首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Bacteria of the genus Exiguobacterium have been repeatedly isolated from ancient permafrost sediments of the Kolyma lowland of Northeast Eurasia. Here we report that the Siberian permafrost isolates Exiguobacterium sibiricum 255-15, E. sibiricum 7-3, Exiguobacterium undae 190-11 and E. sp. 5138, as well as Exiguobacterium antarcticum DSM 14480, isolated from a microbial mat sample of Lake Fryxell (McMurdo Dry Valleys, Antarctica), were able to grow at temperatures ranging from -6 to 40 degrees C. In comparison to cells grown at 24 degrees C, the cold-grown cells of these strains tended to be longer and wider. We also investigated the effect of growth conditions (broth or surface growth, and temperature) on cryotolerance of the Exiguobacterium strains. Bacteria grown in broth at 4 degrees C showed markedly greater survival following freeze-thawing treatments (20 repeated cycles) than bacteria grown in broth at 24 degrees C. Surprisingly, significant protection to repeated freeze-thawing was also observed when bacteria were grown on agar at either 4 or 24 degrees C.  相似文献   

2.
Two Gram-positive strains isolated from cysts of the brine shrimp Artemia franciscana were subjected to a polyphasic taxonomic analysis. Based on 16S rRNA gene sequence comparison and composition of isoprenoid quinones, peptidoglycan and fatty acids, these organisms are members of the genus Exiguobacterium. Both strains showed 95.9% 16S rRNA gene sequence similarity to one another. The 16S rRNA gene sequences of strain 8N(T) and 9AN(T) were 97.5% and 98.9% similar to those of Exiguobacterium aurantiacum DSM 6208(T) and Exiguobacterium undae DSM 14481(T), respectively. Based on differences in chemotaxonomic and physiological characteristics, results of DNA-DNA hybridization and automated riboprinting, two novel species of the genus Exiguobacterium are proposed, Exiguobacterium mexicanum sp. nov. (type strain 8N(T)=DSM 16483(T)=CIP 108859(T)) and Exiguobacterium artemiae sp. nov. (type strain 9AN(T)=DSM 16484(T)=CIP 108858(T)).  相似文献   

3.
A novel strictly aerobic, gliding, Gram-negative, rod-shaped, halo- and mesophilic bacterium (TD-ZX30(T)) was isolated from a seawater sample collected on the Pacific coastline of Japan near Kamakura City (Fujisawa, Kanagawa). The temperature range for growth of TD-ZX30(T) was between 16 and 44 degrees C. The DNA G+C content was 32.0mol%. The predominant fatty acids were iso-C(15:1) G, iso-C(15:0), iso-C(16:0) 3-OH, iso-C(15:0) 3-OH, Summed feature (iso-C(15:0) 2-OH and/or C(16:1)omega7c), iso-C(17:0) 3-OH, and C(15:0). MK-6 was the only respiratory quinone. Zeaxanthin was the major carotenoid pigment produced but flexirubin-type pigments were not produced. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that TD-ZX30(T) belonged to a distinct lineage in the family Flavobacteriaceae, sharing 93.9% sequence similarity with the nearest species Olleya marilimosa. TD-ZX30(T) could be distinguished from the other members of the family Flavobacteriaceae by a number of chemotaxonomic and phenotypic characteristics. The results of polyphasic taxonomic analyses suggested that TD-ZX30(T) represents a novel genus and a novel species, for which the name Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov. is proposed. The type strain is TD-ZX30(T) (=NBRC 102119=CCUG 53614=DSM 18436).  相似文献   

4.
A motile, Gram-positive, slightly halophilic, endospore-forming, catalase- and oxidase-positive, obligately aerobic, slender rod-shaped bacterium, strain YIM-C229T was isolated from the sediment of a salt lake in the Qaidam Basin, north-west China. Filamentous forms were present throughout the growth cycle. Strain YIM-C229T grew in the presence of 0.5-8% NaCl and at pH 6.0-8.5, with optimum growth at 1-3% NaCl and pH 7.0-7.5. It grew at 4-45 degrees C, with optimum growth at 37 degrees C. The major cellular fatty acids were anteiso-C15:0, C16:0, iso-C15:0, C16:1 omega11c and anteiso-C(17:0). The predominant respiratory quinone was MK-7, and diphosphatidylglycerol and phosphatidylglycerol were the polar lipids, with meso-diaminopimelic acid occurring in the cell-wall peptidoglycan. The genomic DNA G+C content was 40.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM-C229T was closely related to the type strains of the four recognized species of the genus Gracilibacillus: G. halotolerans NN T (sequence similarity 95.5%), G. dipsosauri DD1T (96.1%), G. orientalis XH-63T (96.8%) and G. boraciitolerans T-16X(T) (99.1%). The DNA-DNA relatedness between strain YIM-C229(T) and G. boraciitolerans DSM 17256(T) was 30.8%. The combination of phylogenetic analysis, phenotypic characteristics, chemotaxonomic differences and DNA-DNA hybridization data supported the view that this strain represented a novel species of the genus Gracilibacillus, for which the name Gracilibacillus quinghaiensis sp. nov. is proposed, with YIM-C229T (=DSM 17858T=CGMCC 1.6304T) as the type strain.  相似文献   

5.
A non-motile and rod shaped bacterium, designated strain B1(T), was isolated from forest soil at Mt. Baekwoon, Republic of Korea. Cells were Gram-negative, catalase-positive, and oxidase-negative. The major fatty acids were 9-octadecenoic acid (C(18:1) omega9c; 42%) and hexadecanoic acid (C(16:0); 25.9%) and summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16:1) omega7c; 10.0%). The DNA G+C content was 44.1 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain B1(T) formed a lineage within the genus Acinetobacter and was closely related to A. baylyi DSM 14961(T) (98.6% sequence similarity), followed by A. baumannii DSM 30007(T) (97.4%), A. calcoaceticus DSM 30006(T) (97.0%) and 3 genomic species (96.8 approximately 7.6%). Phenotypic characteristics, gyrB gene sequence analysis and DNA-DNA relatedness data distinguished strain B1(T) from type strains of A. baylyi, A. baumannii, and A. calcoaceticus. On the basis of the evidence presented in this study, strain B1(T) represents a novel species of the genus Acinetobacter, for which the name Acinetobacter soli sp. nov. is proposed. The type strain is B1(T) (= KCTC 22184(T)= JCM 15062(T)).  相似文献   

6.
The taxonomic position of an orange coloured bacterium, strain K22–26T isolated from a soil sample was studied using a polyphasic approach. The organism had phenotypic and chemotaxonomic properties consistent with its allocation into the genus Exiguobacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain K22–26T belongs to the genus Exiguobacterium and was related to Exiguobacterium aurantiacum DSM 6208T (99.0 %) Exiguobacterium mexicanum DSM 16483T (98.6 %), Exiguobacterium aquaticum (98.6 %), Exiguobacterium aestuarii DSM 16306T (98.1 %), Exiguobacterium profundum DSM 17289T (98.1 %) and Exiguobacterium marinum DSM 16483T (97.9 %), whereas sequence similarity values with respect to other Exiguobacterium species with validly published names were between 92.5–94.0 %. The major polar lipids detected were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The major menaquinone was determined to be MK-7 (83 %) whereas MK-8 (11 %) and MK-6 (6 %) occur in smaller amounts. The peptidoglycan of the strain was found to contain l-lysine as the diagnostic diamino acid. The major fatty acids detected were iso C13:0 (11.2 %), anteiso C13:0 (15.4 %), iso C15:0 (13.2 %) and iso C17:0 (16.1 %). However, analysis of the DNA–DNA relatedness confirmed that strain K22–26T belongs to a novel species. The G + C content of the strain K22–26T was determined to be 50.1 mol %. The novel strain was distinguished from closely related type species of the genus Exiguobacterium using DNA–DNA relatedness and phenotypic data. Based on these differences, the strain K22–26T should be classified as a novel species of the genus Exiguobacterium, for which the name Exiguobacterium himgiriensis sp. nov. strain K22–26T (= MTCC 7628T = JCM 14260T) is proposed.  相似文献   

7.
Four yellow-pigmented, gram-negative, chemoorganotrophic aerobic bacteria were isolated from starfish Stellaster equestris (strains 022-2-10T, 022-2-9, and 022-2-12) and soft coral (unidentified species) (strain 022-4-7) collected in the South China Sea. 16S rRNA gene sequence-based analyses of the new organisms revealed that Erythrobacter spp. were the closest relatives and shared the highest similarity of 98.7% to E. citreus, 98.5% to E. flavus, 97.9% to E. litoralis and 97.6% to E. longus. The novel organisms were tolerant to 3-6% NaCl, grew between 10 degrees C and 40 degrees C, and were not able to degrade gelatin, casein, and agar, while degraded Tween 80. Two strains (022-2-9 and 022-2-12) could weakly degrade starch. All strains produced a large pool of carotenoids and did not have Bacteriochlorophyll a. Phosphatidylethanolamine (30-36%), phosphatidylglycerol (39-46%), and phosphatidylcholine (21-27%) were the predominant phospholipids. Sphingoglycolipid was not detected. The major fatty acids were 16:0 (6-11%), 16:1omega7 (12-15%), and 18:1omega7 (46-49%). The two-hydroxy fatty acids, 13:0-2OH, 14:0-2OH, 15:0-2OH, 16:0-2OH were also present. The G + C content of the DNAs ranged from 61 to 62 mol%. The level of DNA similarity among four strains was conspecific and ranged from 94% to 98%. Even though new strains and other species of the genus had rather high level of 16S rRNA gene sequence similarities, DNA-DNA hybridization experiments showed only 33-39% of binding with the DNA of the type strains. On the basis of these results and the significant differences demonstrated in the phenotypic and chemotaxonomic characteristics, it is suggested that the new organisms be classified as a novel species; the name Erythrobacter vulgaris sp. nov. is proposed. The type strain is 022-2-10T (= KMM 3465T = CIP 107841T).  相似文献   

8.
9.
A Gram-negative, aerobic, golden yellow, rod-shaped bacterium, a strain designated ICGEB-L15(T), was isolated from the larval midgut of Anopheles stephensi captured in District Jhajjar, Haryana, India. The strain ICGEB-L15(T) grows at 30-50°C (optimum 30-37°C), pH 6.5-8.5 (optimum 7.0-8.0) and in the presence of 2% NaCl. The major fatty acids were iso-C(15:0) (22.5% of total fatty acid), anteiso-C(15:0) (16.5%), iso-C(17:1) 9c (10.3%), iso-C(16:0) (7.3%), C(16:0) (6.1%), and iso-C(11:0) (5.3%). The strain showed the highest 16S rRNA gene sequence similarities with the type strains Pseudoxanthomonas daejeonensis KCTC 12207(T) (97.4%), Pseudoxanthomonas kaohsiungensis J36(T) (97.17%), and Pseudoxanthomonas mexicana AMX 26B(T) (97.11%). The DNA relatedness between ICGEB-L15(T) and Pseudoxanthomonas daejeonensis KCTC 12207(T), Pseudoxanthomonas kaohsiungensis J36(T) and Pseudoxanthomonas mexicana AMX 26B(T) was 24.5%, 28.2%, and 33.6%, respectively. The G+C content of genomic DNA was 69.9 mol%. The major isoprenoid quinone of strain ICGEB-L15(T) was Q-8. The strain ICGEB-L15(T) represents a novel species of the genus Pseudoxanthomonas based on physiological, biochemical and phylogenetic properties; therefore, the name Pseudoxanthomonas icgebensis sp. nov. is proposed. The type strain is ICGEB-L15(T) (=KACC 14090(T) =DSM 22536(T)).  相似文献   

10.
Psychrotolerant Bacillus-like strains BR035(T) and BR011 were isolated from seawater of the Bering Sea and were characterized by means of a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that these strains were related to the members of the genus Bacillus and had the highest 16S rRNA gene sequence similarity with Bacillus korlensis ZLC-26(T). DNA-DNA hybridization experiments confirmed that strains BR035(T) and BR011 belonged to the same species and were distinct from their closest relatives. The cells were Gram-positive, rods, motile, spore-forming and psychrotolerant. The temperature range for growth was 4-42°C. The main respiratory quinone was MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminolipid and two unknown phospholipids. The major cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C14:0 and C16:1ω7c alcohol. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The genomic DNA G + C content was 37.6-37.8 mol%. On the basis of the phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, a novel species Bacillus beringensis is proposed and the type strain is BR035(T) (=CGMCC 1.9126(T)=DSM 22571(T)).  相似文献   

11.
Two novel strains of the Cytophaga-Flexibacter-Bacteroides (CFB) group, designated Gsoil 219" and Gsoil 2381, were isolated from soil of a ginseng field of Pocheon Province in Korea. Both strains were Gram-negative, aerobic, nonmotile, nonspore-forming, and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that both isolates belong to the genus Chitinophaga but were clearly separated from established species of this genus. The sequence similarities between strain Gsoil 219T and type strains of the established species and between strain Gsoil 238T and type strains of the established species ranged from 91.4 to 94.7% and 91.6 to 94.2%, respectively. Phenotypic and chemotaxonomic data (major menaquinone, MK-7; major fatty acids, iso-C15:0 and C(16:1) omega5c; major hydroxy fatty acid, iso-C(17:0) 3-OH; major polyamine, homospermidine) supported the affiliation of both strains Gsoil 219T and Gsoil 238T to the genus Chitinophaga. Furthermore, the results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of both strains from the other validated Chitinophaga species. Therefore, the two isolates represent two novel species, for which the name Chitinophaga soli sp. nov. (type strain, Gsoil 219T=KCTC 12650T=DSM 18093T) and Chitinophaga terrae sp. nov. (type strain, Gsoil 238T=KCTC 12651T=DSM 18078T) are proposed.  相似文献   

12.
Novel orange pigmented, Gram-negative-staining, rod-shaped, non-motile, strictly aerobic strains designated NIO-S1(T) and NIO-S2 were isolated from the water sample of a pond adjacent to the coast and an algal mat from a fish pond, respectively, at Kakinada, India. Both strains were positive for oxidase, catalase and β-galactosidase activities. The predominant fatty acids in NIO-S1(T) were iso-C(15:0) (39.6%), anteiso-C(15:0) (9.9%), iso-C(17:0) 3OH (10.9%) and C(16:1)ω7c/C(16:1)ω6c (summed feature 3) (5.7%). The strains contained MK-7 as the major respiratory quinine, and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unidentified lipids as the polar lipids. Phylogenetic analysis indicated that strain NIO-S1(T) was a member of the family "Cyclobacteriaceae" of the class "Sphingobacteriia" and it clustered with the genera Fontibacter, Cecembia and Aquiflexum with phylogenetic distances of 6.8, 9.0 and 12.2% (93.2, 91.0 and 87.8% similarity), respectively. DNA-DNA hybridization between strains NIO-S1(T) and NIO-S2 showed a relatedness of 93% and rep-PCR banding patterns were similar. Based on data from the current polyphasic study, it is proposed that the new isolates be placed in a new genus and species with the name Shivajiella indica gen. nov., sp. nov. The type strain of Shivajiella indica is NIO-S1(T) (= KCTC 19812(T)=MTCC 11065(T)).  相似文献   

13.
Two Gram-positive, rod-shaped bacterial strains, H101(T) and H207, were isolated from deep sea water collected from South-West Indian Ocean. Phylogenetic analysis of 16S rRNA gene sequences showed that the two strains were closely related to one another (100% similarity), and had the closest relationship with Microbacterium hominis NBRC 15708(T) and Microbacterium insulae KCTC 19247(T) (98.2-98.3% similarities). DNA-DNA hybridization value between strains H101(T) and H207 was 87.2 ± 3.7%, and the values between the two strains and the closely related type strains were well below 70%. The two strains also shared a number of physiological and biochemical characteristics that were distinct from the closely related species, and grew at 2-37 ° C, pH 5-11 and 0-8% (w/v) NaCl. Both strains contained MK-12, MK-13 and MK-11 as the detected menaquinones. The peptidoglycan was of type B1γ with an interpeptide bridge D-Glu(Hyg)→ Gly(2)→ l-Lys. The major cellular fatty acids were anteiso-C(15:0), anteiso-C(17:0), and iso-C(16:0). Based on the genetic and phenotypic properties, it is proposed that strains H101(T) and H207 be classified as representatives of a novel species of the genus Microbacterium, with the name Microbacterium marinum sp. nov. The type strain is H101(T) (= CGMCC 4.6941(T) = DSM 24947(T)).  相似文献   

14.
An endospore-forming bacterium, designated strain B-16T, was isolated from a forest soil sample in Yunnan, China. The isolate presented remarkable nematotoxic activity against nematode Panagrellus redivivus. The organism was strictly aerobic, motile, spore forming and rod shaped, catalase- and oxidase-positive. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major cellular fatty acid profiles were anteiso-C15:0 (48.67%), iso-C15:0 (13.45%), C16:0 (9.06%) and anteiso-Cl7:0 (8.29%). The DNA G+C content was 46%. Phylogenetic analyses based on 16S rDNA sequence revealed that isolate belongs to the genus Bacillus. Strain B-16T exhibited high 16S rDNA similarity with its closest neighbors Bacillus vallismortis (99.79%), B. subtilis (99.43%), B. atrophaeus (99.43%), B. amyloliquefaciens (99.36%), B. licheniformis (98.0%) and less than 97.0% with all the other relative type strains in the genus Bacillus. The phenotypic and genotypic characteristics and DNA-DNA relatedness data indicate that strain B-16T should be distinguished from all the relative species of genus Bacillus. Therefore, on the basis of the polyphasic taxonomic data presented, a new species of the genus Bacillus, B. nematocida, with the type strain B-16T ( = CGMCC 1128T) is proposed. The GenBank accession number for the sequence reported in this paper is AY820954.  相似文献   

15.
A slightly creamy, melanogenic, gram-negative, aerobic bacterium was isolated from seawater sample collected in the Karadag Natural Reserve of the Eastern Crimea, the Black Sea. The novel organism was chemoorganotrophic, had no obligate requirement in NaCl, tolerated to 12% NaCl, grew between 10 and 45 degrees C, was slightly alkaliphilic, and was not able to degrade starch, gelatin, agar, and Tween 80. 16S rRNA gene sequence-based analyses of the new organism revealed that Oceanimonas doudoroffii ATCC 27123T, Oceanimonas baumanii ATCC 700832T, and Oceanisphaera litoralis DSM 15406T were the closest relatives (similarity around 97%-96%). The G + C content of the DNA of the strain 31-13T was 55.5mol%. Phosphatidylethanolamine (49.0%), phosphatidylglycerol (41.8%), and diphosphatidylglycerol (9.2%) were the predominant phospholipids. The major fatty acids were 16:0 (24.1%), 16:1omega7 (40.3%), and 18:1omega7 (29.2%). On the basis of the significant differences demonstrated in the phenotypic and chemotaxonomic characteristics, it is suggested that the bacterium be classified as a novel species; the name Oceanimonas smirnovii sp. nov. is proposed. The type strain is 31-13T (UCM B-11076T = LMG 22147T = ATCC BAA-899T).  相似文献   

16.
A novel aerobic, Gram-negative, non-pigmented bacterium, GCM72(T), was isolated from the alkaline, low-saline ikaite columns in the Ikka Fjord, SW Greenland. Strain GCM72(T) is a motile, non-pigmented, amylase- and protease-producing, oxidase-positive, and catalase-negative bacterium, showing optimal growth at pH 9.2-10.0, at 15 degrees C, and at 3% (w/v) NaCl. Major fatty acids were C(12:0) 3-OH (12.2+/-0.1%), C(16:00) (18.0+/-0.1%), C(18:1)omega7c (10.7+/-0.5%), and summed feature 3 comprising C(16:1)omega7c and/or iso-C(15:0) 2-OH (36.3+/-0.7%). Phylogenetic analysis based on 16S rRNA gene sequences showed that isolate GCM72(T) was most closely related to Rheinheimera baltica and Alishewanella fetalis of the gamma-Proteobacteria with a 93% sequence similarity to both. The G+C content of DNA isolated from GCM72(T) was 49.9mol% and DNA-DNA hybridization between GCM72T and R. baltica was 9.5%. Fatty acid analysis and G+C content supports a relationship primarily to R. baltica, but several different features, such as a negative catalase-response and optimal growth at low temperature and high pH, together with the large phylogenetic distance and low DNA similarity to its closest relatives, lead us to propose a new genus, Arsukibacterium, gen. nov., with the new species Arsukibacterium ikkense sp. nov. (type strain is GCM72(T)).  相似文献   

17.
A novel actinobacterial strain, designated P4-7(T), was isolated from soil of a ginseng field located in Geumsan County, Korea. Cells of the strain were aerobic, Gram-stain-positive, non-motile, short rods. The isolate contained MK-8(H(4)) as the predominant menaquinone, iso-C(16:0), anteiso-C(15:0) and anteiso-C(17:0) as the major fatty acids, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as the major polar lipids, glucose, mannose, xylose, ribose and rhamnose as whole-cell sugars, and meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain P4-7(T) belongs to the family Nakamurellaceae and is most closely related to Nakamurella multipartita, Humicoccus flavidus and Saxeibacter lacteus (96.3, 97.0 and 96.4% similarity to the respective type strains). Based on comparative analyses of the 16S rRNA and rpoB gene sequences and chemotaxonomic data, it is proposed that H. flavidus and S. lacteus be transferred to the genus Nakamurella. Combined genotypic and phenotypic data also suggested that strain P4-7(T) be placed in a novel species of the genus Nakamurella, for which the name Nakamurella panacisegetis sp. nov. is proposed; the type strain is P4-7(T) (=KCTC 19426(T)=CECT 7604(T)).  相似文献   

18.
Three cryptoendolithic, aerobic actinomycetes (AA-459T, AA-319 and AA-321) from antarctic sandstone were characterised phenotypically and by molecular taxonomic methods. The isolates had single spores on substrate mycelium, meso-diaminopimelic acid (m-DAP) and glycine (cell wall type II), a whole cell sugar pattern D (galactose, xylose, arabinose, glucose or rhamnose) and phospholipids of type PII (diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol). Their predominant fatty acids were iso-16:0 and iso-15:0 or 17:1omega8c, the menaquinone profile was complex with mainly MK10 (H4) and MK10 (H6). A wide variety of sugars and several acids were utilised for growth. The isolates were sensitive to a few antibiotics, but formation and excretion of antibiotics was not observed. Phenotypically, isolates AA-319 and AA-321 were similar. Phylogenetic analysis of 16S rRNA gene sequences revealed close relationship of strains AA-319 and AA-321 with each other (99.5%) and clustering (98.5%) with Micromonospora coerulea DSM 43143T. DNA-DNA hybridisation showed both strains to be genomically highly similar to strain DSM 43143T. Phenotypically they could be viewed as separate taxa, but presently they will be considered as strains of Micromonospora coerulea. Strain AA-459T was phylogenetically close to Micromonospora chersina DSM 44151T (99.1%) and to Micromonospora rosaria DSM 803T, but DNA-DNA similarity with M. chersina DSM 44151T was low with 28.9/33.5 %, indicating the presence of a different and new species. Consequently, isolate AA-459T (DSM 44398T NRRL B-24248T) is described as the type strain of Micromonospora endolithica sp. nov.  相似文献   

19.
Three actinomycete strains were isolated from soil samples collected in Bangladesh. The cultures formed spherical sporangia on short sporangiophores directly above the surface of the substrate mycelium. The sporangia developed singly or in clusters and each sporangium contained several nonmotile spherical to oval spores with a smooth surface. The strains 3-9(24)(T), 3-21(27) and 7-40(26)(T) contained meso-diaminopimelic acid in the cell walls, predominant menaquinone MK-9(H(6)) and MK-9(H(4)) and glucose, xylose, galactose, mannose, rhamnose, ribose and arabinose in the whole-cell hydrolysates. Diagnostic phospholipid is phosphatidylethanolamine and branched anteiso-C(17 : 0) (30.0-38.0%), anteiso-C(15 : 0) (12.5-14.0%), iso-C(16 : 0) (10.0-15.0%) and iso-C(15 : 0) (10.0-12.0%) were detected as the major cellular fatty acids. The acyl type of the peptidoglycan was glycolyl and mycolic acids were not detected. The G+C content of the DNA was 71 mol%. The chemotaxonomic data indicate that these strains belong to the family Micromonosporaceae. Phylogenetic analysis based on 16S rRNA gene sequence data suggested that the strains 3-9(24)(T), 3-21(27) and 7-40(26)(T) fall within the family Micromonosporaceae. On the basis of phylogenetic analysis and characteristic patterns of signature nucleotides as well as morphological and chemotaxonomic data, Luedemannella gen. nov. is proposed for our 3 isolates. DNA-DNA hybridization experiment and phenotypic characterization indicated that the new genus was constituted of 2 species, as Luedemannella helvata sp. nov. for the strain 3-9(24)(T) (=JCM 13249(T)=MTCC 8091(T)) and Luedemannella flava for the strain 7-40(26)(T) (=JCM 13250(T)=MTCC 8095(T)) in the family Micromonosporaceae.  相似文献   

20.
Gram-positive bacteria of the genus Exiguobacterium have been repeatedly isolated from Siberian permafrost ranging in age from 20,000 to 2 to 3 million years and have been sporadically recovered from markedly diverse habitats, including microbial mats in Lake Fryxell (Antarctic), surface water, and food-processing environments. However, there is currently no information on genomic diversity of this microorganism or on the physiological strategies that have allowed its survival under prolonged freezing in the permafrost. Analysis of the genome sequence of the most ancient available Exiguobacterium isolate (Exiguobacterium sp. strain 255-15, from 2 to 3 million-year-old Siberian permafrost) revealed numerous putative transposase sequences, primarily of the IS200/IS605, IS30, and IS3 families, with four transposase families identified. Several of the transposase genes appeared to be part of insertion sequences. Southern blots with different transposase probes yielded high-resolution genomic fingerprints which differentiated the different permafrost isolates from each other and from the Exiguobacterium spp. type strains which have been derived from diverse surface habitats. Each of the Exiguobacterium sp. strain 255-15 transposases that were used as probes had highly conserved homologs in the genome of other Exiguobacterium strains, both from permafrost and from modern sites. These findings suggest that, prior to their entrapment in permafrost, Exiguobacterium isolates had acquired transposases and that conserved transposases are present in Exiguobacterium spp., which now can be isolated from various modern surface habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号