首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introgression and incomplete lineage sorting (ILS) are two of the main sources of gene‐tree incongruence; both can confound the assessment of phylogenetic relationships among closely related species. The Triatoma phyllosoma species group is a clade of partially co‐distributed and cross‐fertile Chagas disease vectors. Despite previous efforts, the phylogeny of this group remains unresolved, largely because of substantial gene‐tree incongruence. Here, we sequentially address introgression and ILS to provide a robust phylogenetic hypothesis for the T. phyllosoma species group. To identify likely instances of introgression prior to molecular scrutiny, we assessed biogeographic data and information on fertility of inter‐specific crosses. We first derived a few explicit hybridization hypotheses by considering the degree of spatial overlap within each species pair. Then, we assessed the plausibility of these hypotheses in the light of each species pair's cross‐fertility. Using this contextual information, we evaluated mito‐nuclear (cyt b, ITS‐2) gene‐tree incongruence and found evidence suggesting introgression within two species pairs. Finally, we modeled ILS using a Bayesian multispecies coalescent approach and either (a) a “complete” dataset with all the specimens in our sample, or (b) a “filtered” dataset without putatively introgressed specimens. The “filtered tree” had higher posterior‐probability support, as well as more plausible topology and divergence times, than the “complete tree.” Detecting and filtering out introgression and modeling ILS allowed us to derive an improved phylogenetic hypothesis for the T. phyllosoma species group. Our results illustrate how biogeographic and ecological‐reproductive contextual information can help clarify the systematics and evolution of recently diverged taxa prone to introgression and ILS.  相似文献   

2.
Genealogical discordance, or when different genes tell distinct stories although they evolved under a shared history, often emerges from either coalescent stochasticity or introgression. In this study, we present a strong case of mito‐nuclear genealogical discordance in the Australian rainforest lizard species complex of Saproscincus basiliscus and S. lewisi. One of the lineages that comprises this complex, the Southern S. basiliscus lineage, is deeply divergent at the mitochondrial genome but shows markedly less divergence at the nuclear genome. By placing our results in a comparative context and reconstructing the lineages' demography via multilocus and coalescent‐based approximate Bayesian computation methods, we test hypotheses for how coalescent variance and introgression contribute to this pattern. These analyses suggest that the observed genealogical discordance likely results from introgression. Further, to generate such strong discordance, introgression probably acted in concert with other factors promoting asymmetric gene flow between the mitochondrial and nuclear genomes, such as selection or sex‐biased dispersal. This study offers a framework for testing sources of genealogical discordance and suggests that historical introgression can be an important force shaping the genetic diversity of species and their populations.  相似文献   

3.
Phylogenomics has largely succeeded in its aim of accurately inferring species trees, even when there are high levels of discordance among individual gene trees. These resolved species trees can be used to ask many questions about trait evolution, including the direction of change and number of times traits have evolved. However, the mapping of traits onto trees generally uses only a single representation of the species tree, ignoring variation in the gene trees used to construct it. Recognizing that genes underlie traits, these results imply that many traits follow topologies that are discordant with the species topology. As a consequence, standard methods for character mapping will incorrectly infer the number of times a trait has evolved. This phenomenon, dubbed “hemiplasy,” poses many problems in analyses of character evolution. Here we outline these problems, explaining where and when they are likely to occur. We offer several ways in which the possible presence of hemiplasy can be diagnosed, and discuss multiple approaches to dealing with the problems presented by underlying gene tree discordance when carrying out character mapping. Finally, we discuss the implications of hemiplasy for general phylogenetic inference, including the possible drawbacks of the widespread push for “resolved” species trees.  相似文献   

4.
Genetic and phenotypic mosaics, in which various phenotypes and different genomic regions show discordant patterns of species or population divergence, offer unique opportunities to study the role of ancestral and introgressed genetic variation in phenotypic evolution. Here, we investigated the evolution of discordant phenotypic and genetic divergence in a monophyletic clade of four songbird taxa—pied wheatear (O. pleschanka), Cyprus wheatear (Oenanthe cypriaca), and western and eastern subspecies of black‐eared wheatear (O. h. hispanica and O. h. melanoleuca). Phenotypically, black back and neck sides distinguish pied and Cyprus wheatears from the white‐backed/necked black‐eared wheatears. Meanwhile, mitochondrial variation only distinguishes western black‐eared wheatear. In the absence of nuclear genetic data, and given frequent hybridization among eastern black‐eared and pied wheatear, it remains unclear whether introgression is responsible for discordance between mitochondrial divergence patterns and phenotypic similarities, or whether plumage coloration evolved in parallel. Multispecies coalescent analyses of about 20,000 SNPs obtained from RAD data mapped to a draft genome assembly resolve the species tree, provide evidence for the parallel evolution of colour phenotypes and establish western and eastern black‐eared wheatears as independent taxa that should be recognized as full species. The presence of the entire admixture spectrum in the Iranian hybrid zone and the detection of footprints of introgression from pied into eastern black‐eared wheatear beyond the hybrid zone despite strong geographic structure of ancestry proportions furthermore suggest a potential role for introgression in parallel plumage colour evolution. Our results support the importance of standing heterospecific and/or ancestral variation in phenotypic evolution.  相似文献   

5.
6.
How variation in the genome translates into biological diversity and new species originate has endured as the mystery of mysteries in evolutionary biology. African cichlid fishes are prime model systems to address speciation‐related questions for their remarkable taxonomic and phenotypic diversity, and the possible role of gene flow in this process. Here, we capitalize on genome sequencing and phylogenomic analyses to address the relative impacts of incomplete lineage sorting, introgression and hybrid speciation in the Neolamprologus savoryi‐complex (the ‘Princess cichlids’) from Lake Tanganyika. We present a time‐calibrated species tree based on whole‐genome sequences and provide strong evidence for incomplete lineage sorting in the early phases of diversification and multiple introgression events affecting different stages. Importantly, we find that the Neolamprologus chromosomes show centre‐to‐periphery biases in nucleotide diversity, sequence divergence, GC content, incomplete lineage sorting and rates of introgression, which are likely modulated by recombination density and linked selection. The detection of heterogeneous genomic landscapes has strong implications on the genomic mechanisms involved in speciation. Collinear chromosomal regions can be protected from gene flow and harbour incompatibility genes if they reside in lowly recombining regions, and coupling can evolve between nonphysically linked genomic regions (chromosome centres in particular). Simultaneously, higher recombination towards chromosome peripheries makes these more dynamic, evolvable regions where adaptation polymorphisms have a fertile ground. Hence, differences in genome architecture could explain the levels of taxonomic and phenotypic diversity seen in taxa with collinear genomes and might have contributed to the spectacular cichlid diversity observed today.  相似文献   

7.
Covariation among traits can modify the evolutionary trajectory of complex structures. This process is thought to operate at a microevolutionary scale, but its long‐term effects remain controversial because trait covariation can itself evolve. Flower morphology, and particularly floral trait (co)variation, has been envisioned as the product of pollinator‐mediated selection. Available evidence suggests that major changes in pollinator assemblages may affect the joint expression of floral traits and their phenotypic integration. We expect species within a monophyletic lineage sharing the same pollinator type will show not only similarity in trait means but also similar phenotypic variance‐covariance structures. Here, we tested this expectation using eighteen Salvia species pollinated either by bees or by hummingbirds. Our findings indicated a nonsignificant multivariate phylogenetic signal and a decoupling between means and variance‐covariance phenotypic matrices of floral traits during the evolution to hummingbird pollination. Mean trait value analyses revealed significant differences between bee‐ and hummingbird‐pollinated Salvia species although fewer differences were detected in the covariance structure between groups. Variance‐covariance matrices were much more similar among bee‐ than hummingbird‐pollinated species. This pattern is consistent with the expectation that, unlike hummingbirds, bees physically manipulate the flower, presumably exerting stronger selection pressures favouring morphological convergence among species. Overall, we conclude that the evolution of hummingbird pollination proceeded through different independent transitions. Thus, although the evolution of hummingbird pollination led to a new phenotypic optimum, the process involved the diversification of the covariance structure.  相似文献   

8.
Distinct genetic markers should show similar patterns of differentiation between species reflecting their common evolutionary histories, yet there are increasing examples of differences in the biogeographic distribution of species‐specific nuclear (nuDNA) and mitochondrial DNA (mtDNA) variants within and between species. Identifying the evolutionary processes that underlie these anomalous patterns of genetic differentiation is an important goal. Here, we analyse the putative mitonuclear discordance observed between sister species of mole salamanders (Ambystoma barbouri and A. texanum) in which A. barbouri‐specific mtDNA is found in animals located within the range of A. texanum. We test three hypotheses for this discordance (undetected range expansion, mtDNA introgression, and hybridization) using nuDNA and mtDNA data analysed with methods that varied in the parameters estimated and the timescales measured. Results from a Bayesian clustering technique (structure ), bidirectional estimates of gene flow (migrate ‐n and IMa2) and phylogeny‐based methods (*beast , buck y) all support the conclusion that the discordance is due to geographically restricted mtDNA introgression from A. barbouri into A. texanum. Limited data on species‐specific tooth morphology match this conclusion. Significant differences in environmental conditions exist between sites where A. texanum with and without A. barbouri‐like mtDNA occur, suggesting a possible role for selection in the process of introgression. Overall, our study provides a general example of the value of using complimentary analyses to make inferences of the directionality, timescale, and source of mtDNA introgression in animals.  相似文献   

9.
The parallel evolution of phenotypes or traits within or between species provides important insight into the basic mechanisms of evolution. Genetic and genomic advances have allowed investigations into the genetic underpinnings of parallel evolution and the independent evolution of similar traits in sympatric species. Parallel evolution may best be exemplified among species where multiple genetic lineages, descended from a common ancestor, colonized analogous environmental niches, and converged on a genotypic or phenotypic trait. Modern North American caribou (Rangifer tarandus) originated from three ancestral sources separated during the Last Glacial Maximum (LGM): the Beringian–Eurasian lineage (BEL), the North American lineage (NAL), and the High Arctic lineage (HAL). Historical introgression between the NAL and the BEL has been found throughout Ontario and eastern Manitoba. In this study, we first characterized the functional differentiation in the cytochrome‐b (cytB) gene by identifying nonsynonymous changes. Second, the caribou lineages were used as a direct means to assess site‐specific parallel changes among lineages. There was greater functional diversity within the NAL despite the BEL having greater neutral diversity. The patterns of amino acid substitutions occurring within different lineages supported the parallel evolution of cytB amino acid substitutions suggesting different selective pressures among lineages. This study highlights the independent evolution of identical amino acid substitutions within a wide‐ranging mammal species that have diversified from different ancestral haplogroups and where ecological niches can invoke parallel evolution.  相似文献   

10.
Hybridization and introgression have important consequences in evolution, such as increasing the genetic diversity and adaptive potential of a species. One of their most conspicuous footprints is discordance among gene trees or between genes and phenotypes. However, most studies that report introgression fail to disprove the null hypothesis that genetic incongruence may result from stochastic sorting of ancestral allelic polymorphisms. In the case of ancient introgression, these two processes may be especially difficult to distinguish topologically, but they make different predictions about the patterns of coalescence among loci. Here we apply three methods, molecular dating, multispecies coalescent models, and gene tree simulation under coalescence, to compare these two hypotheses that explain the polyphyletic mtDNA of the butterfly peacock bass, Cichla orinocensis. In comparison with a species tree based on 20 unlinked nuclear loci, we determined that mtDNA divergences were too recent to be explained by ancestral polymorphism. Similarly, coalescent species tree branches were significantly shorter when putative introgressed mtDNA was incorporated, and simulations showed the mtDNA topology to be unlikely under lineage sorting only. We conclude that introgression approximately 1.5 million years ago resulted in capture by C. orinocensis of an mtDNA lineage ancestral to the modern subspecies C. oc. monoculus.  相似文献   

11.
Every organism on Earth must cope with a multitude of species interactions both directly and indirectly throughout its life cycle. However, how selection from multiple species occupying different trophic levels affects diffuse mutualisms has received little attention. As a result, how a given species amalgamates the combined effects of selection from multiple mutualists and antagonists to enhance its own fitness remains little understood. We investigated how multispecies interactions (frugivorous birds, ants, fruit flies and parasitoid wasps) generate selection on fruit traits in a seed dispersal mutualism. We used structural equation models to assess whether seed dispersers (frugivorous birds and ants) exerted phenotypic selection on fruit and seed traits in the spiny hackberry (Celtis ehrenbergiana), a fleshy‐fruited tree, and how these selection regimes were influenced by fruit fly infestation and wasp parasitoidism levels. Birds exerted negative correlational selection on the combination of fruit crop size and mean seed weight, favouring either large crops with small seeds or small crops with large seeds. Parasitoids selected plants with higher fruit fly infestation levels, and fruit flies exerted positive directional selection on fruit size, which was positively correlated with seed weight. Therefore, higher parasitoidism indirectly correlated with higher plant fitness through increased bird fruit removal. In addition, ants exerted negative directional selection on mean seed weight. Our results show that strong selection on phenotypic traits may still arise in perceived diffuse species interactions. Overall, we emphasize the need to consider diverse direct and indirect partners to achieve a better understanding of the mechanisms driving phenotypic trait evolution in multispecies interactions.  相似文献   

12.
Trait evolution among a set of species—a central theme in evolutionary biology—has long been understood and analyzed with respect to a species tree. However, the field of phylogenomics, which has been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree incongruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states are incongruent with the branching patterns in the species tree, the same state could have arisen independently in different species (homoplasy) or followed the branching patterns of gene trees, incongruent with the species tree (hemiplasy). Another evolutionary process whose extent and significance are better revealed by phylogenomic studies is gene flow between different species. In this work, we present a phylogenomic method for assessing the role of hybridization and introgression in the evolution of polymorphic or monomorphic binary traits. We apply the method to simulated evolutionary scenarios to demonstrate the interplay between the parameters of the evolutionary history and the role of introgression in a binary trait’s evolution (which we call xenoplasy). Very importantly, we demonstrate, including on a biological data set, that inferring a species tree and using it for trait evolution analysis in the presence of gene flow could lead to misleading hypotheses about trait evolution.  相似文献   

13.
Cyrtandra (Gesneriaceae) is a genus of flowering plants with over 800 species distributed throughout Southeast Asia and the Pacific Islands. On the Hawaiian Islands, 60 named species and over 89 putative hybrids exist, most of which are identified on the basis of morphology. Despite many previous studies on the Hawaiian Cyrtandra lineage, questions regarding the reconciliation of morphology and genetics remain, many of which can be attributed to the relatively young age and evidence of hybridization between species. We utilized targeted enrichment, high‐throughput sequencing, and modern phylogenomics tools to test 31 Hawaiian Cyrtandra samples (22 species, two putative hybrids, four species with two samples each, one species with four samples) and two outgroups for species relationships and hybridization in the presence of incomplete lineage sorting (ILS). Both concatenated and species‐tree methods were used to reconstruct species relationships, and network analyses were conducted to test for hybridization. We expected to see high levels of ILS and putative hybrids intermediate to their parent species. Phylogenies reconstructed from the concatenated and species‐tree methods were highly incongruent, most likely due to high levels of incomplete lineage sorting. Network analyses inferred gene flow within this lineage, but not always between taxa that we expected. Multiple hybridizations were inferred, but many were on deeper branches of the island lineages suggesting a long history of hybridization. We demonstrated the utility of high‐throughput sequencing and a phylogenomic approach using 569 loci to understanding species relationships and gene flow in the presence of ILS.  相似文献   

14.
Wild species can be used to improve various agronomic traits in cultivars; however, a limited understanding of the genetic basis underlying the morphological differences between wild and cultivated species hinders the integration of beneficial traits from wild species. In the present study, we generated and sequenced recombinant inbred lines (RILs, 201 F10 lines) derived from a cross between Solanum pimpinellifolium and Solanum lycopersicum tomatoes. Based on a high‐resolution recombination bin map to uncover major loci determining the phenotypic variance between wild and cultivated tomatoes, 104 significantly associated loci were identified for 18 agronomic traits. On average, these loci explained ~39% of the phenotypic variance of the RILs. We further generated near‐isogenic lines (NILs) for four identified loci, and the lines exhibited significant differences for the associated traits. We found that two loci could improve the flower number and inflorescence architecture in the cultivar following introgression of the wild‐species alleles. These findings allowed us to construct a trait–locus network to help explain the correlations among different traits based on the pleiotropic or linked loci. Our results provide insights into the morphological changes between wild and cultivated tomatoes, and will help to identify key genes governing important agronomic traits for the molecular selection of elite tomato varieties.  相似文献   

15.
Inferring evolutionary relationships among recently diverged lineages is necessary to understand how isolating barriers produce independent lineages. Here, we investigate the phylogenetic relationships between three incompletely isolated and closely related mushroom‐feeding Drosophila species. These species form the Drosophila subquinaria species complex and consist of one Eurasian species (D. transversa) and two widespread North American species (D. subquinaria and D. recens) that are sympatric in central Canada. Although patterns of pre‐ and post‐mating isolation among these species are well characterized, previous work on their phylogenetic relationships is limited and conflicting. In this study, we generated a multi‐locus data set of 29 loci from across the genome sequenced in a population sample from each species, and then, we inferred species relationships and patterns of introgression. We find strong statistical support that D. subquinaria is paraphyletic, showing that samples from the geographic region sympatric with D. recens are most closely related to D. recens, whereas samples from the geographic region allopatric with D. recens are most closely related to D. transversa. We present several lines of evidence that both incomplete lineage sorting and gene flow are causing phylogenetic discordance. We suggest that ongoing gene flow primarily from D. recens into D. subquinaria in the sympatric part of their ranges causes phylogenetic uncertainty in the evolutionary history of these species. Our results highlight how population genetic data can be used to disentangle the sources of phylogenetic discordance among closely related species.  相似文献   

16.
Current divergent selection may promote floral trait differentiation among conspecific populations in flowering plants. However, whether this applies to complex traits such as colour or scents has been little studied, even though these traits often vary within species. In this study, we compared floral colour and odour as well as selective pressures imposed upon these traits among seven populations belonging to three subspecies of the widespread, generalist orchid Anacamptis coriophora. Colour was characterized using calibrated photographs, and scents were sampled using dynamic headspace extraction and analysed using gas chromatography–mass spectrometry. We then quantified phenotypic selection exerted on these traits by regressing fruit set values on floral trait values. We showed that the three studied subspecies were characterized by different floral colour and odour, with one of the two predominant floral volatiles emitted by each subspecies being taxon‐specific. Plant size was positively correlated with fruit set in most populations, whereas we found no apparent link between floral colour and female reproductive success. We detected positive selection on several taxon‐specific compounds in A. coriophora subsp. fragrans, whereas no selection was found on floral volatiles of A. coriophora subsp. coriophora and A. coriophora subsp. martrinii. This study is one of the first to document variation in phenotypic selection exerted on floral scents among conspecific populations. Our results suggest that selection could contribute to ongoing chemical divergence among A. coriophora subspecies.  相似文献   

17.
Extremely developed or specialized traits such as the elongated upper canines of extinct sabre‐toothed cats are often not analogous to those of any extant species, which limits our understanding of their evolutionary cause. However, an extant species may have undergone directional selection for a similar extreme phenotype. Among living felids, the clouded leopard, Neofelis nebulosa, has exceptionally long upper canines for its body size. We hypothesized that directional selection generated the elongated upper canines of clouded leopards in a manner similar to the process in extinct sabre‐toothed cats. To test this, we developed an approach that compared the effect of directional selection among lineages in a phylogeny using a simulation of trait evolution and approximate Bayesian computation. This approach was applied to analyse the evolution of upper canine length in the Felidae phylogeny. Our analyses consistently showed directional selection favouring longer upper canines in the clouded leopard lineage and a lineage leading to the sabre‐toothed cat with the longest upper canines, Smilodon. Most of our analyses detected an effect of directional selection for longer upper canines in the lineage leading to another sabre‐toothed cat, Homotherium, although this selection may have occurred exclusively in the primitive species. In all the analyses, the clouded leopard and Smilodon lineages showed comparable directional selection. This implies that clouded leopards share a selection advantage with sabre‐toothed cats in having elongated upper canines.  相似文献   

18.
Geography influences the evolutionary trajectory of species by mediating opportunities for hybridization, gene flow, demographic shifts and adaptation. We sought to understand how geography and introgression can generate species‐specific patterns of genetic diversity by examining phylogeographical relationships in the North American skink species Plestiodon multivirgatus and P. tetragrammus (Squamata: Scincidae). Using a multilocus dataset (three mitochondrial genes, four nuclear genes; a total of 3455 bp) we discovered mito‐nuclear discordance, consistent with mtDNA introgression. We further tested for evidence of species‐wide mtDNA introgression by using comparisons of genetic diversity, selection tests and extended Bayesian skyline analyses. Our findings suggest that P. multivirgatus acquired its mitochondrial genome from P. tetragrammus after their initial divergence. This putative species‐wide mitochondrial capture was further evidenced by statistically indistinguishable substitution rates between mtDNA and nDNA in P. multivirgatus. This rate discrepancy was observed in P. multivirgatus but not P. tetragrammus, which has important implications for studies that combine mtDNA and nDNA sequences when inferring time since divergence between taxa. Our findings suggest that by facilitating opportunities for interspecific introgression, geography can alter the course of molecular evolution between recently diverged lineages.  相似文献   

19.
This study uses traditional and contemporary phylogenetic and population genetic analyses to assess the causes of discordance (i.e., lineage sorting and introgression) among mitochondrial and nuclear gene trees for a clade of eastern North American scarab beetles (fraterna species group, genus Phyllophaga). I estimated gene trees using individual and combined analysis of one mitochondrial and two nuclear loci in MrBayes , and inferred a species tree using a hierarchical coalescent approach based on all loci in the program Best . Because hybridization violates the assumptions of Best , I tested for introgression by comparing species monophyly between the mitochondrial and nuclear gene trees based on the prediction that cytoplasmic genomes introgress more readily than nuclear genomes. Haplotype exclusivity was identified using Bayesian tests of monophyly and the genealogical sorting index. I used the results of the phylogenetic analyses and monophyly tests to develop an explicit hypothesis of introgression that could be tested in the program IMa. Results from these analyses provided evidence for introgression across clades within the fraterna group. The tiered analytical approach used in this study demonstrated how the use of multiple methods can identify when assumptions are violated and methods are prone to yield misleading results.  相似文献   

20.
The processes responsible for cytonuclear discordance frequently remain unclear. Here, we employed an exon capture data set and demographic methods to test hypotheses generated by species distribution models to examine how contrasting histories of range stability vs. fluctuation have caused cytonuclear concordance and discordance in ground squirrel lineages from the Otospermophilus beecheyi species complex. Previous studies in O. beecheyi revealed three morphologically cryptic and highly divergent mitochondrial DNA lineages (named the Northern, Central and Southern lineages based on geography) with only the Northern lineage exhibiting concordant divergence for nuclear genes. Here, we showed that these mtDNA lineages likely formed in allopatry during the Pleistocene, but responded differentially to climatic changes that occurred since the last interglacial (~120,000 years ago). We find that the Northern lineage maintained a stable range throughout this period, correlating with genetic distinctiveness among all genetic markers and low migration rates with the other lineages. In contrast, our results suggested that the Southern lineage expanded from Baja California Sur during the Late Pleistocene to overlap and potentially swamp a contracting Central lineage. High rates of intraspecific gene flow between Southern lineage individuals among expansion origin and expansion edge populations largely eroded Central ancestry from autosomal markers. However, male‐biased dispersal in this system preserved signals of this past hybridization and introgression event in matrilineal‐biased X‐chromosome and mtDNA markers. Our results highlight the importance of range stability in maintaining the persistence of phylogeographic lineages, whereas unstable range dynamics can increase the tendency for lineages to merge upon secondary contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号