首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ward BM  Moss B 《Journal of virology》2000,74(8):3771-3780
The vaccinia virus B5R type I integral membrane protein accumulates in the Golgi network, from where it becomes incorporated into the envelope of extracellular virions. Our objective was to determine the domains of B5R responsible for Golgi membrane targeting in the absence of other viral components. Fusion of an enhanced green fluorescent protein to the C terminus of B5R allowed imaging of the chimeric protein without altering intracellular trafficking and Golgi network localization in transfected cells. Deletion or swapping of B5R domains with corresponding regions of the vesicular stomatitis virus G protein, which is targeted to the plasma membrane, indicated that (i) the N-terminal extracellular domain of B5R had no specific role in Golgi apparatus localization, (ii) the transmembrane domain of B5R was sufficient for exiting the endoplasmic reticulum, and (iii) removal of the cytoplasmic tail impaired Golgi network localization and increased the accumulation of B5R in the plasma membrane. Further experiments demonstrated that the cytoplasmic tail mediated internalization of B5R from the plasma membrane, suggesting a retrieval mechanism. Mutagenesis revealed residues required for Golgi membrane localization and efficient plasma membrane retrieval of the B5R protein: a tyrosine at residue 310 and two adjacent leucines at residues 315 and 316.  相似文献   

2.
Mutations of the receptor tyrosine kinase KIT are linked to certain cancers such as gastrointestinal stromal tumors (GISTs). Biophysical, biochemical, and structural studies have provided insight into the molecular basis of resistance to the KIT inhibitors, imatinib and sunitinib. Here, solution‐phase hydrogen/deuterium exchange (HDX) and direct binding mass spectrometry experiments provide a link between static structure models and the dynamic equilibrium of the multiple states of KIT, supporting that sunitinib targets the autoinhibited conformation of WT‐KIT. The D816H mutation shifts the KIT conformational equilibrium toward the activated state. The V560D mutant exhibits two low energy conformations: one is more flexible and resembles the D816H mutant shifted toward the activated conformation, and the other is less flexible and resembles the wild‐type KIT in the autoinhibited conformation. This result correlates with the V560D mutant exhibiting a sensitivity to sunitinib that is less than for WT KIT but greater than for KIT D816H. These findings support the elucidation of the resistance mechanism for the KIT mutants.  相似文献   

3.
Despite studies of the mechanism underlying the intracellular localization of membrane proteins, the specific mechanisms by which each membrane protein localizes to the endoplasmic reticulum, Golgi apparatus, and plasma membrane in the secretory pathway are unclear. In this study, a discriminant analysis of endoplasmic reticulum, Golgi apparatus and plasma membrane-localized type II membrane proteins was performed using a position-specific scoring matrix derived from the amino acid propensity of the sequences around signal-anchors. The possibility that the sequence around the signal-anchor is a factor for identifying each localization group was evaluated. The discrimination accuracy between the Golgi apparatus and plasma membrane-localized type II membrane proteins was as high as 90%, indicating that, in addition to other factors, the sequence around signal-anchor is an essential component of the selection mechanism for the Golgi and plasma membrane localization. These results may improve the use of membrane proteins for drug delivery and therapeutic applications.  相似文献   

4.
Intracellular localization of phospholipase D1 in mammalian cells   总被引:4,自引:0,他引:4       下载免费PDF全文
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid. In mammalian cells this reaction has been implicated in the recruitment of coatomer to Golgi membranes and release of nascent secretory vesicles from the trans-Golgi network. These observations suggest that PLD is associated with the Golgi complex; however, to date, because of its low abundance, the intracellular localization of PLD has been characterized only indirectly through overexpression of chimeric proteins. We have used highly sensitive antibodies to PLD1 together with immunofluorescence and immunogold electron microscopy as well as cell fractionation to identify the intracellular localization of endogenous PLD1 in several cell types. Although PLD1 had a diffuse staining pattern, it was enriched significantly in the Golgi apparatus and was also present in cell nuclei. On fragmentation of the Golgi apparatus by treatment with nocodazole, PLD1 closely associated with membrane fragments, whereas after inhibition of PA synthesis, PLD1 dissociated from the membranes. Overexpression of an hemagglutinin-tagged form of PLD1 resulted in displacement of the endogenous enzyme from its perinuclear localization to large vesicular structures. Surprisingly, when the Golgi apparatus collapsed in response to brefeldin A, the nuclear localization of PLD1 was enhanced significantly. Our data show that the intracellular localization of PLD1 is consistent with a role in vesicle trafficking from the Golgi apparatus and suggest that it also functions in the cell nucleus.  相似文献   

5.
Membrane trafficking in male germ cells contributes to their development via cell morphological changes and acrosome formation. TBC family proteins work as Rab GTPase accelerating proteins (GAPs), which negatively regulate Rab proteins, to mediate membrane trafficking. In this study, we analyzed the expression of a Rab GAP, TBC1D9, in mouse organs and the intracellular localization of the gene products. Tbc1d9 showed abundant expression in adult mice testis. We found that the Tbc1d9 mRNA was expressed in primary and secondary spermatocytes, and that the TBC1D9 protein was expressed in spermatocytes and round spermatids. In 293T cells, TBC1D9-GFP proteins were localized in the endosome and Golgi apparatus. Compartments that were positive for the constitutive active mutants of Rab7 and Rab9 were also positive for TBC1D9 isoform 1. In addition, TBC1D9 proteins were associated with Rab7 and Rab9, respectively. These results indicate that TBC1D9 is expressed mainly in spermatocytes, and suggest that TBC1D9 regulates membrane trafficking pathways related to Rab9- or Rab7-positive vesicles.  相似文献   

6.
Activation of receptor tyrosine kinases needs tight control by tyrosine phosphatases to keep their normal function. In this study, we investigated the regulation of activation of the type III receptor tyrosine kinase KIT by protein tyrosine phosphatase receptor type E (PTPRE). We found that PTPRE can associate with wild-type KIT and inhibit KIT activation in a dose-dependent manner, although the activation of wild-type KIT is dramatically inhibited even when PTPRE is expressed at low level. The D816V mutation of KIT is the most frequently found oncogenic mutation in mastocytosis, and we found that PTPRE can associate and inhibit the activation of KIT/D816V in a dose dependent manner, but the inhibition is much weaker compared with wild-type KIT. Similar to mastocytosis, KIT mutations are the main oncogenic mutations in gastrointestinal stromal tumors (GISTs) although GISTs carry different types of KIT mutations. We further studied the regulation of the activation of GISTs-type KIT mutants and other mastocytosis-type KIT mutants by PTPRE. Indeed, PTPRE can almost block the activation of GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to the inhibition of PTPRE. Taken together, our results suggest that PTPRE can associate with KIT, and inhibit the activation of both wild-type KIT and GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to PTPRE.  相似文献   

7.
《The Journal of cell biology》1994,127(5):1185-1197
Caveolae are a membrane specialization used to internalize molecules by potocytosis. Caveolin, an integral membrane protein, is associated with the striated coat present on the cytoplasmic surface of the caveolae membrane. We now report that oxidation of caveolar cholesterol with cholesterol oxidase rapidly displaces the caveolin from the plasma membrane to intracellular vesicles that colocalize with Golgi apparatus markers. After the enzyme is removed from the medium, caveolin returns to caveolae. When untreated cells are gently homogenized, caveolin on the plasma membrane is accessible to both anti-caveolin IgG and trypsin. After cholesterol oxidase treatment, however, Golgi-associated caveolin is inaccessible to both of these molecules. Brefeldin A, which inhibits ER to Golgi trafficking, blocks the appearance of caveolin in the Golgi apparatus but does not prevent caveolin from leaving the plasma membrane. Indirect immunogold localization experiments show that in the presence of cholesterol oxidase caveolin leaves the plasma membrane and becomes associated with endoplasmic reticulum and Golgi compartments. Surprisingly, the loss of caveolin from the plasma membrane does not affect the number or morphology of the caveolae.  相似文献   

8.
9.
Caenorhabditis elegans hid-1 gene was first identified in a screen for mutants with a high-temperature-induced dauer formation (Hid) phenotype. Despite the fact that the hid-1 gene encodes a novel protein (HID-1) which is highly conserved from Caenorhabditis elegans to mammals, the domain structure, subcellular localization, and exact function of HID-1 remain unknown. Previous studies and various bioinformatic softwares predicted that HID-1 contained many transmembrane domains but no known functional domain. In this study, we revealed that mammalian HID-1 localized to the medial- and trans-Golgi apparatus as well as the cytosol, and the localization was sensitive to brefeldin A treatment. Next, we demonstrated that HID-1 was a peripheral membrane protein and dynamically shuttled between the Golgi apparatus and the cytosol. Finally, we verified that a conserved N-terminal myristoylation site was required for HID-1 binding to the Golgi apparatus. We propose that HID-1 is probably involved in the intracellular trafficking within the Golgi region.  相似文献   

10.
Mutations have been introduced into the cloned DNA sequences coding for influenza virus hemagglutinin (HA), and the resulting mutant genes have been expressed in simian cells by the use of SV40-HA recombinant viral vectors. In this study we analyzed the effect of specific alterations in the cytoplasmic domain of the HA molecule on its rate of biosynthesis and transport, cellular localization, and biological activity. Several of the mutants displayed abnormalities in the pathway of transport from the endoplasmic reticulum to the cell surface. One mutant HA remained within the endoplasmic reticulum; others were delayed in reaching the Golgi apparatus after core glycosylation had been completed in the endoplasmic reticulum, but then progressed at a normal rate from the Golgi apparatus to the cell surface; another was delayed in transport from the Golgi apparatus to the plasma membrane. However, two mutants were indistinguishable from wild-type HA in their rate of movement from the endoplasmic reticulum through the Golgi apparatus to the cell surface. We conclude that changes in the cytoplasmic domain can powerfully influence the rate of intracellular transport and the efficiency with which HA reaches the cell surface. Nevertheless, absolute conservation of this region of the molecule is not required for maturation and efficient expression of a biologically active HA on the surface of infected cells.  相似文献   

11.
Nicotinic acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels that mediate fast synaptic transmission at the neuromuscular junction (NMJ). After assembly in the endoplasmic reticulum (ER), AChRs must be transported to the plasma membrane through the secretory apparatus. Little is known about specific molecules that mediate this transport. Here we identify a gene that is required for subtype-specific trafficking of assembled nicotinic AChRs in Caenorhabditis elegans. unc-50 encodes an evolutionarily conserved integral membrane protein that localizes to the Golgi apparatus. In the absence of UNC-50, a subset of AChRs present in body-wall muscle are sorted to the lysosomal system and degraded. However, the trafficking of a second AChR type and of GABA ionotropic receptors expressed in the same muscle cells is not affected in unc-50 mutants. These results suggest that, in addition to ER quality control, assembled AChRs are sorted within the Golgi system by a mechanism that controls the amount of cell-surface AChRs in a subtype-specific way.  相似文献   

12.
BACKGROUND: In contrast to the intense attention devoted to research on intracellular sterol trafficking in animal cells, knowledge about sterol transport in plant cells remains limited, and virtually nothing is known about plant endocytic sterol trafficking. Similar to animals, biosynthetic sterol transport occurs from the endoplasmic reticulum (ER) via the Golgi apparatus to the plasma membrane. The vesicle trafficking inhibitor brefeldin A (BFA) has been suggested to disrupt biosynthetic sterol transport at the Golgi level. RESULTS: Here, we report on early endocytic sterol trafficking in Arabidopsis root epidermal cells by introducing filipin as a tool for fluorescent sterol detection. Sterols can be internalized from the plasma membrane and localize to endosomes positive for the early endosomal Rab5 GTPase homolog ARA6 fused to green fluorescent protein (GFP) (ARA6-GFP). Early endocytic sterol transport is actin dependent and highly BFA sensitive. BFA causes coaccumulation of sterols, endocytic markers like ARA6-GFP, and PIN2, a polarly localized presumptive auxin transport protein, in early endosome agglomerations that can be distinguished from ER and Golgi. Sterol accumulation in such aggregates is enhanced in actin2 mutants, and the actin-depolymerizing drug cytochalasin D inhibits sterol redistribution from endosome aggregations. CONCLUSIONS: Early endocytic sterol trafficking involves transport via ARA6-positive early endosomes that, in contrast to animal cells, is actin dependent. Our results reveal sterol-enriched early endosomes as targets for BFA interference in plants. Early endocytic sterol trafficking and recycling of polar PIN2 protein share a common pathway, suggesting a connection between plant endocytic sterol transport and polar sorting events.  相似文献   

13.
Takida S  Wedegaertner PB 《FEBS letters》2004,567(2-3):209-213
Heterotrimeric G proteins are lipid-modified, peripheral membrane proteins that function at the inner surface of the plasma membrane (PM) to relay signals from cell-surface receptors to downstream effectors. Cellular trafficking pathways that direct nascent G proteins to the PM are poorly defined. In this report, we test the proposal that G proteins utilize the classical exocytic pathway for PM targeting. PM localization of the G protein heterotrimers alpha s beta 1 gamma 2 and alpha q beta 1 gamma 2 occurred independently of treatment of cells with Brefeldin A, which disrupts the Golgi, or expression of Sar1 mutants, which prevent the formation of endoplasmic reticulum to Golgi transport vesicles. Moreover, the palmitoylation of alpha q was unaffected by Brefeldin A treatment, even though the palmitoylation of SNAP25 was blocked by Brefeldin A. Non-palmitoylated mutants of alpha s and alpha q failed to stably bind to beta gamma and displayed a dispersed cytoplasmic localization when co-expressed with beta gamma. These findings support a refined model of the PM trafficking pathway of G proteins, involving assembly of the heterotrimer at the endoplasmic reticulum and transport to the PM independently of the Golgi.  相似文献   

14.
Generally, plasma membrane (PM) proteins are cotranslationally inserted into the endoplasmic reticulum (ER) and travel in vesicles via the Golgi apparatus to the PM. In the yeast Saccharomyces cerevisiae, the polytopic membrane protein Ist2p is encoded by an mRNA that is localized to the cortex of daughter cells. It has been suggested that IST2 mRNA localization leads to the accumulation of the protein at the PM of daughter cells. Since small- and medium-sized daughter cells only contain cortical, but not perinuclear ER, this implies the local translation of Ist2p specifically at the cortical ER. Here, we show that localization of constitutively expressed IST2 mRNA is required for delivery of Ist2p to the PM of daughter, but not mother cells and that it does not result in daughter-specific Ist2p accumulation. In contrast to a PM-located hexose transporter (Hxt1p) that follows the standard secretory pathway, the trafficking of Ist2p is independent of myosin-mediated vesicular transport. Furthermore, colocalization experiments in mutants of the secretory pathway demonstrate that trafficking of Ist2p does not require the classical secretory machinery. These data suggest the existence of a novel trafficking pathway connecting specialized domains of the ER with the PM.  相似文献   

15.
The conserved protein ZW10 is found in various organisms. It is localized on the kinetochores or spindle microtubules during cell division. ZW10 regulates not only the segregation of homologous chromosomes, each consisting of attached sister chromatids (during the first meiotic division), but also the separation of individual chromatids (during mitosis and the second meiotic division). ZW10 is required for proper chromosome segregation during both mitosis and meiosis. The effects of zwl0 mutations are similar for both equational and reductional divisions, giving rise to anaphases with lagging chromosomes and/or unequal numbers of chromosomes at the two poles. The localization of ZW10 is similar during mitosis, meiosis I, and meiosis II. In interphase the distribution of ZW10 changes; it is localized in the endoplasmic reticulum, Golgi apparatus, and in the cytosol and is involved in membrane trafficking between the endoplasmic reticulum and Golgi apparatus. ZW10 forms a subcomplex with RINT-1 and p31 which are involved in a larger complex comprising syntaxin 18, an endoplasmic reticulum-localized t-SNARE that is implicated in membrane trafficking. The text was submitted by the authors in English.  相似文献   

16.
Prenylated Rab acceptors (PRAs) bind to prenylated Rab proteins and possibly aid in targeting Rabs to their respective compartments. In Arabidopsis, 19 isoforms of PRA1 have been identified and, depending upon the isoforms, they localize to the endoplasmic reticulum (ER), Golgi apparatus and endosomes. Here, we investigated the localization and trafficking of AtPRA1.B6, an isoform of the Arabidopsis PRA1 family. In colocalization experiments with various organellar markers, AtPRA1.B6 tagged with hemagglutinin (HA) at the N-terminus localized to the Golgi apparatus in protoplasts and transgenic plants. The valine residue at the C-terminal end and an EEE motif in the C-terminal cytoplasmic domain were critical for anterograde trafficking from the ER to the Golgi apparatus. The N-terminal region contained a sequence motif for retention of AtPRA1.B6 at the Golgi apparatus. In addition, anterograde trafficking of AtPRA1.B6 from the ER to the Golgi apparatus was highly sensitive to the HA:AtPRA1.B6 level. The region that contains the sequence motif for Golgi retention also conferred the abundance-dependent trafficking inhibition. On the basis of these results, we propose that AtPRA1.B6 localizes to the Golgi apparatus and its ER-to-Golgi trafficking and localization to the Golgi apparatus are regulated by multiple sequence motifs in both the C- and N-terminal cytoplasmic domains.  相似文献   

17.
Although organelles such as the endoplasmic reticulum and Golgi apparatus are highly compartmentalized, these organelles are interconnected through a network of vesicular trafficking. The marine sponge metabolite ilimaquinone (IQ) is known to induce Golgi membrane fragmentation and is widely used to study the mechanism of vesicular trafficking. Although IQ treatment causes protein kinase D (PKD) activation, the detailed mechanism of IQ-induced Golgi membrane fragmentation remains unclear. In this work, we found that IQ treatment of cells caused a robust activation of phospholipase D (PLD). In the presence of 1-butanol but not 2-butanol, IQ-induced Golgi membrane fragmentation was completely blocked. In addition, IQ failed to induce Golgi membrane fragmentation in PLD knock-out DT40 cells. Furthermore, IQ-induced PKD activation was completely blocked by treatment with either 1-butanol or propranolol. Notably, IQ-induced Golgi membrane fragmentation was also blocked by propranolol treatment. These results indicate that PLD-catalyzed formation of phosphatidic acid is a prerequisite for IQ-induced Golgi membrane fragmentation and that enzymatic conversion of phosphatidic acid to diacylglycerol is necessary for subsequent activation of PKD and IQ-induced Golgi membrane fragmentation.  相似文献   

18.
The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind.  相似文献   

19.
Ceramide transport from the endoplasmic reticulum to the Golgi apparatus is crucial in sphingolipid biosynthesis, and the process relies on the ceramide trafficking protein (CERT), which contains pleckstrin homology (PH) and StAR-related lipid transfer domains. The CERT PH domain specifically recognizes phosphatidylinositol 4-monophosphate (PtdIns(4)P), a characteristic phosphoinositide in the Golgi membrane, and is indispensable for the endoplasmic reticulum-to-Golgi transport of ceramide by CERT. In this study, we determined the three-dimensional structure of the CERT PH domain by using solution NMR techniques. The structure revealed the presence of a characteristic basic groove near the canonical PtdIns(4)P recognition site. An extensive interaction study using NMR and other biophysical techniques revealed that the basic groove coordinates the CERT PH domain for efficient PtdIns(4)P recognition and localization in the Golgi apparatus. The notion was also supported by Golgi mislocalization of the CERT mutants in living cells. The distinctive binding modes reflect the functions of PH domains, as the basic groove is conserved only in the PH domains involved with the PtdIns(4)P-dependent lipid transport activity but not in those with the signal transduction activity.  相似文献   

20.
Intramembrane-cleaving proteases (I-CLiPs) are membrane embedded proteolytic enzymes. All substrates identified so far are also membrane proteins, involving a number of critical cellular signaling as well as human diseases. After synthesis and assembly at the endoplasmic reticulum, membrane proteins are exported to the Golgi apparatus and transported to their sites of action. A number of studies have revealed the importance of the intracellular membrane trafficking in i-CLiP-mediated intramembrane proteolysis, not only for limiting the unnecessary encounter between i-CLiPs and their substrate but also for their cleavage site preference. In this review, we will discuss recent advances in our understanding of how each i-CLiP proteolysis is regulated by intracellular vesicle trafficking. This article is part of a Special Issue entitled: Intramembrane Proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号