首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
  1. Details of aseptic culture of virus-free tomato seedlings usedin comparative in vivo and in vitro studies on protein synthesisare described.
  2. Developmental changes in the levels of DNA,RNA, protein andchlorophyll content of seedling cotyledonsand leaves were recorded,and are related to protein synthesis.
  3. Incorporation of isotopically labeled carbon into proteinwasfollowed both by photosynthetic uptake of 14CO2 and by theuptakeof 14C-amino acids through the roots.
  4. A marked stimulationby light of 14C uptake was observed, andthe higher rate of14C incorporation from 14CO2 than from 14C-aminoacids intothe protein fraction is discussed in relation tothe pathwaysof protein synthesis in tomato leaves, and alsowith regardto protein turnover.
1Present address: Dept. of Horticultural Science, Universityof Wisconsin, U.S.A.  相似文献   

2.
Dark fixation of 14CO2 was followed in potato disks under varyingsalt treatments at 0° C and 25° C. It is shown thatthe specific activity of the 14CO2 supplied is heavily dilutedby endogenously produced CO2 and that the apparently greaterfixation of 14CO2, at 0° C as compared with that at 25 °C is due to the lower respiration rate at 0° C, with consequentlyless dilution of the 14CO2. supplied. At 25° C organic acidformation in response to different salt treatments fulfils thecommon expectation, 14CO2 fixation increasing in the presenceof K2SO4 and decreasing in CaCl2 relative to that in KCl. Therole of organic acids in maintaining ionic balance within thecell at 25° C is thereby indicated but at 0° C organicacid adjustments did not follow the normal pattern. At 25°C but not at o° C increasing external concentration of KCIresulted in an increased level of 14CO2 fixation.  相似文献   

3.
  1. 1. Tartaric acid content in grapes gradually increased withripening and reached a plateau about 50 days after flowering.
  2. 2. Tartaric acid synthesis from 14C02 was predominant in anearly ripening stage. When the berries were exposed to 14CO28 days after flowering and examined two days later, 30% of thetotal 14C fixed was found in tartaric acid. Subsequently, apart of the tartaric acid decomposed, but the greater part remainedin the berries in a salt form. At the last stage of the ripeningprocess (82-100 days after flowering), some of the tartaratewas again converted to free acid. No 14CO2 was incorporatedinto tartaric acid when berries were exposed 61 days after flowering.
  3. 3. L(+)-Tartaric acid-l,4-14C fed to the berries was catabolizedto 14CO2. The ratio of radio activity recovered as 14 CO2 tothat fed was nearly constant throughout the ripening process.
  4. The cause of tartaric acid accumulation in grape berries isnot thought to be due to a lack of catabolizable enzymes, butto formation of an insoluble salt which is scarcely effectedby such enzymes.
(Received May 2, 1968; )  相似文献   

4.
  1. Several kinds of a-hydroxysulfonates, the bisulfite additioncompounds of aldehydes and ketones, were found to inhibit thephotosynthetic carbon dioxide fixation of the barley and wheatseedlings, tobacco leaf and Chlorella cells. Bisulfite additioncompounds of glyoxal, glyoxylate and benzaldehyde were moreeffective in this respect than those of formaldehyde and acetaldehyde.
  2. The presence of -hydroxysulfonate causes an increase in ratiosof :14CO2 incorporated in glycolate and alanine, and a decreasein incorporation in serine, malate, isocitrate and citrate.It was inferred that these changes are caused by the blockingof the formation of glyoxylate through inhibition of glycolicacid oxidase by the poison.
  3. A reaction scheme was proposedto account for the above-statedresults, and the bearing ofthese findings on the possible roleof glycolic acid oxidasein the photosynthetic carbon dioxidefixation and in the formationof amino and organic acids wasdiscussed.
(Received December 8, 1961; )  相似文献   

5.
  1. The capacity of light-enhanced dark fixation of 14CO2 from theambient atmosphere decayed following time-course characteristicsof a first-order reaction (half-life, 1–2 min). The levelof phosphoenolpyruvate in maize leaves under CO2-free air didnot decrease in the dark subsequent to preillumination. Theseresults indicate that phosphoenolpyruvate carboxylase is activatedin light and quickly inactivated in the following darkness.
  2. Removal of oxygen from the atmosphere did not exert any effecton the products of light-enhanced dark fixation of 14CO2 providedfrom the atmosphere, the major labeled compounds being malateand aspartate. This confirms that the transfer of carboxyl carbonof C4-acids to form 3-phosphoglycerate is light-dependent.
  3. WhenNaH14CO3 solution was vacuum-infiltrated through vasculartissuesof maize leaves, the main initial photosynthetic 14CO2fixationproducts were phosphate esters. This indicates thatby thistechnique, 14CO2 could be directly provided to the bundlesheathcells, and was fixed via the reductive pentose phosphatecycle.On the other hand, the main initial 14CO2-fixation productswere malate and aspartate even when 14CO2 was provided throughvascular tissues in the dark immediately following preillumination.The possible regulatory mechanisms underlying the above findingsare discussed.
1 This work was reported at the 4th International Congress onPhotosynthesis, Reading, September 1977. Request for reprintsshould be addressed to S. Miyachi, Institute of Applied Microbiology,University of Tokyo, Bunkyo-ku, Tokyo 113, Japan 2 Present address: Okinawa Branch of Tropical Agriculture ResearchCenter, Ishigaki-shi, Okinawa 907, Japan. (Received October 28, 1977; )  相似文献   

6.
  1. In the presence of NADP+ and Mg++, the bundle sheath strandsisolated from corn (Zea mays) leaves by cellulase treatmentsdecarboxylated malate in the light at an initial rate (200 µmoles/mgchl.hr), which was sufficient to account for photosyntheticCO2 fixation in intact leaves. This rate gradually slowed downand then stopped. The final level of the malate decarboxylatedwas approximately equal to the amount of NADP+ added.
  2. Rapidand continued decarboxylation of malate was observed whenNADP+,3-phosphoglyceric acid and ATP (and Mg++) were addedtogether.The addition of ADP instead of ATP showed a similareffect.Light did not show any effect on the malate decarboxylationin the presence of ATP or ADP.
  3. When malate was added to thebundle sheath strands in the presenceof exogenous NADP+ NADP+was rapidly reduced. The reductionstopped after 2 min when,73% of the added NADP+ was reduced.The further addition of3-phosphoglyceric acid and ATP broughtabout a decrease in theNADPH-level, which rose again to attaina new steady level.
  4. The transfer of radioactivity from (1-14C-3-phosphoglycericacid to dihydroxyacetone phosphate in the bundle sheath strandsin the presence of ATP and NADP+ was greatly enhanced by theaddition of malate.
  5. In the presence of ribose 5-phosphateand ATP, the rate of 14C-transferfrom (4-14C)-malate to theintermediates of the reductive pentosephosphate cycle was equalto that of 14CO2 fixation in the light.
All these results support the current view that in the bundlesheath cells of C4 plants belonging to the NADP-malic enzyme-group,the decarboxylation of malate is coupled to the fixation ofthe released CO2 and the reduction of 3-phosphoglyceric acidformed as a result of CO2 fixation. 1 Part of this research was reported at the 40th Annual Meetingof the Botanical Society of Japan Osaka, December, 1975. 3 Present address: Laboratory of Chemistry, Faculty of Medicine,Teikyo University, 359 Otsuka, Hachioji-City, Tokyo 173, Japan. (Received April 30, 1977; )  相似文献   

7.
  1. The effect of -hydroxy sulfonates and sulfite, inhibitors ofglycolate oxidase, on the photochemical reactions of spinachchloroplasts was studied. The photo reduction of ferricyanideand NADP was not affected by the poisons, whereas the photophosphorylationand 14CO2 fixation were inhibited.
  2. Glyoxylate was photoreducedby the chloroplasts in the presenceof PPNR and glyoxylate reductase,and this reduction was acceleratedby the addition of NADP.ATP formation accompanied with thereduction of glyoxylate bythe illuminated chloroplasts wasobserved. It is supposed thatglyoxylate oxidizes the photoreducedNADPH2 or PPNR and thusthe photophosphorylation is stimulated.
1A part of this paper was presented at the annual meeting ofAgricultural Society of Japan, in August, 1964. 2Present address: Radiation Center of Osaka Prefecture, Sakai,Osaka.  相似文献   

8.
Leaves of different ages from B. calycinum were exposed to 14CO2in light during day and night. The labelling pattern on thechromatogram differed with leaf age. Young leaves had similarpatterns to those of C3 plants during both day and night. Matureleaves showed high incorporation of 14C into C4 acids, especiallyat night. In contrast, no significant difference with leaf agewas observed in the pattern of dark 14CO2 fixation products.Study of the enzyme activity and the content of titratable acidat each leaf age suggested that high incorporation of 14C inC4 acids during the night was due to the simultaneous absorptionof CO2 by both enzymes RuDPcarboxylase and PEPcarboxylase. (Received November 24, 1977; )  相似文献   

9.
1. The effects of "carbonyl" reagents on the photosyntheticin-corporation of 14CO2 into the assimilation products of tobaccoand spinach leaves were studied. The presence of "carbonyl"reagents causes an increase in the ratio of 14CO2 incorporatedin glycine and a decrease in serine. The incorporation of 14Cfrom glycolate-1-14C and glycolaldehyde-2-14C into glycine andserine was also affected by "carbonyl" reagents, as in the caseof 14CO2-experiment. 2. The feeding experiments of glycine-1-14C and serine-1-14Cin the presence and in the absence of "carbonyl" reagents revealedthat these reagents inhibit the conversion of glycine to serine. 3. The results obtained above, together with the effects ofthiols on 14CO2 incorporation presented in this paper, supportthe assumption that glycine and serine are formed via glycolateand glyoxylate during photosynthesis in green plants. 4. Comparison of 14C incorporation in malate from 14CO2, glycolate-1-14C,glycine-1-14C and serine-1-14C in the presence and in the absenceof "carbonyl" reagents suggested the occurrence of the pathwayof the malate formation via glycolate and glyoxylate, not passingthrough glycine and serine, during photosynthesis. 1 A part of this paper was presented at the Symposium on "Nitrogenand Plant" by the Japanese Society of Plant Physiologists, inOctober, 1963 2 Present address: Radiation Center of Osaka Prefecture, Sakai,Osaka  相似文献   

10.
  1. In the early stage of CO2-fixation by Thiobacillus thiooxidans,which was incubated aerobically in the presence of sulfur, mostpart of the fixed carbon was found in the phosphate ester fraction.
  2. The fixation was inhibited by NaF, picolinic acid, PCMB, azide,dipyridyl, o-phenanthroline, monoiodoacetic acid, and arsenite,each in the concentration range where the sulfur oxidation wasnot affected strongly.
  3. The crude extract of this organismcould fix CO2 in the presenceof ATP, R-5-P and Mg++. Most partof the fixed carbon was foundin PGA.
  4. The crude extract showedthe CO2-fixation coupled with the H2S-oxidationin the presenceof ADP.
  5. An appreciable reduction of PGA could not be detectedin thepresence of reducing systems, involving TPNH and DPNH.
(Received March 6, 1962; )  相似文献   

11.
Oxygen enhanced photosynthetic 14CO2 fixation in Anacystis nidulanscells. Results obtained under different conditions revealedthe following properties of the oxygen enhancement:
  1. The enhancement was most significant at ca. 10% O2. Furtherincrease in oxygen concentration decreased the enhancing effect.The rate under 100% O2 was equivalent to or a little higherthan that under N2 gas.
  2. b) With the increase in CO2 concentration,the magnitude ofthe enhancing effect decreased. No oxygen enhancementwas observedwhen the CO2 concentration. was raised to 9,000ppm.
  3. c) The enhancement was observed only at high light intensities.No enhancement was observed when the rate of photosynthesiswas limited by light intensity.
  4. Ribulose 1,5-diphosphate (RuDP)carboxylase activity was demonstratedin the extract obtainedfrom A. nidulans cells. We also foundthat the RuDP carboxylaseactivity in this extract was competitivelyinhibited by oxygen.
  5. Based on the above-mentioned results, the possible mechanismunderlying the observed enhancing effect of oxygen was discussed.
(Received May 10, 1976; )  相似文献   

12.
Changes in growth and yield parameters, and 14CO2 and (U-14C)sucrose incorporation into the primary metabolic pool, and essentialoil have been investigated under Mn-deficiency and subsequentrecovery in Mentha piperita, grown in solution culture. UnderMn-deficiency, CO2 exchange rate, total chlorophyll, total assimilatoryarea, plant dry weight, and essential oil yield were significantlyreduced, whereas chlorophyll a/b ratio, leaf area ratio andleaf stem ratio significantly increased. In leaves of Mn-deficientplants, 14CO2 incorporation into the primary metabolic pool(ethanol-soluble and -insoluble) and essential oil were significantlylower, whereas (U-14C) sucrose incorporation into these componentswas significantly higher as compared to the control. Among theprimary metabolites, the label was maximum in sugars, followedby organic acids and amino acids. A higher label in these metaboliteswas, in general, observed in stems of Mn-deficient plants ascompared to the control. Mn-deficient plants supplied with completenutrient medium for 3 weeks exhibited partial recovery in growthand yield parameters, and essential oil biogenesis. Thus, underMn-deficiency and subsequent recovery, the levels of primaryphotosynthetic metabolites and their partitioning between leafand stem significantly influence essential oil biogenesis. Key words: Mentha piperita, Mn-stress, 14CO2 and [U-14C] sucrose incorporation, oil accumulation, primary photosynthetic metabolites  相似文献   

13.
Changes in photosynthetic carbon metabolism during the glucosebleaching of Chlorella protothecoides cells were investigatedusing NaH14CO3 as tracer. Several hours after incubating thegreen algal cells in the glucose medium in the dark, the ratesof 14C-incorporation into glucose polymers and sucrose decreasedand the incorporation into the lipid fraction (fatty acids)greatly increased. At this stage, the rate of photosynthetic14CO2 fixation and the chlorophyll content were practicallythe same as in the starting green cells. Afterwards, the photosyntheticcapacity and chlorophyll content continued to decrease throughoutthe experimental period. In contrast, when photosynthetic 14CO2fixation of green cells was carried out in the medium containingglucose, the rate of 14C-incorporation into glucose polymersincreased, though there was no change in the incorporationsinto sucrose and the lipid fraction. 1Part of this investigation was reported at the Conference "ComparativeBiochemistry and Biophysics of Photosynthesis" (Japan-U.S. CooperativeScience Program) held at Hakone, Japan in 1967. 2Present address: Faculty of Agriculture, Tamagawa University,Machida-shi, Tokyo, Japan. (Received June 10, 1974; )  相似文献   

14.
When [l-14C]-malonate was supplied to discs cut from matureleaves of Coffea arabica, 14CO2 was released (approximately12% of the total CO2 respired) and organic acids of the Krebscycle, uronic acids, sugars and amino acids became radioactive.There was no incorporation of MC into either lipids or phenoliccompounds. The formation of glucose from malonate has not beenobserved in other studies with plant tissues. The synthesisof labelled glucose together with an active pentose phosphatepathway that is stimulated by malonate explains the accumulationof radioactive phosphogluconate in the leaf discs. Tentativeproposals are made for pathways to account for the results obtained. Key words: Coffee leaves, Malonate metabolism, Pentose phosphate pathway  相似文献   

15.
In hydroponically grown Lycopersicon esculentum (L.) Mill. cv.F144 the site of NO3 reduction and assimilation withinthe plant was shifted from the shoot to the root by salinity.Uptake of NO3 from the root solution was strongly inhibitedby salinization. Consequently, NO3 concentrations inthe leaf, stem and root tissues as well as the nitrate reductaseactivities of the leaves were lower in salinized than in controlplants. Lower NO3, but higher reduced-N, concentrationswere observed in the xylem sap as a result of the enhanced participationof the root in NO3 reduction in salinized plants. Lowerstem K+ concentrations and leaf malate concentrations were foundin salinized compared to control plants which indicates reducedfunctioning of the K+–shuttle in the salinized plants. Incorporation of inorganic carbon by the root was determinedby supplying a pulse of NaH14CO3 followed by extraction andseparation of the labelled products on ion exchange resins.The rate of H14CO3 incorporation was c. 2-fold higherin control than in salinized plants. In salinized plants theproducts of H14CO3 incorporation within the roots werediverted into amino acids, while the control plants divertedrelatively more 14C into organic acids. Products of inorganiccarbon incorporation in the roots of salinized plants providean anaplerotic source of carbon for assimilation of reducedNO3 into amino acids, while in control plants the productswere predominantly organic acids as part of mechanisms to maintainionic balance in the cells and in the xylem sap. Key words: Tomato, nitrate, PEPc, respiration, salinity  相似文献   

16.
Methionine sulfoximine (MSO) greatly reduced the carbon dioxideexchange rate (CER) of detached wheat (Triticum aestivvm L.cv Roland) leaves in 21% O2, but only slightly reduced it in2% O2. A supply of 50 mM NH4Cl had little effect on the CERirrespective of the O2 concentration. A simultaneous additionof glutamine and MSO protected against the inhibition of photosynthesisto a considerable extent and caused the accumulation of moreNH3 than did the addition of MSO alone. Fixation of 14CO2 in wheat leaves was inhibited by MSO treatmentin 22% O2, and there was decreased incorporation of 14G intoamino acids and sugars and increased label into acid fractions.The addition of MSO and glutamine together eliminated the effectof MSO on the photosynthetic 14CO2 fixation pattern. NH4Cl stimulatedthe synthesis of amino acids from 14CO2, especially the synthesisof serine in 22% O2. Our observations show that factors other than the uncouplingof photophosphorylation by accumulated NH3 may be responsiblefor the early stage of photosynthesis inhibition by MSO underphotorespiratory conditions. 1Present address: Department of Agricultural Chemistry, KyushuUniversity, Fukuoka 812 Japan. 2Also at U.S. Department of Agriculture, Agricultural ResearchService, Urbana, Illionois 61801, U.S.A. (Received September 13, 1983; Accepted February 2, 1984)  相似文献   

17.
Dark CO2 fixation by Anabaena cylindrica was stimulated aboutthree-fold by the addition of NH4Cl to the cells. The 14CO2incorporation experiments showed that 14C is most rapidly incorporatedinto aspartate and then glutamine by adding NH4CI. Glutamineaccumulated predominantly after the addition of NH4Cl showingthat NH4 is incorporated into glutamine by glutamine synthetase.The stimulating effect of NH4Cl on CO2 fixation and amino acidsynthesis was suppressed by methionine sulfoximine, an inhibitorof glutamine synthetase. It was suggested that dark CO2 fixationwas stimulated by the action of glutamine synthesis which isenhanced by ammonia. (Received February 10, 1981; Accepted April 2, 1981)  相似文献   

18.
Experiments are described which examine the flux of photosyntheticassimilates from leaves to nodules of soyabean during N2 fixation.The first part, where the respiratory efflux of 14CO2 by noduleswas used as a means of assessing the import of labelled photosynthatefrom leaves, shows that most 14CO2 loss from nodulated rootsis due to the metabolic activity of nodules. Much less photosynthatewas imported by nodules if the metabolic activity associatedwith N2 fixation was inhibited by low O2 concentration. The second part describes the chemical fate of current photosynthateas it is utilized by nodules. Labelled material was detectedin nodules within c.15 min of supplying 14CO2 to the leaf. Thisrose to a maximum at c.70 min before declining by 85% withinthe following 4 h. Most (80%) 14carbon imported by nodules waseither lost as respiratory 14CO2 or re-exported as productsof N2 fixation. Ten per cent of imported carbon was found asstructural material and 10% as starch. Of the 14C soluble in ethanol, most was found in the neutralfraction (80% declining to 50% as sucrose) with smaller amountsas amino acids, organic acids (each category rising from 10%to 20%) and phosphate esters (<5%). Comparison of the distribution of 14C among amino acids, amidesand ureides in the nodules with that of xylem exudates indicatedthat selected compounds were exported from nodules. The 14Cdata indicate that c.80% of the nitrogen exported from noduleswas in the form of ureides (mainly allantoic acid) and only10–12% as amides. Key words: Nodules, 14C-photosynthate, Respiration, Carbon flux  相似文献   

19.
Labeling patterns of light and dark 14CO2-fixation in photoautotrophicallyand photomixotrophically cultured tobacco cells were determined.During short term 14CO2 fixation under light, malate(C3–C3carboxylation) was heavily labeled as were phosphoglyceric acidand sugar phosphates(C1–C5 carboxylation). Dark fixationcould not account for this high 14CO2 incorporation into theC4 compounds linked to PEPCase. Two carboxylation pathways linkedto the RuBPCase and PEPCase were indicated in 14CO2-fixationin light in photoautotrophically and photomixotrophically culturedcells. (Received October 25, 1979; )  相似文献   

20.
1) The wavelength effects on 14CO2-fixation by Chlorella cellswere studied, using monochromatic light of different light intensities. 2) Blue light (453 mµ) stimulated the incorporation of14C into aspartate, glutamate and malate. Red light (679 mµ),on the other hand, stimulated its incorporation into P-esters,free sugars and insoluble material. 3) The blue light effect was observed in the presence of CMUat concentrations completely suppressing ordinary photosyntheticCO2-fixation. 4) The blue light effect in the presence of CMU was inducedat very low intensities. At 453 mµ, 300 erg cm–2sec–1 was sufficient for complete saturation. 5) Time courses of 14C-incorporation into individual compoundswere investigated. Irrespective of the wavelength of the illuminatinglight, the first stable CO2-fixation product formed under weaklight (400–500 erg cm–2 sec–1) was citrulline.At higher light intensities (4,000–7,000 erg cm–2sec–1), PGA was the first stable CO2-fixation product.The incorporation of 14C into citrulline was not inhibited byCMU. 6) Experimental results indicate that both blue light-inducedincorporation of 14C into amino and organic acids and the incorporationof 14C into citrulline induced by low intensity light are operatedby a mechanism(s) independent of ordinary photosynthetic CO2-fixation.Possible effects of light regulating the carbon metabolism inalgal cells are discussed. (Received July 24, 1969; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号