首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Complex I (NADH:ubiquinone oxidoreductase) purified from bovine heart mitochondria was treated with the detergent N, N-dimethyldodecylamine N-oxide (LDAO). The enzyme dissociated into two known subcomplexes, Ialpha and Ibeta, containing mostly hydrophilic and hydrophobic subunits, and a previously undetected fragment referred to as Igamma. Subcomplex Igamma contains the hydrophobic subunits ND1, ND2, ND3, and ND4L which are encoded in the mitochondrial genome, and the nuclear-encoded subunit KFYI. During size-exclusion chromatography in the presence of LDAO, subcomplex Ialpha lost several subunits and formed another characterized subcomplex known as Ilambda. Similarly, subcomplex Ibeta dissociated into two smaller subcomplexes, one of which contains the hydrophobic subunits ND4 and ND5; subcomplex Igamma released a fragment containing ND1 and ND2. These results suggest that in the intact complex subunits ND1 and ND2 are likely to be in a different region of the membrane domain than subunits ND4 and ND5. The compositions of the various subcomplexes and fragments of complex I provide an organization of the subunits of the enzyme in the framework of the known low resolution structure of the enzyme.  相似文献   

2.
Bovine mitochondrial NADH-ubiquinone reductase (complex I), the first enzyme in the electron-transport chain, is a membrane-bound assembly of more than 30 different proteins, and the flavoprotein (FP) fraction, a water-soluble assembly of the 51-, 24-, and 10-kDa subunits, retains some of the catalytic properties of the enzyme. The 51-kDa subunit binds the substrate NAD(H) and probably contains both the cofactor, FMN, and also a tetranuclear iron-sulfur center, while a binuclear iron-sulfur center is located in the 24- or 10-kDa proteins. The 75-kDa subunit is the largest of the six proteins in the iron-sulfur protein (IP) fraction, and its sequence indicates that it too contains iron-sulfur clusters. Partial protein sequences have been determined at the N-terminus and at internal sites in the 51-kDa subunit, and the corresponding cDNA encoding a precursor of the protein has been isolated by using a novel strategy based on the polymerase chain reaction. The mature protein is 444 amino acids long. Its sequence, and those of the 24- and 75-kDa subunits, shows that mitochondrial complex I is related to a soluble NAD-reducing hydrogenase from the facultative chemolithotroph Alcaligenes eutrophus H16. This enzyme has four subunits, alpha, beta, gamma, and delta, and the alpha gamma dimer is an NADH oxidoreductase that contains FMN. The gamma-subunit is related to residues 1-240 of the 75-kDa subunit of complex I, and the alpha-subunit sequence is a fusion of homologues of the 24- and 51-kDa subunits, in the order N- to C-terminal. The most highly conserved regions are in the 51-kDa subunit and probably form parts of nucleotide binding sites for NAD(H) and FMN. Another conserved region surrounds the sequence motif CysXXCysXXCys, which is likely to provide three of the four ligands of a 4Fe-4S center, possibly that known as N-3. Characteristic ligands for a second 4Fe-4S center are conserved in the 75-kDa and gamma-subunits. This relationship with the bacterial enzyme implies that the 24- and 51-kDa subunits, together with part of the 75-kDa subunit, constitute a structural unit in mitochondrial complex I that is concerned with the first steps of electron transport.  相似文献   

3.
Barker CD  Reda T  Hirst J 《Biochemistry》2007,46(11):3454-3464
Complex I (NADH:ubiquinone oxidoreductase) from bovine heart mitochondria contains 45 different subunits and nine redox cofactors. NADH is oxidized by a noncovalently bound flavin mononucleotide (FMN), then seven iron-sulfur clusters transfer the two electrons to quinone, and four protons are pumped across the inner mitochondrial membrane. Here, we use protein film voltammetry to investigate the mechanisms of NADH oxidation and NAD+ reduction in the simplest catalytically active subcomplex of complex I, the flavoprotein (Fp) subcomplex. The Fp subcomplex was prepared using chromatography and contained the 51 and 24 kDa subunits, the FMN, one [4Fe-4S] cluster, and one [2Fe-2S] cluster. The reduction potential of the FMN in the enzyme's active site is lower than that of free FMN (thus, the oxidized state of the FMN is most strongly bound) and close to the reduction potential of NAD+. Consequently, the catalytic transformation is reversible. Electrocatalytic NADH oxidation by subcomplex Fp can be explained by a model comprising substrate mass transport, the Michaelis-Menten equation, and interfacial electron transfer kinetics. The difference between the "catalytic" potential and the FMN potential suggests that the flavin is reoxidized before NAD+ is released or that intramolecular electron transfer from the flavin to the [4Fe-4S] cluster influences the catalytic rate. NAD+ reduction displays a marked activity maximum, below which the catalytic rate decreases sharply as the driving force increases. Two possible models reproduce the observed catalytic waveshapes: one describing an effect from reducing the proximal [2Fe-2S] cluster and the other the enhanced catalytic ability of the semiflavin state.  相似文献   

4.
The low molecular weight NADH dehydrogenase which can be solubilized from the mitochondrial NADH-ubiquinone oxidoreductase complex with chaotropic agents consists of three subunits in equimolar ratio [Galante, Y. M., & Hatefi, Y. (1979) Arch. Biochem. Biophys. 192, 559]. The largest subunit (subunit I) can be completely separated from the other two (subunits II + III) by treatment with sodium trichloroacetate and ammonium sulfate fractionation. Both the subunit I and subunit II + III fractions contain iron and acid-labile sulfur. From visible and EPR spectroscopy and the iron and acid-labile sulfide content, we propose that the subunit II + III fraction contains a binuclear cluster. The cluster structure present in subunit I is as yet unclear. On separation of the subunits of NADH dehydrogenase, the FMN is lost.  相似文献   

5.
Heterotetrameric (alphabetagammadelta) sarcosine oxidase from Corynebacterium sp. P-1 (cTSOX) contains noncovalently bound FAD and NAD(+) and covalently bound FMN, attached to beta(His173). The beta(His173Asn) mutant is expressed as a catalytically inactive, labile heterotetramer. The beta and delta subunits are lost during mutant enzyme purification, which yields a stable alphagamma complex. Addition of stabilizing agents prevents loss of the delta but not the beta subunit. The covalent flavin link is clearly a critical structural element and essential for TSOX activity or preventing FMN loss. The alpha subunit was expressed by itself and purified by affinity chromatography. The alpha and beta subunits each contain an NH(2)-terminal ADP-binding motif that could serve as part of the binding site for NAD(+) or FAD. The alpha subunit and the alphagamma complex were each found to contain 1 mol of NAD(+) but no FAD. Since NAD(+) binds to alpha, FAD probably binds to beta. The latter could not be directly demonstrated since it was not possible to express beta by itself. However, FAD in TSOX from Pseudomonas maltophilia (pTSOX) exhibits properties similar to those observed for the covalently bound FAD in monomeric sarcosine oxidase and N-methyltryptophan oxidase, enzymes that exhibit sequence homology with beta. A highly conserved glycine in the ADP-binding motif of the alpha(Gly139) or beta(Gly30) subunit was mutated in an attempt to generate NAD(+)- or FAD-free cTSOX, respectively. The alpha(Gly139Ala) mutant is expressed only at low temperature (t(optimum) = 15 degrees C), but the purified enzyme exhibited properties indistinguishable from the wild-type enzyme. The much larger barrier to NAD(+) binding in the case of the alpha(Gly139Val) mutant could not be overcome even by growth at 3 degrees C, suggesting that NAD(+) binding is required for TSOX expression. The beta(Gly30Ala) mutant exhibited subunit expression levels similar to those of the wild-type enzyme, but the mutation blocked subunit assembly and covalent attachment of FMN, suggesting that both processes require a conformational change in beta that is induced upon FAD binding. About half of the covalent FMN in recombinant preparations of cTSOX or pTSOX is present as a reversible covalent 4a-adduct with a cysteine residue. Adduct formation is not prevented by mutating any of the three cysteine residues in the beta subunit of cTSOX to Ser or Ala. Since FMN is attached via its 8-methyl group to the beta subunit, the FMN ring must be located at the interface between beta and another subunit that contains the reactive cysteine residue.  相似文献   

6.
Complex I purified from bovine heart mitochondria is a multisubunit membrane-bound assembly. In the past, seven of its subunits were shown to be products of the mitochondrial genome, and 35 nuclear encoded subunits were identified. The complex is L-shaped with one arm in the plane of the membrane and the other lying orthogonal to it in the mitochondrial matrix. With mildly chaotropic detergents, the intact complex has been resolved into various subcomplexes. Subcomplex Ilambda represents the extrinsic arm, subcomplex Ialpha consists of subcomplex Ilambda plus part of the membrane arm, and subcomplex Ibeta is another substantial part of the membrane arm. The intact complex and these three subcomplexes have been subjected to extensive reanalysis. Their subunits have been separated by three independent methods (one-dimensional SDS-PAGE, two-dimensional isoelectric focusing/SDS-PAGE, and reverse phase high pressure liquid chromatography (HPLC)) and analyzed by tryptic peptide mass fingerprinting and tandem mass spectrometry. The masses of many of the intact subunits have also been measured by electrospray ionization mass spectrometry and have provided valuable information about post-translational modifications. The presence of the known 35 nuclear encoded subunits in complex I has been confirmed, and four additional nuclear encoded subunits have been detected. Subunits B16.6, B14.7, and ESSS were discovered in the SDS-PAGE analysis of subcomplex Ilambda, in the two-dimensional gel analysis of the intact complex, and in the HPLC analysis of subcomplex Ibeta, respectively. Despite many attempts, no sequence information has been obtained yet on a fourth new subunit (mass 10,566+/-2 Da) also detected in the HPLC analysis of subcomplex Ibeta. It is unlikely that any more subunits of the bovine complex remain undiscovered. Therefore, the intact enzyme is a complex of 46 subunits, and, assuming there is one copy of each subunit in the complex, its mass is 980 kDa.  相似文献   

7.
Mitochondrial NADH-ubiquinone oxidoreductase (complex I) is the largest enzyme of the oxidative phosphorylation system, with subunits located at the matrix and membrane domains. In plants, holocomplex I is composed of more than 40 subunits, 9 of which are encoded by the mitochondrial genome (NAD subunits). In Nicotiana sylvestris, a minor 800-kDa subcomplex containing subunits of both domains and displaying NADH dehydrogenase activity is detectable. The NMS1 mutant lacking the membrane arm NAD4 subunit and the CMSII mutant lacking the peripheral NAD7 subunit are both devoid of the holoenzyme. In contrast to CMSII, the 800-kDa subcomplex is present in NMS1 mitochondria, indicating that it could represent an assembly intermediate lacking the distal part of the membrane arm. L-galactono-1,4-lactone dehydrogenase (GLDH), the last enzyme in the plant ascorbate biosynthesis pathway, is associated with the 800-kDa subcomplex but not with the holocomplex. To investigate possible relationships between GLDH and complex I assembly, we characterized an Arabidopsis thaliana gldh insertion mutant. Homozygous gldh mutant plants were not viable in the absence of ascorbate supplementation. Analysis of crude membrane extracts by blue native and two-dimensional SDS-PAGE showed that complex I accumulation was strongly prevented in leaves and roots of Atgldh plants, whereas other respiratory complexes were found in normal amounts. Our results demonstrate the role of plant GLDH in both ascorbate biosynthesis and complex I accumulation.  相似文献   

8.
Seven out of the 13 proteins encoded by the mitochondrial genome of mammals (peptides ND1 to ND6 plus ND4L) are subunits of the respiratory NADH–ubiquinone oxidoreductase (complex I). The function of these ND subunits is still poorly understood. We have used the NADH–ubiquinone oxidoreductase of Rhodobacter capsulatus as a model for the study of the function of these proteins. In this bacterium, the 14 genes encoding the NADH–ubiquinone oxidoreductase are clustered in the nuo operon. We report here on the biochemical and spectroscopic characterization of mutants individually disrupted in five nuo genes, equivalent to mitochondrial genes nd1 , nd2 , nd5 , nd6 and nd4L . Disruption of any of these genes in R . capsulatus leads to the suppression of NADH dehydrogenase activity at the level of the bacterial membranes and to the disappearance of complex I-associated iron–sulphur clusters. Individual NUO subunits can still be immunodetected in the membranes of these mutants, but they do not form a functional subcomplex. In contrast to these observations, disruption of two ORFs ( orf6 and orf7 ), also present in the distal part of the nuo operon, does not suppress NADH dehydrogenase activity or complex I-associated EPR signals, thus demonstrating that these ORFs are not essential for the biosynthesis of complex I.  相似文献   

9.
The hydrophilic domain (peripheral arm) of the proton-translocating NADH:quinone oxidoreductase (complex I) from the thermophilic organism Thermus thermophilus HB8 has been purified and characterized. The subcomplex is stable in sodium dodecyl sulfate up to 80 degrees C. Of nine iron-sulfur clusters, four to five (one or two binuclear and three tetranuclear) could be detected by EPR in the NADH-reduced enzyme. The preparation consists of eight different polypeptides. Seven of them have been positively identified by peptide mass mapping and N-terminal sequencing as known hydrophilic subunits of T. thermophilus complex I. The eighth polypeptide copurified with the subcomplex at all stages, is strongly associated with the other subunits, and is present in crystals of the subcomplex, used for X-ray data collection. Therefore, it has been identified as a novel complex I subunit and named Nqo15. It is encoded in a locus separate from the nqo operon, containing the 14 other known complex I genes. ORFs encoding Nqo15 homologues are present in the genomes of the closest relatives of T. thermophilus. Our data show that, contrary to previous assumptions, bacterial complex I can contain proteins in addition to a "core" complement of 14 subunits.  相似文献   

10.
Azospirillum brasilense glutamate synthase (GltS) is a complex iron-sulfur flavoprotein whose catalytically active alphabeta protomer (alpha subunit, 162kDa; beta subunit, 52.3 kDa) contains one FAD, one FMN, one [3Fe-4S](0,+1), and two [4Fe-4S](+1,+2) clusters. The structure of the alpha subunit has been determined providing information on the mechanism of ammonia transfer from L-glutamine to 2-oxoglutarate through a 30 A-long intramolecular tunnel. On the contrary, details of the electron transfer pathway from NADPH to the postulated 2-iminoglutarate intermediate through the enzyme flavin co-factors and [Fe-S] clusters are largely indirect. To identify the location and role of each one of the GltS [4Fe-4S] clusters, we individually substituted the four cysteinyl residues forming the first of two conserved C-rich regions at the N-terminus of GltS beta subunit with alanyl residues. The engineered genes encoding the beta subunit variants (and derivatives carrying C-terminal His6-tags) were co-expressed with the wild-type alpha subunit gene. In all cases the C/A substitutions prevented alpha and beta subunits association to yield the GltS alphabeta protomer. This result is consistent with the fact that these residues are responsible for the formation of glutamate synthase [4Fe-4S](+1,+2) clusters within the N-terminal region of the beta subunit, and that these clusters are implicated not only in electron transfer between the GltS flavins, but also in alphabeta heterodimer formation by structuring an N-terminal [Fe-S] beta subunit interface subdomain, as suggested by the three-dimensional structure of dihydropyrimidine dehydrogenase, an enzyme containing an N-terminal beta subunit-like domain.  相似文献   

11.
The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 35 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components (ND1, ND2, ND4, ND5 and ND6) are coded for by the mitochondrial genome. Here, we characterize two mitochondrial mutants (dum5 and dum17) showing strong reduction or inactivation of complex I activity: dum5 is a 1T deletion in the 3' UTR of nd5 whereas dum17 is a 1T deletion in the coding sequence of nd6. The impact of these mutations and of mutations affecting nd1, nd4 and nd4/nd5 genes on the assembly of complex I is investigated. After separation of the respiratory complexes by blue native (BN)-PAGE or sucrose gradient centrifugation, we demonstrate that the absence of intact ND1 or ND6 subunit prevents the assembly of the 850 kDa whole complex, whereas the loss of ND4 or ND4/ND5 leads to the formation of a subcomplex of 650 kDa present in reduced amount. The implications of our findings for the possible role of these ND subunits on the activity of complex I and for the structural organization of the membrane arm of the enzyme are discussed. In mitochondria from all the strains analyzed, we moreover detected a 160-210 kDa fragment comprising the hydrophilic 49 kDa and 76 kDa subunits of the complex I peripheral arm and showing NADH dehydrogenase activity.  相似文献   

12.
Complex I (NADH:ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 44 protein subunits with one arm buried in the inner membrane of the mitochondrion and the orthogonal arm protruding about 100 Å into the matrix. The protruding arm contains the binding sites for NADH, the primary acceptor of electrons flavin mononucleotide (FMN), and a chain of seven iron-sulfur clusters that carries the electrons one at a time from FMN to a coenzyme Q molecule bound in the vicinity of the junction between the two arms. In the structure of the closely related bacterial enzyme from Thermus thermophilus, the quinone is thought to bind in a tunnel that spans the interface between the two arms, with the quinone head group close to the terminal iron-sulfur cluster, N2. The tail of the bound quinone is thought to extend from the tunnel into the lipid bilayer. In the mammalian enzyme, it is likely that this tunnel involves three of the subunits of the complex, ND1, PSST, and the 49-kDa subunit. An arginine residue in the 49-kDa subunit is symmetrically dimethylated on the ω-NG and ω-NG′ nitrogen atoms of the guanidino group and is likely to be close to cluster N2 and to influence its properties. Another arginine residue in the PSST subunit is hydroxylated and probably lies near to the quinone. Both modifications are conserved in mammalian enzymes, and the former is additionally conserved in Pichia pastoris and Paracoccus denitrificans, suggesting that they are functionally significant.  相似文献   

13.
A catalytic component of the bovine mitochondrial NADH:ubiquinone oxidoreductase complex (Complex I) is a soluble NADH dehydrogenase iron-sulfur flavoprotein (FP). FP is composed of three subunits of Mr 51,000, 24,000, and 9,000, and contains FMN and two iron-sulfur clusters. Previous studies by others with the use of various chemical probes had suggested that, except for an access for NADH to the 51-kDa subunit, the FP polypeptides are buried within Complex I and shielded from the medium. In the present study, monospecific antibodies were raised to each of the three FP subunits, and used in conjunction with Complex I, submitochondrial particles (SMP), mitoplasts, and intact mitochondria as sources of antigens. Results of enzyme-linked immunosorbent assays and 125I-protein A labeling experiments indicated that epitopes from the 51-, 24-, and 9-kDa subunits of FP are exposed to the medium in Complex I and SMP, but not in mitoplasts and mitochondria. Appropriate enzymatic assays showed that none of the antibodies inhibited the NADH dehydrogenase activity of isolated FP or the NADH oxidase activity of SMP. These results have been discussed in relation to the structure of Neurospora Complex I deduced from membrane crystals of the isolated enzyme complex by Leonard et al. [K. Leonard, H. Haiker, and H. Weiss (1987) J. Mol. Biol. 194, 277-286].  相似文献   

14.
Mitochondrial NADH:ubiquinone oxidoreductase is the largest and most complicated proton pump of the respiratory chain. Here we report the preparation and characterization of a subcomplex of complex I selectively lacking the flavoprotein part of the N-module. Removing the 51-kDa and the 24-kDa subunit resulted in loss of catalytic activity. The redox centers of the subcomplex could be reduced neither by NADH nor NADPH demonstrating that physiological electron input into complex I occurred exclusively via the N-module and that the NADPH binding site in the 39-kDa subunit and further potential nucleotide binding sites are isolated from the electron transfer pathway within the enzyme. Taking advantage of the selective removal of two of the eight iron-sulfur clusters of complex I and providing additional evidence by redox titration and site-directed mutagenesis, we could for the first time unambiguously assign cluster N1 of fungal complex I to mammalian cluster N1b.  相似文献   

15.
Bovine NADH:ubiquinone oxidoreductase (Complex I) is the first complex in the mitochondrial respiratory chain. It has long been assumed that it contained only one FMN group. However, as demonstrated in 2003, the intact enzyme contains two FMN groups. The second FMN was proposed to be located in a conserved flavodoxin fold predicted to be present in the PSST subunit. The long-known reaction of Complex I with NADPH differs in many aspects from that with NADH. It was proposed that the second flavin group was specifically involved in the reaction with NADPH. The X-ray structure of the hydrophilic domain of Complex I from Thermus thermophilus (Sazanov and Hinchliffe 2006, Science 311, 1430–1436) disclosed the positions of all redox groups of that enzyme and of the subunits holding them. The PSST subunit indeed contains the predicted flavodoxin fold although it did not contain FMN. Inspired by this structure, the present paper describes a re-evaluation of the enigmatic reactions of the bovine enzyme with NADPH. Published data, as well as new freeze-quench kinetic data presented here, are incompatible with the general opinion that NADPH and NADH react at the same site. Instead, it is proposed that these pyridine nucleotides react at opposite ends of the 90?Å long chain of prosthetic groups in Complex I. Ubiquinone is proposed to react with the Fe-S clusters in the TYKY subunit deep inside the hydrophilic domain. A new model for electron transfer in Complex I is proposed. In the accompanying paper this model is compared with the one advocated in current literature.  相似文献   

16.
Volker Zickermann 《BBA》2007,1767(5):393-400
Mitochondrial NADH:ubiquinone oxidoreductase is the largest and most complicated proton pump of the respiratory chain. Here we report the preparation and characterization of a subcomplex of complex I selectively lacking the flavoprotein part of the N-module. Removing the 51-kDa and the 24-kDa subunit resulted in loss of catalytic activity. The redox centers of the subcomplex could be reduced neither by NADH nor NADPH demonstrating that physiological electron input into complex I occurred exclusively via the N-module and that the NADPH binding site in the 39-kDa subunit and further potential nucleotide binding sites are isolated from the electron transfer pathway within the enzyme. Taking advantage of the selective removal of two of the eight iron-sulfur clusters of complex I and providing additional evidence by redox titration and site-directed mutagenesis, we could for the first time unambiguously assign cluster N1 of fungal complex I to mammalian cluster N1b.  相似文献   

17.
Zimmermann JL  Amano T  Sigalat C 《Biochemistry》1999,38(46):15343-15351
The properties of the nucleotide binding sites in the isolated beta and alpha subunits of H(+)-ATPase from Bacillus PS3 (TF1) have been examined by studying the EPR properties of bound VO(2+), which is a paramagnetic probe for the native Mg2+ cation cofactor. The amino acid ligands of the VO2+ complexes with the isolated beta subunit, with the isolated alpha subunit, with different mixtures of both alpha and beta subunits, and with the catalytic alpha 3 beta 3 gamma subcomplex have been characterized by a combination of EPR, ESEEM, and HYSCORE spectroscopies. The EPR spectrum of the isolated beta subunit with bound VO2+ (1 VO2+/beta) is characterized by (51)V hyperfine coupling parameters (A( parallel) = 168 x 10(-)(4) cm(-)(1) and A( perpendicular) = 60 x 10(-)(4) cm(-)(1)) that suggest that VO2+ binds to the isolated beta subunit with at least one nitrogen ligand. Results obtained for the analogous VO2+ complex with the isolated alpha subunit are virtually identical. ESEEM and HYSCORE spectra are also reported and are similar for both complexes, indicating a very similar coordination scheme for VO2+ bound to isolated alpha and beta subunits. In the isolated beta (or alpha) subunit, the bound VO2+ cation is coordinated by one nitrogen ligand with hyperfine coupling parameters A( parallel)((14)N) = 4.44 MHz, and A( perpendicular)((14)N) = 4.3 MHz and quadrupole coupling parameters e(2)()qQ approximately 3.18 MHz and eta approximately 1. These are typical for amine-type nitrogen ligands equatorial to the VO2+ cation; amino acid residues in the TF1 beta and alpha subunits with nitrogen donors that may bind VO2+ are reviewed. VO2+ bound to a mixture of alpha and beta subunits in the presence of 200 mM Na2SO4 to promote the formation of the alpha 3 beta 3 hexamer has a second nitrogen ligand with magnetic properties similar to those of a histidine imidazole. This situation is analogous to that in the alpha 3 beta 3 gamma subcomplex and in the whole TF1 enzyme [Buy, C., Matsui, T., Andrianambinintsoa, S., Sigalat, C., Girault, G., and Zimmermann, J.-L. (1996) Biochemistry 35, 14281-14293]. These data are interpreted in terms of only partially structured nucleotide binding sites in the isolated beta and alpha subunits as compared to fully structured nucleotide binding sites in the alpha 3 beta 3 heterohexamer, the alpha 3 beta 3 gamma subcomplex, and the whole TF1 ATPase.  相似文献   

18.
The first purification of bovine NADH:ubiquinone oxidoreductase (Complex I) was reported nearly half a century ago (Hatefi et al. J Biol Chem 237:1676–1680, 1962). The pathway of electron-transfer through the enzyme is still under debate. A major obstacle is the assignment of EPR signals to the individual iron-sulfur clusters in the subunits. The preceding paper described a working model based on the kinetics with NADPH. This model is at variance with current views in the field. The present paper provides a critical overview on the possible causes for the discrepancies. It is concluded that the stability of all purified preparations described thus far, including Hatefi’s Complex I, is compromised due to removal of the enzyme from the protective membrane environment. In addition, most preparations described during the last two decades are purified by methods involving synthetic detergents and column chromatography. This results in delipidation, loss of endogenous quinones and loss of reactions with (artificial) quinones in a rotenone-sensitive way. The Fe:FMN ratio’s indicate that FMN-a is absent, but that all Fe-S clusters may be present. In contrast to the situation in bovine SMP and Hatefi’s Complex I, three of the six expected [4Fe-4S] clusters are not detected in EPR spectra. Qualitatively, the overall EPR lineshape of the remaining three cubane signals may seem similar to that of Hatefi’s Complex I, but quantitatively it is not. It is further proposed that point mutations in any of the TYKY, PSST, 49-kDa or 30-kDa subunits, considered to make up the delicate structural heart of Complex I, may have unpredictable effects on any of the other subunits of this quartet. The fact that most point mutations led to inactive enzymes makes a correct interpretation of such mutations even more ambiguous. In none of the Complex-I-containing membrane preparations from non-bovine origin, the pH dependencies of the NAD(P)H→O2 reactions and the pH-dependent reduction kinetics of the Fe-S clusters with NADPH have been determined. This excludes a proper discussion on the absence or presence of FMN-a in native Complex I from other organisms.  相似文献   

19.
NADH:ubiquinone oxidoreductase (complex I) is the first and largest enzyme of the mitochondrial respiratory chain. The low-resolution structure of the complex is known from electron microscopy studies. The general shape of the complex is in the form of an L, with one arm in the membrane and the other peripheral. We have purified complex I from beef heart mitochondria and reconstituted the enzyme into lipid bilayers. Under different conditions, several two-dimensional crystal forms were obtained. Crystals belonging to space groups p222(1) and c12 (unit cell 488 Ax79 A) were obtained at 22 degrees C and contained only the membrane fragment of complex I similar to hydrophobic subcomplex Ibeta but lacking the ND5 subunit. A crystal form with larger unit cell (534 Ax81 A, space group c12) produced at 4 degrees C contained both the peripheral and membrane arms of the enzyme, except that ND5 was missing. Projection maps from frozen hydrated samples were calculated for all crystal forms. By comparing two different c12 crystal forms, extra electron density in the projection map of large crystal form was assigned to the peripheral arm of the enzyme. One of the features of the map is a deep, channel-like, cleft next to peripheral arm. Comparison with available structures of the intact enzyme indicates that large hydrophobic subunit ND5 is situated at the distal end of the membrane domain. Possible locations of subunit ND4 and of other subunits in the membrane domain are proposed. Implications of our findings for the mechanism of proton pumping by complex I are discussed.  相似文献   

20.
NADH:ubiquinone reductase, the respiratory chain complex I of mitochondria, consists of some 25 nuclear-encoded and seven mitochondrially encoded subunits, and contains as redox groups one FMN, probably one internal ubiquinone and at least four iron-sulphur clusters. We are studying the assembly of the enzyme in Neurospora crassa. The flux of radioactivity in cells that were pulse-labelled with [35S]methionine was followed through immunoprecipitable assembly intermediates into the holoenzyme. Labelled polypeptides were observed to accumulate transiently in a Mr 350,000 intermediate complex. This complex contains all mitochondrially encoded subunits of the enzyme as well as subunits encoded in the nucleus that have no homologous counterparts in a small, merely nuclear-encoded form of the NADH:ubiquinone reductase made by Neurospora crassa cells poisoned with chloramphenicol. With regard to their subunit compositions, the assembly intermediate and small NADH:ubiquinone reductase complement each other almost perfectly to give the subunit composition of the large complex I. These results suggest that two pathways exist in the assembly of complex I that independently lead to the preassembly of two major parts, which subsequently join to form the complex. One preassembled part is related to the small form of NADH:ubiquinone reductase and contributes most of the nuclear-encoded subunits, FMN, three iron-sulphur clusters and the site for the internal ubiquinone. The other part is the assembly intermediate and contributes all mitochondrially encoded subunits, one iron-sulphur cluster and the catalytic site for the substrate ubiquinone. We discuss the results with regard to the evolution of the electron pathway through complex I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号