首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: To study physiological responses of mature forest trees to elevated CO2 after lifetime growth under elevated atmospheric CO2 concentrations ( p CO2), photosynthesis, Rubisco content, foliar concentrations of soluble sugars and starch, sugar concentrations in transport tissues (phloem and xylem), structural biomass, and lignin in leaves and branches were investigated in 30- to 50-year-old Quercus pubescens and Q. ilex trees grown at two naturally elevated CO2 springs in Italy. Ribulose-1,5-bisphosphate carboxylase/oxygenase content was decreased in Q. pubescens grown under elevated CO2 concentrations, but not in Q. ilex. Photosynthesis was consistently higher in Q. pubescens grown at elevated CO2 as compared with "control" sites, whereas the response in Q. ilex was less pronounced. Stomatal conductance was lower in both species leading to decreased transpiration and increased instantaneous water use efficiency in Q. pubescens. Overall mean sugar + starch concentrations of the leaves were not affected by elevated p CO2, but phloem exudates contained higher concentrations of soluble sugars. This finding suggests increased transport to sinks. Qualitative changes in major carbon-bearing compounds, such as structural biomass and lignins, were only found in bark but not in other tissues. These results support the concept that the maintenance of increased rates of photosynthesis after long-term acclimation to elevated p CO2 provides a means of optimization of water relations under arid climatic conditions but does not cause an increase in aboveground carbon sequestration per unit of tissue in Mediterranean oak species.  相似文献   

2.
Abstract: The concentration dependency of the impact of elevated atmospheric CO2 concentrations on Arabidopsis thaliana L. was studied. Plants were exposed to nearly ambient (390), 560, 810, 1240 and 1680 μl I-1 CO2 during the vegetative growth phase for 8 days. Shoot biomass production and dry matter content were increased upon exposure to elevated CO2. Maximal increase in shoot fresh and dry weight was obtained at 560 μl I-1 CU2, which was due to a transient stimulation of the relative growth rate for up to 3 days. The shoot starch content increased with increasing CO2 concentrations up to two-fold at 1680 μl I-1 CO2, whereas the contents of soluble sugars and phenolic compounds were hardly affected by elevated CO2. The chlorophyll and carotenoid contents were not substantially affected at elevated CO2 and the chlorophyll a/b ratio remained unaltered. There was no acclimation of photosynthesis at elevated CO2; the photosynthetic capacity of leaves, which had completely developed at elevated CO2 was similar to that of leaves developed in ambient air. The possible consequences of an elevated atmospheric CO2 concentration to Arabidopsis thaliana in its natural habitat is discussed.  相似文献   

3.
The influence of the root holoparasitic angiosperm Orobanche minor Sm. on the biomass, photosynthesis, carbohydrate and nitrogen content of Trifolium repens L. was determined for plants grown at two CO2 concentrations (350 and 550 μmol mol−1). Infected plants accumulated less biomass than their uninfected counterparts, although early in the association there was a transient stimulation of growth. Infection also influenced biomass allocation both between tissues (infected plants had lower root:shoot ratios) and within tissues:infected roots were considerably thicker before the point of parasite attachment and thinner below. Higher concentrations of starch were also found in roots above the point of attachment, particularly for plants grown in elevated CO2. Elevated CO2 stimulated the growth of T. repens only during the early stages of development. There was a significant interaction between infection and CO2 on growth, with infected plants showing a greater response, such that elevated CO2 partly alleviated the effects of the parasite on host growth. Elevated CO2 did not affect total O. minor biomass per host, the number of individual parasites supported by each host, or their time of attachment to the host root system. Photosynthesis was stimulated by elevated CO2 but was unaffected by O. minor . There was no evidence of down-regulation of photosynthesis in T. repens grown at elevated CO2 in either infected or uninfected plants. The data are discussed with regard to the influence of elevated CO2 on other parasitic angiosperm-host associations and factors which control plant responses to elevated CO2.  相似文献   

4.
Elevated CO2 and conifer roots: effects on growth, life span and turnover   总被引:5,自引:4,他引:1  
Elevated CO2 increases root growth and fine (diam. 2 mm) root growth across a range of species and experimental conditions. However, there is no clear evidence that elevated CO2 changes the proportion of C allocated to root biomass, measured as either the root:shoot ratio or the fine root:needle ratio. Elevated CO2 tends to increase mycorrhizal infection, colonization and the amount of extramatrical hyphae, supporting their key role in aiding the plant to more intensively exploit soil resources, providing a route for increased C sequestration. Only two studies have determined the effects of elevated CO2 on conifer fine-root life span, and there is no clear trend. Elevated CO2 increases the absolute fine-root turnover rates; however, the standing crop root biomass is also greater, and the effect of elevated CO2 on relative turnover rates (turnover:biomass) ranges from an increase to a decrease. At the ecosystem level these changes could lead to increased C storage in roots. Increased fine-root production coupled with increased absolute turnover rates could also lead to increases in soil organic C as greater amounts of fine roots die and decompose. Although CO2 can stimulate fine-root growth, it is not known if this stimulation persists over time. Modeling studies suggest that a doubling of the atmospheric CO2 concentration initially increases biomass, but this stimulation declines with the response to elevated CO2 because increases in assimilation are not matched by increases in nutrient supply.  相似文献   

5.
Carbon and water fluxes in a calcareous grassland under elevated CO2   总被引:3,自引:2,他引:1  
1. As part of a long-term study of the effects of elevated CO2 on biodiversity and ecosystem function in a calcareous grassland, we measured ecosystem carbon dioxide and water-vapour fluxes over 24-h periods during the 1994 and 1995 growing seasons. Data were used to derive CO2 and H2O gas-exchange response functions to quantum flux density (QFD).
2. The relative increase in net ecosystem CO2 flux (NEC) owing to CO2 enrichment increased as QFD rose. Daytime NEC at high QFD under elevated CO2 increased by 25% to 60%, with the greatest increases in the spring and after mowing in June when above-ground biomass was lowest. There was much less stimulation of NEC in early June and again in October when the canopy was fully developed. Night-time NEC was not significantly altered under elevated CO2.
3. Short-term reversal of CO2 concentrations between treatments after two seasons of CO2 exposure provided evidence for a 50% downward adjustment of NEC expressed per unit above-ground plant dry weight. However, when expressed on a land area basis, this difference disappeared because of a c. 20% increase in above-ground biomass under elevated CO2.
4. Ecosystem evapotranspiration (ET) was not significantly altered by elevated CO2 when averaged over all measurement dates and positions. However, ET was reduced 3–18% at high QFD in plots at the top of the slope at our study site. In summary, CO2 enrichment resulted in a large stimulation of ecosystem CO2 capture, especially during periods of a large demand of carbon in relationship to its supply, and resulted in a relatively small and variable effect on ecosystem water consumption.  相似文献   

6.
Stomatal conductance ( g s) and photosynthetic rate ( A ) were measured in young beech ( Fagus sylvatica ), chestnut ( Castanea sativa ) and oak ( Quercus robur ) growing in ambient or CO2-enriched air. In oak, g s was consistently reduced in elevated CO2. However, in beech and chestnut, the stomata of trees growing in elevated CO2 failed to close normally in response to increased leaf-to-air vapour pressure deficit (LAVPD). Consequently, while g s was reduced in elevated CO2 on days with low LAVPD, on warm sunny days (with correspondingly high LAVPD) g s was unchanged or even slightly higher in elevated CO2. Furthermore, during drought, g s of beech and chestnut was unresponsive to [CO2], over a wide range of ambient LAVPD, whereas in oak g s was reduced by an average of 50% in elevated CO2. Stimulation of A by elevated CO2 in beech and chestnut was restricted to days with high irradiance, and was greatest in beech during drought. Hence, most of the additional carbon gain in elevated CO2 was made at the expense of water economy, at precisely those times (drought, high evaporative demand) when water conservation was most important. Such effects could have serious consequences for drought tolerance, growth and, ultimately, survival as atmospheric [CO2] increases.  相似文献   

7.
The long-term response of Arabidopsis thaliana to increasing CO2 was evaluated in plants grown in 800 μl l−1 CO2 from sowing and maintained, in hydroponics, on three nitrogen supplies: "low,""medium" and "high." The global response to high CO2 and N-supply was evaluated by measuring growth parameters in parallel with photosynthetic activity, leaf carbohydrates, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) messenger RNA and protein, stomatal conductance (gs) and density. CO2 enrichment was found to stimulate biomass production, whatever the N-supply. This stimulation was transient on low N-supply and persisted throughout the whole vegetative growth only in high N-supply. Acclimation on low N–high CO2 was not associated with carbohydrate accumulation or with a strong reduction in Rubisco amount or activity. At high N-supply, growth stimulation by high CO2 was mainly because of the acceleration of leaf production and expansion while other parameters such as specific leaf area, root/shoot ratio and gs appeared to be correlated with total leaf area. Our results thus suggest that, in strictly controlled and stable growing conditions, acclimation of A. thaliana to long-term CO2 enrichment is mostly controlled by growth rate adjustment.  相似文献   

8.
Effects of the current (38 Pa) and an elevated (74 Pa) CO2 partial pressure on root and shoot areas, biomass accumulation and daily net CO2 exchange were determined for Opuntia ficus-indica (L.) Miller, a highly productive Crassulacean acid metabolism species cultivated worldwide. Plants were grown in environmentally controlled rooms for 18 weeks in pots of three soil volumes (2 600, 6 500 and 26 000 cm3), the smallest of which was intended to restrict root growth. For plants in the medium-sized soil volume, basal cladodes tended to be thicker and areas of main and lateral roots tended to be greater as the CO2 level was doubled. Daughter cladodes tended to be initiated sooner at the current compared with the elevated CO2 level but total areas were similar by 10 weeks. At 10 weeks, daily net CO2 uptake for the three soil volumes averaged 24% higher for plants growing under elevated compared with current CO2 levels, but at 18 weeks only 3% enhancement in uptake occurred. Dry weight gain was enhanced 24% by elevated CO2 during the first 10 weeks but only 8% over 18 weeks. Increasing the soil volume 10-fold led to a greater stimulation of daily net CO2 uptake and biomass production than did doubling the CO2 level. At 18 weeks, root biomass doubled and shoot biomass nearly doubled as the soil volume was increased 10-fold; the effects of soil volume tended to be greater for elevated CO2. The amount of cladode nitrogen per unit dry weight decreased as the CO2 level was raised and increased as soil volume increased, the latter suggesting that the effects of soil volume could be due to nitrogen limitations.  相似文献   

9.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

10.
To test the prediction that elevated CO2 increases the maximum leaf area index (LAI) through a stimulation of photosynthesis, we exposed model herbaceous communities to two levels of CO2 crossed with two levels of soil fertility. Elevated CO2 stimulated the initial rate of canopy development and increased cumulative LAI integrated over the growth period, but it had no effect on the maximum LAI. In contrast to CO2, increased soil nutrient availability caused a substantial increase in maximum LAI. Elevated CO2 caused a slight increase in leaf area and nitrogen allocated to upper canopy layers and may have stimulated leaf turnover deep in the canopy. Gas exchange measurements of intact communities made near the time of maximum LAI indicated that soil nutrient availability, but not CO2 enrichment, caused a substantial stimulation of net ecosystem carbon exchange. These data do not support our prediction of a higher maximum LAI by elevated CO2 because the initial stimulation of LAI diminished by the end of the growth period. However, early in development, leaf area and carbon assimilation of communities may have been greatly enhanced. These results suggest that the rate of canopy development in annual communities may be accelerated with future increases in atmospheric CO2 but that maximum LAI is set by soil fertility.  相似文献   

11.
Northern red oak in the western Lake States area of the USA exists on the most xeric edge of its distribution range. Future climate-change scenarios for this area predict decreased water availability along with increased atmospheric CO2. We examined recent photosynthate distribution and growth in seedlings as a function of CO2 mole fraction (400, 530 and 700 μmol mol−1 CO2), water regime (well watered and water-stressed), and ontogenic stage. Water stress effects on growth were largely offset by elevated CO2.
Water stress increased root mass ratio without concurrently increasing allocation of recent photosynthate to the roots. However, apparent sink strength of water-stressed seedlings at the completion of the third growth stage tended to be greater than that of well watered seedlings, as shown by continued high export, which may contribute carbon reserves to support preferential root growth under water-stressed conditions.
Elevated CO2 decreased apparent shoot sink strength associated with the rapid expansion of the third flush. Carbon resources for the observed enhanced growth under elevated CO2 could be provided by enhanced photosynthetic rate over an increased leaf area (Anderson & Tomlinson, 1998, this volume).
Increased sink strength of LG seedlings under water-stressed conditions, together with decreased apparent shoot sink strength associated with growth in elevated CO2 provide mechanisms for offsetting water stress effects by growth in elevated CO2.
Careful control of ontogeny was necessary to discern these changes and provides further evidence of the need for such careful control in mechanistic studies.  相似文献   

12.
Abstract. Herbaceous C3 plants grown in elevated CO2 show increases in carbon assimilation and carbohydrate accumulation (particularly starch) within source leaves. Although changes in the partitioning of biomass between root and shoot occur, the proportion of this extra assimilate made available for sink growth is not known. Root:shoot ratios tend to increase for CO2-enriched herbaceous plants and decrease for CO2-enriched trees. Root:shoot ratios for cereals tend to remain constant. In contrast, elevated temperatures decrease carbohydrate accumulation within source and sink regions of a plant and decrease root:shoot ratios. Allometric analysis of at least two species showing changes in root: shoot ratios due to elevated CO2 show no alteration in the whole-plant partitioning of biomass. Little information is available for interactions between temperature and CO2. Cold-adapted plants show little response to elevated levels of CO2, with some species showing a decline in biomass accumulation. In general though, increasing temperature will increase sucrose synthesis, transport and utilization for CO2-enriched plants and decrease carbohydrate accumulation within the leaf. Literature reports are discussed in relation to the hypothesis that sucrose is a major factor in the control of plant carbon partitioning. A model is presented in support.  相似文献   

13.
An open-top chamber experiment was carried out to examine the likely effects of elevated atmospheric [CO2] on architectural as well as on physiological characteristics of two poplar clones ( Populus trichocarpa × P. deltoides clone Beaupré and P. deltoides × P. nigra clone Robusta). Crown architectural parameters required as input parameters for a three-dimensional (3D) model of poplar structure, such as branching frequency and position, branch angle, internode length and its distribution pattern, leaf size and orientation, were measured following growth in ambient and elevated [CO2 ] (ambient + 350 μmol mol–1) treated open-top chambers. Based on this information, the light interception and photosynthesis of poplar canopies in different [CO2] treatments were simulated using the 3D poplar tree model and a 3D radiative transfer model at various stages of the growing season. The first year experiments and modelling results showed that the [CO2] enrichment had effects on light intercepting canopy structure as well as on leaf photosynthesis properties. The elevated [CO2] treatment resulted in an increase of leaf area, canopy photosynthetic rate and above-ground biomass production of the two poplar clones studied. However, the structural components responded less than the process components to the [CO2] enrichment. Among the structural components, the increase of LAI contributed the most to the canopy light interception and canopy photosynthesis; the change of other structural aspects as a whole caused by the [CO2] enrichment had little effect on daily canopy light interception and photosynthesis.  相似文献   

14.
A recognized invasive weed, Canada thistle ( Cirsium arvense L. Scop.) was grown at ambient and pre-ambient concentrations of atmospheric carbon dioxide [CO2] (373 and 287 μmol mol−1, respectively) at three levels of supplemental nitrogen (N) (3, 6 and 14.5 m M ) from seeding until flowering [77 days after sowing (DAS)]. The primary objective of the study was to determine if N supply limited the potential photosynthetic and growth response of this species to the increase in atmospheric [CO2] which occurred during the 20th century (i.e. approximately 290 to 370 μmol mol−1 CO2). Leaf photosynthesis increased both as a function of growth [CO2] and N supply during the first 46 DAS. Although by 46 DAS photosynthetic acclimation was observed relative to a common measurement CO2 concentration, there was no interaction with N supply. Both [CO2] and N increased biomass, relative growth rates and leaf area whereas root : shoot ratio was increased by CO2 and decreased by increasing N; however, N supply did not effect the relative response to [CO2] for any measured vegetative parameter up to 77 DAS. Due to the relative stimulation of shoot biomass, total above-ground N increased at elevated [CO2] for all levels of supplemental N, but nitrogen use efficiency (NUE) did not differ as a function of [CO2]. Overall, these data suggest that any potential response to increased atmospheric [CO2] in recent decades for this noxious weedy species was probably not limited by nitrogen supply.  相似文献   

15.
Abstract. There have been seven studies of canopy photosynthesis of plants grown in elevated atmospheric CO2: three of seed crops, two of forage crops and two of native plant ecosystems. Growth in elevated CO2 increased canopy photosynthesis in all cases. The relative effect of CO2 was correlated with increasing temperature: the least stimulation occurred in tundra vegetation grown at an average temperature near 10°C and the greatest in rice grown at 43°C. In soybean, effects of CO2 were greater during leaf expansion and pod fill than at other stages of crop maturation. In the longest running experiment with elevated CO2 treatment to date, monospecific stands of a C3 sedge, Scirpus olneyi (Grey), and a C4 grass, Spartina patens (Ait.) Muhl., have been exposed to twice normal ambient CO2 concentrations for four growing seasons, in open top chambers on a Chesapeake Bay salt marsh. Net ecosystem CO2 exchange per unit green biomass (NCEb) increased by an average of 48% throughout the growing season of 1988, the second year of treatment. Elevated CO2 increased net ecosystem carbon assimilation by 88% in the Scirpus olneyi community and 40% in the Spartina patens community.  相似文献   

16.
We measured leaf-level stomatal conductance, xylem pressure potential, and stomate number and size as well as whole plant sap flow and canopy-level water vapour fluxes in a C4-tallgrass prairie in Kansas exposed to ambient and elevated CO2. Stomatal conductance was reduced by as much as 50% under elevated CO2 compared to ambient. In addition, there was a reduction in stomate number of the C4 grass, Andropogon gerardii Vitman, and the C3 dicot herb, Salvia pitcheri Torr., under elevated CO2 compared to ambient. The result was an improved water status for plants exposed to elevated CO2 which was reflected by a less negative xylem pressure potential compared to plants exposed to ambient CO2. Sap flow rates were 20 to 30% lower for plants exposed to elevated CO2 than for those exposed to ambient CO2. At the canopy level, evapotranspiration was reduced by 22% under elevated CO2. The reduced water use by the plant canopy under elevated CO2 extended the photosynthetically-active period when water became limiting in the ecosystem. The result was an increased above- and belowground biomass production in years when water stress was frequent.  相似文献   

17.
A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar ( Populus ) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.  相似文献   

18.
Two Italian CO2 springs allowed us to study the long-term effect of a 350–2600 μ mol mol–1 increase in CO2 concentrations on the surface structures of leaves of Quercus ilex L. Carbon dioxide increased the quantity of cuticular waxes, above an apparent threshold of 750 μ mol mol–1 CO2. Leaf wettability was not modified by CO2 concentrations. Reduction in stomatal frequency was observable up to 750 μ mol mol–1 CO2, the slope being almost the same as that estimated for the increase in CO2 concentration from pre-industrial times to the present. At higher concentrations, CO2 seemed to exert no more impact on stomatal frequency.  相似文献   

19.
The effect of drought on CO2 assimilation and leaf conductance was studied in three northern hardwood species: Quercus rubra L., Acer rubrum L. and Populus grandidentata Michx. Leaf gas exchange characteristics at two CO2 levels (320 and 620 μl I−1) and temperatures from 20 to 35°C were measured at the end of a dry period and shortly after 10 cm of rainfall. The effects of drought varied with species, temperature and CO2 level. Calculated values of internal CO2 concentration showed little or no decline during drought. Differences in assimilation, before vs after the rains, were most apparent at the higher CO2 level. These latter two observations indicate nonstomatal disruption of CO2 assimilation during the dry period. In P. grandidentata there was a substantial interaction between drought and temperature, with a resultant shift in the temperature for maximum assimilation to lower temperatures during drought. During drought, internal CO2 concentrations increased sharply in all three species under the combined conditions of high temperatures and the higher CO2 level.  相似文献   

20.
Three soybean ( Glycine max L. Merr.) cultivars (Maple Glen, Clark and CNS) were exposed to three CO2 concentrations (370, 555 and 740 μmol mol−1) and three growth temperatures (20/15°, 25/20° and 31/26°C, day/night) to determine intraspecific differences in single leaf/whole plant photosynthesis, growth and partitioning, phenology and final biomass. Based on known carboxylation kinetics, a synergistic effect between temperature and CO2 on growth and photosynthesis was predicted since elevated CO2 increases photosynthesis by reducing photorespiration and photorespiration increases with temperature. Increasing CO2 concentrations resulted in a stimulation of single leaf photosynthesis for 40–60 days after emergence (DAE) at 20/15°C in all cultivars and for Maple Glen and CNS at all temperatures. For Clark, however, the onset of flowering at warmer temperatures coincided with the loss of stimulation in single leaf photosynthesis at elevated CO2 concentrations. Despite the season-long stimulation of single leaf photosynthesis, elevated CO2 concentrations did not increase whole plant photosynthesis except at the highest growth temperature in Maple Glen and CNS, and there was no synergistic effect on final biomass. Instead, the stimulatory effect of CO2 on growth was delayed by higher temperatures. Data from this experiment suggest that: (1) intraspecific variation could be used to select for optimum soybean cultivars with future climate change; and (2) the relationship between temperature and CO2 concentration may be expressed differently at the leaf and whole plant levels and may not solely reflect known changes in carboxylation kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号