-analyses, total collagen content and solubility were greatly affected by the muscle (type). Moreover, the pattern of the evolution of collagen characteristics was similar among Longissimus, Semitendinosus and Triceps brachii muscles in young bulls. In cows, collagen contents in the Triceps brachii muscle had delayed dynamics compared with the other muscles. Collagen characteristics differed among breeds because of variation in the maturity of the breed. Similarly, according to the meta-analyses, total and insoluble collagen content evolutions with the degree of maturity (DOM; proportion of adult weight reached at slaughter) were different in dairy and rustic breeds from those of beef breeds, especially in bulls. Although the relationships between collagen content and DOM were quantified in different muscles and sexes, the precision of the fitted equations was not sufficient for prediction. Consequently, relying on the hypotheses raised by the meta-analysis and the literature, an approach to further develop a dynamic mechanistic model of soluble and insoluble collagen content is proposed.  相似文献   

15.
The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD). In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT) in the decorin (DCN) gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS), to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal.  相似文献   

16.
The smallest extrinsic polypeptide of the water-oxidizing complex (PsbQ) was extracted and purified from spinach (Spinacia oleracea) photosystem II (PSII) membranes. It was then crystallized in the presence of Zn2+ and its structure was determined by X-ray diffraction at 1.95-Å resolution using the multi-wavelength anomalous diffraction method, with the zinc as the anomalous scatterer. The crystal structure shows that the core of the protein is a four-helix bundle, whereas the amino-terminal portion, which possibly interacts with the photosystem core, is not visible in the crystal. The distribution of positive and negative charges on the protein surface might explain the ability of PsbQ to increase the binding of Cl and Ca2+ and make them available to PSII.  相似文献   

17.
The relationship between the rates of increase of corneal protein fractions and incorporation of labeled precursors has been examined during embryonic and early posthatching development of the chick corneal stroma. Non-collagen protein increased gradually from 9 through 20 days of incubation. Collagen accumulated approximately logarithmically through the 19th day, the most rapid rate occurring between 13 and 20 days of incubation. The rates at which labeled amino acids are incorporated into collagen in vivo and in vitro undergo marked changes during the last week of embryonic development, corresponding closely to the rate of collagen accumulation in vivo; whereas incorporation into non-collagen protein changes much less markedly. Changes in the rate of incorporation of precursors into collagen are not due to changes in the rate of conversion of collagen from the soluble to insoluble form, or to changes in the endogenous amino acid pool size. Chick embryo corneal stroma collagen turns over very slowly, if at all. Non-collagen protein turns over more rapidly. An increase in cell number, as indicated by DNA content, does not account for the increased rate of collagen synthesis between the 9th and 16th day of incubation. It is concluded that the observed changes in collagen synthesis reflect changing activities in the individual cornea fibroblasts. These activities are comparable in the intact tissue in vivo and in isolated corneas in vitro.  相似文献   

18.
Structural study of the calcifying collagen in turkey leg tendons   总被引:4,自引:0,他引:4  
The calcified turkey leg tendon represents a simple bone-like tissue that is ideally suited to analysis by diffraction methods. In this paper we report some structural studies of the tendon collagen in the uncalcified, fully calcified and partially calcified states. The low-angle meridional X-ray pattern from the uncalcified tendon is very similar to that of the rat tail tendon, and the resulting one-dimensional structure of the collagen fibril exhibits no feature that could be related to its eventual calcification. The structure of the fully calcified tendon, as determined by a combination of X-ray and neutron diffraction analyses, shows that the mineral is associated with the collagen at the level of the hole or gap region. In the calcifying tendon, increases in the amplitudes of the first and second X-ray meridional reflections are correlated with an increase in the mineral content of the collagen. On the basis of simple models, it is shown that this change in the pattern can be explained by a nucleation mechanism of calcification. It is concluded that when collagen becomes calcified the mineral penetrates throughout the fibril and is crystalline in the hole region but amorphous between the collagen molecules. The mechanism of calcification and the mechanical implications of the fully calcified structure are also discussed.  相似文献   

19.
Purification of suitable quantity of homogenous protein is very often the bottleneck in protein structural studies. Overexpression of a desired gene and attachment of enzymatically cleavable affinity tags to the protein of interest made a breakthrough in this field. Here we describe the structure of Galleria mellonella silk proteinase inhibitor 2 (GmSPI-2) determined both by X-ray diffraction and NMR spectroscopy methods. GmSPI-2 was purified using a new method consisting in non-enzymatic His-tag removal based on a highly specific peptide bond cleavage reaction assisted by Ni(II) ions. The X-ray crystal structure of GmSPI-2 was refined against diffraction data extending to 0.98 Å resolution measured at 100 K using synchrotron radiation. Anisotropic refinement with the removal of stereochemical restraints for the well-ordered parts of the structure converged with R factor of 10.57% and R free of 12.91%. The 3D structure of GmSPI-2 protein in solution was solved on the basis of 503 distance constraints, 10 hydrogen bonds and 26 torsion angle restraints. It exhibits good geometry and side-chain packing parameters. The models of the protein structure obtained by X-ray diffraction and NMR spectroscopy are very similar to each other and reveal the same β2αβ fold characteristic for Kazal-family serine proteinase inhibitors.  相似文献   

20.
With the use of highly coherent femtosecond X-ray pulses from a free-electron laser, it is possible to record protein nanocrystal diffraction patterns with far more information than is present in conventional crystallographic diffraction data. It has been suggested that diffraction phases may be retrieved from such data via iterative algorithms, without the use of a priori information and without restrictions on resolution. Here, we investigate the extension of this approach to nanocrystals with edge terminations that produce partial unit cells, and hence cannot be described by a common repeating unit cell. In this situation, the phase problem described in previous work must be reformulated. We demonstrate an approximate solution to this phase problem for crystals with random edge terminations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号