首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated a lipolytic strain from palm fruit that was identified as a Rhizopus oryzae. Culture conditions were optimized and highest lipase production amounting to 120 U/ml was achieved after 4 days of cultivation. The extracellular lipase was purified 1200-fold by ammonium sulfate precipitation, sulphopropyl-Sepharose chromatography, Sephadex G 75 gel filtration and a second sulphopropyl-Sepharose chromatography. The specific activity of the purified enzyme was 8800 U/mg. The lipolytic enzyme has a molecular mass of 32 kDa by SDS-polyacrylamide gel electrophoresis and gel filtration. The enzyme exhibited a single band in active polyacrylamide gel electrophoresis and its isoelectric point was 7.6. Analysis of Rhizopus oryzae lipase by RP-HPLC confirmed the homogeneity of the enzyme preparation. Determination of the N-terminal sequence over 19 amino acid residues showed a high homology with lipases of the same genus. The optimum pH for enzyme activity was 7.5. Lipase was stable in the pH range from 4.5 to 7.5. The optimum temperature for lipase activity was 35 degrees C and about 65% of its activity was retained after incubation at 45 degrees C for 30 min. The lipolytic enzyme was inhibited by Triton X100, SDS, and metal ions such as Fe(3+), Cu(2+), Hg(2+) and Fe(2+). Lipase activity against triolein was enhanced by sodium cholate or taurocholate. The purified lipase had a preference for the hydrolysis of saturated fatty acid chains (C(8)-C(18)) and a 1, 3-position specificity. It showed a good stability in organic solvents and especially in long chain-fatty alcohol. The enzyme poorly hydrolyzed triacylglycerols containing n-3 polyunsaturated fatty acids, and appeared as a suitable biocatalyst for selective esterification of sardine free fatty acids with hexanol as substrate. About 76% of sardine free fatty acids were esterified after 30 h reaction whereas 90% of docosahexaenoic acid (DHA) was recovered in the unesterified fatty acids.  相似文献   

2.
The properties of a digestive lipase from the larval midgut of Pieris brassicae were studied by performing biochemical purification, characterization, effect of host plants, and extracted inhibitors. The purification process revealed a lipase with a purification fold of 42, recovery of 18.12%, molecular weight mass of 72.3 kDa, optimal pH at 11, and optimal temperature at 30°C, as well as stability at the optimal temperature for 12 h. The purified enzyme was inhibited by the ions Na(+) , Mn(+) , Fe(2+) , and Cu(2+) and the inhibitors SDS, EDTA, TTHA, and mercaptoethanol. Ca(2+) and Mg(2+) increased activity of the purified lipase, but urea, PMSF, EGTA, and DTC had no effect on enzymatic activity. Feeding of larvae on three host plants, Trepaeolus majus, Brassica olearcea var. alba, and B. olearcea var. rubra revealed the highest lipase activity on T. majus, but the two varieties of B. olearcea significantly decreased lipase activity. Extraction of a crude inhibitor from two varieties of B. olearcea demonstrated that the crude inhibitor inhibited the purified lipase up to 75%. The inhibitor changed the kinetic parameters of the enzyme by elevating the K(m) , as in competitive inhibition. The data suggest a possible role for plant lipase inhibitors in host plant resistance.  相似文献   

3.
The fungus Cunninghamella verticillata was selected from isolates of oil-mill waste as a potent lipase producer as determined by the Rhodamine-B plate method. The lipase was purified from C. verticillata by ammonium sulphate fractionation, ion exchange chromatography and gel filtration. The purified enzyme was formed from a monomeric protein with molecular masses of 49 and 42 kDa by SDS–PAGE and gel filtration, respectively. The optimum pH at 40 °C was 7.5 and the optimum temperature at pH 7.5 was 40 °C. The enzyme was stable between a pH range of 7.5 and 9.0 at 30 °C for 24 h. The enzyme activity was strongly inhibited by AgNO3, NiCl2, HgCl2, CdCl2 and EDTA. However, the presence of Ca2+, Mn2+ and Ba2+ ions enhanced the activity of the enzyme. The activity of purified lipase with respect to pH, temperature and salt concentration was optimized using a Box–Behnken design experiment. A polynomial regression model used in analysing this data, showed a significant lack of fitness. Therefore, quadratic terms were incorporated in the regression model through variables. Maximum lipase activity (100%) was observed with 2 mM CaCl2, (pH 7.5) at a temperature of 40 °C. Regression co-efficient correlation was calculated as 0.9956.  相似文献   

4.
A (Ca(2+)-Mg2+)-ATPase associated with rat liver lysosomal membranes was purified about 300-fold over the lysosomal membranes with a 7% recovery as determined from the pattern on polyacrylamide gel electrophoresis in the presence of SDS. The purification procedure included: preparation of lysosomal membranes, solubilization of the membrane with Triton X-100, WGA-Sepharose 6B, Con A-Sepharose, hydroxylapatite chromatography, and preparative polyacrylamide gel electrophoresis. The molecular mass, estimated by gel filtration with Sephacryl S-300 HR, was approximately 340 kDa, and SDS-polyacrylamide gel electrophoresis showed the enzyme to be composed of four identical subunits with an apparent molecular mass of 85 kDa. The isoelectric point of the purified enzyme was 3.6. The enzyme had a pH optimum of 4.5, a Km value for ATP of 0.17 mM and a Vmax of 71.4 mumol/min/mg protein at 37 degrees C. This enzyme hydrolyzed nucleotide triphosphates and ADP but did not act on p-nitrophenyl phosphate and AMP. The effects of Ca2+ and Mg2+ on the ATPase were not additive, thereby indicating that both Ca2+ and Mg(2+)-ATPase activities are manifested by the same enzyme. The (Ca(2+)-Mg2+)-ATPase differed from H(+)-ATPase in lysosomal membranes, since the enzyme was not inhibited by N-ethylmaleimide but was inhibited by vanadate. The effects of some other metal ions and compounds on this enzyme were also investigated. The N-terminal 18 residues of (Ca(2+)-Mg2+)-ATPase were determined.  相似文献   

5.
对产自乳酸菌Enterococcuze fecalis TN-9的蛋白酶,进行了硫酸铵沉淀,DEAE—Sephadex A-25以及DEAE Cellulofine A-500离子交换层析的3步纯化和特性研究。纯化酶Native PAGE显示1条蛋白带。SDSPAGE和凝胶层析分子量分别为30ku及69ku。纯化酶最适作用温度为30℃,最适作用PH为7.5~8.0,在pH6.0~9.5和45℃以下条件下稳定,在0℃下显示了6.1%的相对活性,60℃以上热处理完全失去酶活。该酶被EDTA-2Na,Hg^2+、Cu^2+、Ni^2+、Ag^2+、Co^2+及Pepstatin A不完全抑制。Zn^2+对蛋白酶具有明显的激活作用。纯化酶作用于偶氮酪蛋白的Km和Vmax分别为0.098%和72mg/(h·mg)。该酶为N末端VGSEVTLKNS的明胶酶(Gelatinase)的一种,性质属于低温蛋白酶。  相似文献   

6.
Phospholipase A(2) (PLA(2)) was purified to homogeneity from the supernatant fraction of rat testis homogenate. The purified 63-kDa enzyme did not require Ca(2+) ions for activity and exhibited both phosphatidic acid-preferring PLA(2) and monoacylglycerol lipase activities with a modest specificity toward unsaturated acyl chains. Anionic detergents enhanced these activities. Serine-modifying irreversible inhibitors, (p-amidinophenyl) methanesulfonyl fluoride and methylarachidonyl fluorophosphonate, inhibited both activities to a similar extent, indicating a single active site is involved in PLA(2) and lipase activities. The sequence of NH(2)-terminal 12 amino acids of purified enzyme was identical to that of a carboxylesterase from rat liver. The optimal pH for PLA(2) activity (around 5.5) differed from that for lipase activity (around 8.0). At pH 5.5 the enzyme also hydrolyzed bis(monoacylglycerol) phosphate, or lysobisphosphatidic acid (LBPA), that has been hitherto known as a secretory PLA(2)-resistant phospholipid and a late endosome marker. LBPA-enriched fractions were prepared from liver lysosome fractions of chloroquine-treated rats, treated with excess of pancreatic PLA(2), and then used for assaying LBPA-hydrolyzing activity. LBPA and the reaction products were identified by microbore normal phase high performance liquid chromatography/electrospray ionization ion-trap mass spectrometry. These enzymatic properties suggest that the enzyme can metabolize phosphatidic and lysobisphosphatidic acids in cellular acidic compartments.  相似文献   

7.
Lin YH  Huang AH 《Plant physiology》1984,76(3):719-722
The lipase from the scutella of corn (Zea mays) MO-17 seedlings was purified 272-fold to apparent homogeneity as evidenced by sodium dodecyl sulfate polyacrylamide gel electrophoresis and double immunodiffusion. The procedure involved isolation of the lipid bodies, extraction with diethyl ether, DE-52 ion exchange chromatography, and sucrose density gradient centrifugation. The enzyme had an approximate molecular weight of 270,000 daltons after sucrose density gradient centrifugation, and 65,000 daltons after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The lipase contained no cysteine and its molecular weight in sodium dodecyl sulfate was not reduced by β-mercaptoethanol. The amino acid composition as well as a biphasic partition using Triton X-114 revealed the enzyme to be a hydrophobic protein. Rabbit γ-globulin containing antibodies raised against the purified lipase formed one precipitin line with the lipase in a double diffusion test, and precipitated all the lipase activity from a solution.  相似文献   

8.
Hepatic lipase. Purification and characterization   总被引:5,自引:0,他引:5  
Hepatic lipase has been purified to homogeneity from rat liver homogenates. The purified enzyme exhibits a single band on SDS-polyacrylamide gel electrophoresis. The molecular size of the native hepatic lipase is 200 000, while on SDS-polyacrylamide gel electrophoresis the apparent minimum molecular weight of the enzyme is 53 000, suggesting that the active enzyme is composed of four subunits. The relationship between triacylglycerol, monoacylglycerol and phospholipid hydrolyzing activities of the purified rat liver enzyme was studied. All three activities had a pH optimum of 8.5. The maximal reaction rates obtained with triolein, monoolein and dipalmitoylphosphatidylcholine were 55 000, 66 000 and 2600 mumol fatty acid/mg per h with apparent Michaelis constant (Km) values of 0.4, 0.25 and 1.0 mM, respectively. Hydrolysis of triolein and monoolein probably takes place at the same site on the enzyme molecule, since competitive inhibition between these two substrates was observed, and a similar loss of hydrolytic activity occurred in the presence of diisopropylfluorophosphate. Addition of apolipoproteins C-II and C-I had no effect on the hydrolytic activity of the enzyme with the three substrates tested. However, the triacylglycerol hydrolyzing activity was inhibited by the addition of apolipoprotein C-III. Monospecific antiserum to the pure hepatic lipase has been raised in a rabbit.  相似文献   

9.
酸性α-淀粉酶的分离纯化与酶学性质研究   总被引:1,自引:0,他引:1  
纯化了枯草芽胞杆菌xm-1菌株酸性α-淀粉酶,并对其酶学性质进行了研究。通过硫酸铵沉淀和Sephadex G-75凝胶层析将酸性α-淀粉酶粗酶液纯化了32.5倍,活力回收率为10.0%。酶性质测定结果表明,该酸性α-淀粉酶分子量约为60kD,最适反应温度为45℃、最适作用pH5.0,该酶在pH3.4-6.0下稳定,高温耐受性差。Cu2+、Zn2+、EDTA对酶有不同程度的抑制作用,Ca2+和Mn2+对酶具有较强的激活作用。  相似文献   

10.
Overexpression and characterization of a lipase from Bacillus subtilis   总被引:5,自引:0,他引:5  
A novel plasmid, pBSR2, was constructed by incorporating a strong lipase promoter and a terminator into the original pBD64. A mature lipase gene from Bacillus subtilis strain IFFI10210, an existing strain for lipase expression, was cloned into the plasmid pBSR2 and transformed into B. subtilis A.S.1.1655. Thus, an overexpression strain, BSL2, was obtained. The yield of lipase is about 8.6 mg protein/g of wet weight of cell mass and 100-fold higher than that in B. subtilis strain IFFI10210. The recombinant lipase was purified in a three-step procedure involving ammonium sulfate fractionation, ion exchange, and gel filtration chromatography. Characterizations of the purified enzyme revealed a molecular mass of 24 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, maximum activity at 43 degrees C and pH 8.5 for hydrolysis of p-nitrophenyl caprylate. The values of Km and Vm were found to be 0.37 mM and 303 micromol mg-1 min-1, respectively. The substrate specificity study showed that p-nitrophenyl caprylate is a preference of the enzyme. The metal ions Ca2+, K+, and Mg2+ can activate the lipase, whereas Fe2+, Cu2+, and Co2+ inhibited it. The activity of the lipase can be increased about 48% by sodium taurocholate at the concentration of 7 mM and inhibited at concentrations over 10 mM.  相似文献   

11.
Malate enzyme (L-malate: NADP+ oxidoreductase oxaloacetate decarboxylating, EC 1.1.1.40) from bass liver mitochondria was purified to over 90% of homogeneity by gel filtration, affinity and ion exchange chromatographies. The apparent molecular weight estimated by gel filtration was 316,000. Analysis of the enzyme on sodium dodecylsulphate-polyacrylamide disc gel electrophoresis was shown to be a tetramere protein. The enzyme required bivalent cations for catalysis, (Mn2+ or Mg2+) and displayed a narrow pH optimum (8.4-8.6 for Tris-HCl buffer) and was inactivated by p-chloromercuribenzoate. The double reciprocal initial velocity plots of both of the substrates, NADP and malate, were linear and intercepting at a point that suggests a sequential mechanism. Product inhibition studies with NADP and malate as variable substrate are consistent with an ordered Bi-Ter mechanism.  相似文献   

12.
Isolation of Ca2+, Mg2+-dependent nuclease from calf thymus chromatin   总被引:1,自引:0,他引:1  
Ca2+,Mg2+-dependent nuclease was isolated from calf thymus chromatin by stepwise chromatography on DEAE-Sepharose, CM-Sephadex and DNA-Sepharose. The enzyme was purified more than 700-fold. SDS-PAGE electrophoresis revealed one protein band possessing an enzymatic activity. The molecular mass of the nuclease as determined by gel filtration is 25700 Da, that determined by 12% SDS polyacrylamide gel electrophoresis is 28,000 Da. In the presence of various ions the enzyme activity decreases in the following order: (Ca2+ + Mn2+) greater than (Ca2+ + Mg2+) greater than Mn2+; the pH optimum is at 8.0. In media with Mg2+, Ca2+, Co2+ and Zn2+ the nuclease is inactive. Some other properties of the enzyme are described.  相似文献   

13.
A thermophilic microorganism, Bacillus thermoleovorans ID-1, isolated from hot springs in Indonesia, showed extracellular lipase activity and high growth rates on lipid substrates at elevated temperatures. On olive oil (1.5%, w/v) as the sole carbon source, the isolate ID-1 grew very rapidly at 65 degrees C with its specific growth rate (2.50 h(-1)) and its lipase activity reached the maximum value of 520 U l(-1) during the late exponential phase and then decreased. In addition to this, isolate ID-1 could grow on a variety of lipid substrates such as oils (olive oil, soybean oil and mineral oil), triglycerides (triolein, tributyrin) and emulsifiers (Tween 20, 40). The excreted lipase of ID-1 was purified 223-fold to homogeneity by ammonium sulfate precipitation, DEAE-Sephacel ion-exchange chromatography and Sephacryl S-200 gel filtration chromatography. As a result, the relative molecular mass of the lipase was determined to be 34 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed optimal activity at 70-75 degrees C and pH 7.5 and exhibited 50% of its original activity after 1 h incubation at 60 degrees C and 30 min at 70 degrees C and its catalytic function was activated in the presence of Ca(2+) or Zn(2+).  相似文献   

14.
During our screening of lipolytic fungus which may play a role in the acidification of palm oil, we have recently isolated a Mucor sp strain. Culture conditions were optimized and the highest lipase production amounting to 57 U/ml was achieved after 6 days of cultivation. The extracellular lipase was purified 1050-fold by ammonium sulfate precipitation, carboxymethyl–sephadex chromatography and Sephadex G75 gel filtration to a final specific activity of 6600 IU/mg. The molecular weight of the homogenous lipase was determined about 42 kDa by gel filtration and SDS–polyacrylamide gel electrophoresis. The purified lipase was determined as a glycoprotein with a pI of 6.2. The Nt sequence was determined as AspGluIleGluThrValGlyXPheThrMetAspLeuProProAsnProPro and showed no homology with the sequences of the known lipases suggesting that the enzyme may be a new lipase. The purified lipase hydrolyzed both synthetic and natural triglycerides with the optimal activity recorded on trioctanoin and sunflower oil, respectively. Its activity was strongly inhibited by Triton X-100 and SDS. Metal ions such as Fe3+, Fe2+ and Hg2+ also decreased the lipase activity.  相似文献   

15.
The activity of liver lipase, an enzyme that can be released from the liver by heparin, varies under several hormonal conditions. The site(s) at which regulation of the enzyme activity may occur was investigated in vitro. As a model, rats were used which had been treated with a corticotrophin analogue, to induce hypercortisolism, a condition in which liver lipase activity is lowered. Lipases isolated from heparin-containing perfusates of livers from ACTH or control rats were identical with respect to heat stability and specific activity as determined by immunotitration and binding to isolated non-parenchymal liver cells, indicating that the enzyme structure was not affected by the treatment. The secretion of liver lipase by isolated parenchymal liver cells was studied. During incubation of parenchymal cells derived from ACTH rats, less enzyme activity was found to be secreted when compared with hepatocytes isolated from control rats (ACTH rats, 2.30 +/- 0.2 mU/10(6) cells; control rats, 3.3 +/- 0.3 mU/10(6) cells). Liver lipase partially purified from control rats could be bound specifically to saturation by non-parenchymal cells, isolated from ACTH or control rats. Non-parenchymal cells from ACTH rats bound less lipase activity (29 mU/mg cell protein) than cells from control rats (50 mU/mg cell protein). This reduction in binding capacity seems to be due to a diminished number of binding sites, since the affinity based on Scatchard analysis and half-maximal binding was not different. These results suggest that the lowered liver lipase activity found during hypercortisolism may be due to an impaired synthesis and/or secretion of the enzyme by the parenchymal cells and to a reduced binding capacity of the non-parenchymal cells for liver lipase.  相似文献   

16.
A new form of cytoplasmic glucose-6-phosphate dehydrogenase (E.C.1.1.1.49) was purified from rat liver by protamine sulfate precipitation, ammonium sulfate fractionation, ion exchange chromatography with diethylaminoethyl cellulose, and affinity chromatography with Cibacron blue agarose and NADP agarose. This form of the enzyme has a specific activity of over 600 units/mg of protein and gives essentially a single band by polyacrylamide gel electrophoresis. The form of the enzyme isolated by this purification method is 3 times more active than the form purified from liver by previously reported procedures. The relative mass of this pure glucose-6-phosphate dehydrogenase enzyme was determined by disc gel electrophoresis to be 269,000. This high activity glucose-6-phosphate dehydrogenase enzyme, after inactivation by reaction with palmityl-CoA, was no longer precipitated by specific rabbit and goat antisera to this purified enzyme. Thus, the possibility still exists that starved fat-refed animals contain glucose-6-phosphate dehydrogenase (G6PD) enzyme protein in an inactivated form no longer detectable by either enzyme activity or immunoprecipitation.  相似文献   

17.
Extracellular thermostable lipase produced by the thermophilic Bacillus stearothermophilus MC 7 was purified to 19.25-fold with 10.2% recovery. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was shown to be 62 500 Da. The purified enzyme expressed maximum activity at 75–80 °C and its half life was 30 min at 70 °C. The Km and Vmax were calculated to be, respectively, 0.33 mM and 188 μM min−1 mg−1 with p-nitrophenyl palmitate (pNPP) as a substrate. Enzyme activity was inhibited by divalent ions of heavy metals, thiol and serine inhibitors, whereas calcium ion stimulated its activity. The most advantageous method for immobilization was found to be ionic binding to DEAE Cellulose. The enzyme was able to hydrolyze both soluble and insoluble emulsified substrates and was classified as a lipase, expressing some esterase activity as well.  相似文献   

18.
A bacteriolytic enzyme obtained from the culture fluid of Staphylococcus aureus FDA 209P was purified to homogeneity utilizing dye-ligand affinity column chromatography, hydrophobic interaction high pressure liquid chromatography (HPLC) and hydroxyapatite HPLC. Subsequent characterizations indicated that the purified enzyme acted as endo-beta-N-acetylglucosaminidase. The molecular weight determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 51,000 and the isoelectric point was higher than 10. The optimum pH for the enzyme activity on whole cells of Micrococcus luteus as a substrate was 8.0. Some heavy metal cations (Cu2+ and Zn2+) inhibited the enzyme activity at a concentration of 0.1 mM and others (Ba2+, Mg2+ and Co2+) showed a stimulating effect at a concentration of 1 mM.  相似文献   

19.
1. Lipase produced by a mold, Mucor javanicus, was purified about 180-fold from the ethanol precipitate of the culture filtrate. Purification was achieved by acid precipitation followed by gel filtrations on Sephadex G-200 (at low ionic strength) and Sephadex G-75 (at a high ionic strength). The purified enzyme preparation showed unusual behavior on polyacrylamide gel electrophoresis. The molecular weight was estimated to be 21 000. The enzyme had a positional specificity towards the position 1 and 3 of triacylglycerols. 2. Lipase in the crude preparation takes an aggregated form. aggregated form was achieved by raising the ionic strength of the medium. 3. The purified lipase preparation from Mucor javanicus exhibits phospholipase A1 activity, hydrolyzing the carboxyl ester at the 1-position of phosphatidylcholine. This activity seems to be due to the action of the lipase itself and not due to any other specific phospholipases.  相似文献   

20.
Rhodanese was isolated and purified from the cytosolic fraction of liver tissue homogenate of the fruit bat, Eidolon helvum, by using ammonium sulphate precipitation and CM-Sephadex C-50 ion exchange chromatography. The specific activity was increased 130-fold with a 53% recovery. The K(m) values for KCN and Na(2)S(2)O(3) as substrates were 13.5 +/- 2.2mM and 19.5 +/- 0.7 mM, respectively. The apparent molecular weight was estimated by gel filtration on a Sephadex G-100 column to be 36,000 Da. The optimal activity was found at a high pH (pH 9.0) and the temperature optimum was 35 degrees C. An Arrhenius plot of the heat stability data consisted of two linear segments with a break occurring at 35 degrees C. The apparent activation energy values from these slopes were 11.5 kcal/mol and 76.6 kcal/mol. Inhibition studies on the enzyme with a number of cations showed that Mg(2+), Mn(2+), Ca(2+), and Co(2+) did not affect the activity of the enzyme, but Hg(2+) and Ba(2+) inhibited the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号